Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Transcriptomic Signatures in Colorectal Cancer Progression

Author(s): Pavel Ershov*, Stanislav Poyarkov, Yulia Konstantinova, Egor Veselovsky and Anna Makarova

Volume 23, Issue 3, 2023

Published on: 27 July, 2022

Page: [239 - 249] Pages: 11

DOI: 10.2174/1566524022666220427102048

Price: $65

Abstract

Aims: Due to a large number of identified hub-genes encoding key molecular regulators, which are involved in signal transduction and metabolic pathways in cancers, it is relevant to systemize and update these findings.

Background: Colorectal cancer (CRC) is the third leading cause of cancer death in the world, with high metastatic potential. Elucidating the pathogenic mechanisms and selection of novel biomarkers in CRC is of great clinical significance.

Objective: This analytical review aims at the systematization of bioinformatics and experimental identification of hub-genes associated with CRC for a more consolidated understanding of common features in networks and pathways in CRC progression as well as hub-genes selection.

Results: In total, 301 hub-genes were derived from 40 articles. The “core” consisted of 28 hub-genes (CCNB1, LPAR1, BGN, CXCL3, COL1A2, UBE2C, NMU, COL1A1, CXCL2, CXCL11, CDK1, TOP2A, AURKA, SST, CXCL5, MMP3, CCND1, TIMP1, CXCL8, CXCL1, CXCL12, MYC, CCNA2, GCG, GUCA2A, PAICS, PYY and THBS2) mentioned in not less than three articles and having clinical significance in cancerassociated pathways. Of them, there were two discrete clusters enriched in chemokine signaling and cell cycle regulatory genes. High expression levels of BGN and TIMP1 and low expression levels of CCNB1, CXCL3, CXCL2, CXCL2 and PAICS were associated with unfavorable overall survival of patients with CRC. Differently expressed genes such as LPAR1, SST, CXCL12, GUCA2A, and PYY were shown as down regulated, whereas BGN, CXCL3, UBE2C, NMU, CXCL11, CDK1, TOP2A, AURKA, MMP3, CCND1, CXCL1, MYC, CCNA2, PAICS were up regulated genes in CRC. It was also found that MMP3, THBS2, TIMP1 and CXCL12 genes were associated with metastatic CRC. Network analysis in ONCO.IO showed that upstream master regulators RELA, STAT3, SOX2, FOXM1, SMAD3 and NF-kB were connected with “core” hub-genes.

Conclusión: Results obtained are of useful fundamental information on revealing the mechanism of pathogenicity, cellular target selection for optimization of therapeutic interventions, as well as transcriptomics prognostic and predictive biomarkers development.

Keywords: Transcriptomics, hub-genes, colorectal cancer, networks, differential expression, prognostic value, protein-protein interactions.

[1]
Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: A structural perspective. PLOS Comput Biol 2009; 5(12): e1000601.
[http://dx.doi.org/10.1371/journal.pcbi.1000601] [PMID: 20011507]
[2]
Han JD, Bertin N, Hao T, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004; 430(6995): 88-93.
[http://dx.doi.org/10.1038/nature02555] [PMID: 15190252]
[3]
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66(4): 683-91.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[4]
Padmanabhan C, Nussbaum DP, D’Angelica M. Surgical management of colorectal cancer liver metastases. Surg Oncol Clin N Am 2021; 30(1): 1-25.
[http://dx.doi.org/10.1016/j.soc.2020.09.002] [PMID: 33220799]
[5]
Smith SM, Wachter K, Burris HA III, et al. Clinical cancer advances 2021: ASCO’s Report on progress against cancer. J Clin Oncol 2021; 39(10): 1165-84.
[http://dx.doi.org/10.1200/JCO.20.03420] [PMID: 33527845]
[6]
Dalal N, Jalandra R, Sharma M, et al. Omics technologies for improved diagnosis and treatment of colorectal cancer: Technical advancement and major perspectives. Biomed Pharmacother 2020; 131: 110648.
[http://dx.doi.org/10.1016/j.biopha.2020.110648] [PMID: 33152902]
[7]
Baker S, Ali I, Silins I, et al. Cancer Hallmarks Analytics Tool (CHAT): A text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics 2017; 33(24): 3973-81.
[http://dx.doi.org/10.1093/bioinformatics/btx454] [PMID: 29036271]
[8]
Metsalu T, Vilo J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 2015; 43(W1): W566-70.
[http://dx.doi.org/10.1093/nar/gkv468] [PMID: 25969447]
[9]
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res 2019; 47(W1): W199-205.
[http://dx.doi.org/10.1093/nar/gkz401] [PMID: 31114916]
[10]
Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell 2017; 170(3): 564-576.e16.
[http://dx.doi.org/10.1016/j.cell.2017.06.010] [PMID: 28753430]
[11]
Yuan Y, Chen J, Wang J, et al. Identification hub genes in colorectal cancer by integrating weighted gene co-expression network analysis and clinical validation in vivo and vitro. Front Oncol 2020; 10: 638.
[http://dx.doi.org/10.3389/fonc.2020.00638] [PMID: 32426282]
[12]
Chen Z, Lin Y, Gao J, et al. Identification of key candidate genes for colorectal cancer by bioinformatics analysis. Oncol Lett 2019; 18(6): 6583-93.
[http://dx.doi.org/10.3892/ol.2019.10996] [PMID: 31788116]
[13]
Gong B, Kao Y, Zhang C, Sun F, Gong Z, Chen J. Identification of hub genes related to carcinogenesis and prognosis in colorectal cancer based on integrated bioinformatics. Mediators Inflamm 2020; 2020: 5934821.
[http://dx.doi.org/10.1155/2020/5934821] [PMID: 32351322]
[14]
Wu S, Wu F, Jiang Z. Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer. Oncol Rep 2017; 38(4): 2043-50.
[http://dx.doi.org/10.3892/or.2017.5930] [PMID: 28902367]
[15]
Liang B, Li C, Zhao J. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Med Oncol 2016; 33(10): 111.
[http://dx.doi.org/10.1007/s12032-016-0829-6] [PMID: 27581154]
[16]
Wang Y, Zheng T. Screening of hub genes and pathways in colorectal cancer with microarray technology. Pathol Oncol Res 2014; 20(3): 611-8.
[http://dx.doi.org/10.1007/s12253-013-9739-5] [PMID: 24504536]
[17]
Wei S, Chen J, Huang Y, et al. Identification of hub genes and construction of transcriptional regulatory network for the progression of colon adenocarcinoma hub genes and TF regulatory network of colon adenocarcinoma. J Cell Physiol 2020; 235(3): 2037-48.
[http://dx.doi.org/10.1002/jcp.29067] [PMID: 31612481]
[18]
Sun G, Li Y, Peng Y, et al. Identification of differentially expressed genes and biological characteristics of colorectal cancer by integrated bioinformatics analysis. J Cell Physiol 2019; 234(9): 15215-24.
[http://dx.doi.org/10.1002/jcp.28163] [PMID: 30652311]
[19]
Abu N, Othman N, W Hon K, Nazarie WF, Jamal R. Integrative meta-analysis for the identification of hub genes in chemoresistant colorectal cancer. Biomarkers Med 2020; 14(7): 525-37.
[http://dx.doi.org/10.2217/bmm-2019-0241] [PMID: 32462912]
[20]
Chen L, Lu D, Sun K, et al. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis. Gene 2019; 692: 119-25.
[http://dx.doi.org/10.1016/j.gene.2019.01.001] [PMID: 30654001]
[21]
Zhou H, Yang Z, Yue J, et al. Identification of potential hub genes via bioinformatics analysis combined with experimental verification in colorectal cancer. Mol Carcinog 2020; 59(4): 425-38.
[http://dx.doi.org/10.1002/mc.23165] [PMID: 32064687]
[22]
Xiong Y, You W, Wang R, Peng L, Fu Z. Prediction and validation of hub genes associated with colorectal cancer by integrating PPI network and gene expression data. BioMed Res Int 2017; 2017: 2421459.
[http://dx.doi.org/10.1155/2017/2421459] [PMID: 29209625]
[23]
Yang W, Ma J, Zhou W, et al. Identification of hub genes and outcome in colon cancer based on bioinformatics analysis. Cancer Manag Res 2018; 11: 323-38.
[http://dx.doi.org/10.2147/CMAR.S173240] [PMID: 30643458]
[24]
Wang P, Zheng H, Zhang J, et al. Identification of key gene modules and genes in colorectal cancer by co-expression analysis weighted gene co-expression network analysis. Biosci Rep 2020; 40(9): BSR20202044.
[http://dx.doi.org/10.1042/BSR20202044] [PMID: 32815531]
[25]
Wu F, Yuan G, Chen J, Wang C. Network analysis based on TCGA reveals hub genes in colon cancer. Contemp Oncol (Pozn) 2017; 21(2): 136-44.
[http://dx.doi.org/10.5114/wo.2017.68622] [PMID: 28947883]
[26]
Gan Y, Li Y, Li T, Shu G, Yin G. CCNA2 acts as a novel biomarker in regulating the growth and apoptosis of colorectal cancer. Cancer Manag Res 2018; 10: 5113-24.
[http://dx.doi.org/10.2147/CMAR.S176833] [PMID: 30464611]
[27]
Rahman MR, Islam T, Gov E, et al. Identification of prognostic biomarker signatures and candidate drugs in colorectal cancer: Insights from systems biology analysis. Medicina 2019; 55(1): 20.
[http://dx.doi.org/10.3390/medicina55010020] [PMID: 30658502]
[28]
Ai D, Wang Y, Li X, Pan H. Colorectal cancer prediction based on weighted gene co-expression network analysis and variational auto-encoder. Biomolecules 2020; 10(9): 1207.
[http://dx.doi.org/10.3390/biom10091207] [PMID: 32825264]
[29]
Guo Y, Bao Y, Ma M, Yang W. Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int J Mol Sci 2017; 18(4): 722.
[http://dx.doi.org/10.3390/ijms18040722] [PMID: 28350360]
[30]
Palaniappan A, Ramar K, Ramalingam S. Computational identification of novel stage-specific biomarkers in colorectal cancer progression. PLoS One 2016; 11(5): e0156665.
[http://dx.doi.org/10.1371/journal.pone.0156665] [PMID: 27243824]
[31]
Zhao ZW, Fan XX, Yang LL, et al. The identification of a common different gene expression signature in patients with colorectal cancer. Math Biosci Eng 2019; 16(4): 2942-58.
[http://dx.doi.org/10.3934/mbe.2019145] [PMID: 31137244]
[32]
Lv J, Li L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis. BioMed Res Int 2019; 2019: 1545680.
[http://dx.doi.org/10.1155/2019/1545680] [PMID: 31781593]
[33]
Liu J, Sun GL, Pan SL, Qin MB, Ouyang R, Huang JA. Identification of hub genes in colon cancer via bioinformatics analysis. J Int Med Res 2020; 48(9): 300060520953234.
[http://dx.doi.org/10.1177/0300060520953234] [PMID: 32961078]
[34]
Meng J, Su R, Liao Y, Li Y, Li L. Identification of 10 Hub genes related to the progression of colorectal cancer by co-expression analysis. PeerJ 2020; 8: e9633.
[http://dx.doi.org/10.7717/peerj.9633] [PMID: 33240582]
[35]
Zhao B, Baloch Z, Ma Y, et al. Identification of potential key genes and pathways in early-onset colorectal cancer through bioinformatics analysis. Cancer Contr 2019; 26(1): 1073274819831260.
[http://dx.doi.org/10.1177/1073274819831260] [PMID: 30786729]
[36]
Dai GP, Wang LP, Wen YQ, Ren XQ, Zuo SG. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis. Oncol Lett 2020; 19(1): 388-98.
[PMID: 31897151]
[37]
Qiu X, Feng JR, Wang F, et al. Profiles of differentially expressed genes and overexpression of NEBL indicates a positive prognosis in patients with colorectal cancer. Mol Med Rep 2018; 17(2): 3028-34.
[PMID: 29257257]
[38]
Han J, Zhang X, Liu Y, Jing L, Liu YB, Feng L. CLCA4 and MS4A12 as the significant gene biomarkers of primary colorectal cancer. Biosci Rep 2020; 40(8): BSR20200963.
[http://dx.doi.org/10.1042/BSR20200963] [PMID: 32797167]
[39]
Zhang H, Du Y, Wang Z, Lou R, Wu J, Feng J. Integrated analysis of oncogenic networks in colorectal cancer identifies GUCA2A as a molecular marker. Biochem Res Int 2019; 2019: 6469420.
[http://dx.doi.org/10.1155/2019/6469420] [PMID: 31467713]
[40]
Yu C, Chen F, Jiang J, Zhang H, Zhou M. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis. Mol Med Rep 2019; 20(2): 1259-69.
[http://dx.doi.org/10.3892/mmr.2019.10336] [PMID: 31173250]
[41]
Chen J, Wang Z, Shen X, Cui X, Guo Y. Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis. Mol Genet Genomic Med 2019; 7(7): e00713.
[http://dx.doi.org/10.1002/mgg3.713] [PMID: 31087508]
[42]
Mo X, Su Z, Yang B, Zeng Z, Lei S, Qiao H. Identification of key genes involved in the development and progression of early-onset colorectal cancer by co-expression network analysis. Oncol Lett 2020; 19(1): 177-86.
[PMID: 31897128]
[43]
Qin L, Zeng J, Shi N, Chen L, Wang L. Application of weighted gene co-expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer. Mol Med Rep 2020; 21(6): 2533-43.
[http://dx.doi.org/10.3892/mmr.2020.11047] [PMID: 32323816]
[44]
Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and interaction analysis of molecular markers in colorectal cancer by integrated bioinformatics analysis. Med Sci Monit 2018; 24: 6059-69.
[http://dx.doi.org/10.12659/MSM.910106] [PMID: 30168505]
[45]
Asghari M, Abazari MF, Bokharaei H, et al. Key genes and regulatory networks involved in the initiation, progression and invasion of colorectal cancer. Future Sci OA 2018; 4(3): FSO278.
[http://dx.doi.org/10.4155/fsoa-2017-0108] [PMID: 29568567]
[46]
Qian Z, Zhang G, Song G, et al. Integrated analysis of genes associated with poor prognosis of patients with colorectal cancer liver metastasis. Oncotarget 2017; 8(15): 25500-12.
[http://dx.doi.org/10.18632/oncotarget.16064] [PMID: 28424419]
[47]
Kou Y, Zhang S, Chen X, Hu S. Gene expression profile analysis of colorectal cancer to investigate potential mechanisms using bioinformatics. OncoTargets Ther 2015; 8: 745-52.
[PMID: 25914544]
[48]
Jiang H, Dong L, Gong F, et al. Inflammatory genes are novel prognostic biomarkers for colorectal cancer. Int J Mol Med 2018; 42(1): 368-80.
[http://dx.doi.org/10.3892/ijmm.2018.3631] [PMID: 29693170]
[49]
Sun G, Li Y, Peng Y, et al. Identification of a five-gene signature with prognostic value in colorectal cancer. J Cell Physiol 2019; 234(4): 3829-36.
[http://dx.doi.org/10.1002/jcp.27154] [PMID: 30132881]
[50]
Pirim D. Integrative analyses of molecular pathways and key candidate biomarkers associated with colorectal cancer. Cancer Biomark 2020; 27(4): 555-68.
[http://dx.doi.org/10.3233/CBM-191263] [PMID: 32176635]
[51]
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55.
[PMID: 31680165]
[52]
Wu T, Wang G, Chen W, et al. Co-inhibition of BET proteins and NF-κB as a potential therapy for colorectal cancer through synergistic inhibiting MYC and FOXM1 expressions. Cell Death Dis 2018; 9(3): 315.
[http://dx.doi.org/10.1038/s41419-018-0354-y] [PMID: 29472532]
[53]
Stark LA, Reid K, Sansom OJ, et al. Aspirin activates the NF-kappaB signalling pathway and induces apoptosis in intestinal neoplasia in two in vivo models of human colorectal cancer. Carcinogenesis 2007; 28(5): 968-76.
[http://dx.doi.org/10.1093/carcin/bgl220] [PMID: 17132819]
[54]
Tian Y, Ye Y, Gao W, et al. Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. Int J Colorectal Dis 2011; 26(1): 13-22.
[http://dx.doi.org/10.1007/s00384-010-1060-0] [PMID: 20886344]
[55]
Ahmed M, Hussain AR, Siraj AK, et al. Co-targeting of Cyclooxygenase-2 and FoxM1 is a viable strategy in inducing anticancer effects in colorectal cancer cells. Mol Cancer 2015; 14(1): 131.
[http://dx.doi.org/10.1186/s12943-015-0406-1] [PMID: 26159723]
[56]
Duan Q, Reid SP, Clark NR, et al. L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl 2016; 2(1): 16015.
[http://dx.doi.org/10.1038/npjsba.2016.15] [PMID: 28413689]
[57]
Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2(8): 563-72.
[http://dx.doi.org/10.1038/nrc865] [PMID: 12154349]
[58]
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5(1): 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[59]
Schmid F, Wang Q, Huska MR, et al. SPON2, a newly identified target gene of MACC1, drives colorectal cancer metastasis in mice and is prognostic for colorectal cancer patient survival. Oncogene 2016; 35(46): 5942-52.
[http://dx.doi.org/10.1038/onc.2015.451] [PMID: 26686083]
[60]
Stein U, Walther W, Arlt F, et al. MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med 2009; 15(1): 59-67.
[http://dx.doi.org/10.1038/nm.1889] [PMID: 19098908]
[61]
Slaby O, Sobkova K, Svoboda M, et al. Significant overexpression of Hsp110 gene during colorectal cancer progression. Oncol Rep 2009; 21(5): 1235-41.
[http://dx.doi.org/10.3892/or_00000346] [PMID: 19360299]
[62]
Hao JM, Chen JZ, Sui HM, et al. A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol 2010; 220(4): 475-89.
[http://dx.doi.org/10.1002/path.2668] [PMID: 20077526]
[63]
Chen S, Wang Y, Zhang L, et al. Exploration of the mechanism of colorectal cancer metastasis using microarray analysis. Oncol Lett 2017; 14(6): 6671-7.
[http://dx.doi.org/10.3892/ol.2017.7044] [PMID: 29163694]
[64]
Qi C, Hong L, Cheng Z, Yin Q. Identification of metastasis-associated genes in colorectal cancer using metaDE and survival analysis. Oncol Lett 2016; 11(1): 568-74.
[http://dx.doi.org/10.3892/ol.2015.3956] [PMID: 26870249]
[65]
Tang L, Lei YY, Liu YJ, Tang B, Yang SM. The expression of seven key genes can predict distant metastasis of colorectal cancer to the liver or lung. J Dig Dis 2020; 21(11): 639-49.
[http://dx.doi.org/10.1111/1751-2980.12936] [PMID: 32896975]
[66]
Kamal Y, Schmit SL, Hoehn HJ, Amos CI, Frost HR. Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes. Cancer Res 2019; 79(16): 4227-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3945] [PMID: 31239274]
[67]
Takahashi Y, Ishii Y, Nishida Y, et al. Detection of aberrations of ubiquitin-conjugating enzyme E2C gene (UBE2C) in advanced colon cancer with liver metastases by DNA microarray and two-color FISH. Cancer Genet Cytogenet 2006; 168(1): 30-5.
[http://dx.doi.org/10.1016/j.cancergencyto.2005.12.011] [PMID: 16772118]
[68]
Zhi J, Sun J, Wang Z, Ding W. Support vector machine classifier for prediction of the metastasis of colorectal cancer. Int J Mol Med 2018; 41(3): 1419-26.
[http://dx.doi.org/10.3892/ijmm.2018.3359] [PMID: 29328363]
[69]
Koehler A, Bataille F, Schmid C, et al. Gene expression profiling of colorectal cancer and metastases divides tumours according to their clinicopathological stage. J Pathol 2004; 204(1): 65-74.
[http://dx.doi.org/10.1002/path.1606] [PMID: 15307139]
[70]
Yeh SJ, Chen SW, Chen BS. Investigation of the genome-wide genetic and epigenetic networks for drug discovery based on systems biology approaches in colorectal cancer. Front Genet 2020; 11: 117.
[http://dx.doi.org/10.3389/fgene.2020.00117] [PMID: 32211020]
[71]
Li BQ, Huang T, Liu L, Cai YD, Chou KC. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS One 2012; 7(4): e33393.
[http://dx.doi.org/10.1371/journal.pone.0033393] [PMID: 22496748]
[72]
Gu E, Pan W, Chen K, Zheng Z, Chen G, Cai P. LncRNA H19 regulates lipopolysaccharide (LPS)-induced apoptosis and inflammation of BV2 microglia cells through targeting miR-325-3p/NEUROD4 axis. J Mol Neurosci 2021; 71(6): 1256-65.
[http://dx.doi.org/10.1007/s12031-020-01751-0] [PMID: 33205379]
[73]
Huang X, Zhu X, Yu Y, et al. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2021; 501: 66-82.
[http://dx.doi.org/10.1016/j.canlet.2020.12.025] [PMID: 33385486]
[74]
Muthusami S, Ramachandran I, Krishnamoorthy S, et al. Regulation of microRNAs in inflammation-associated colorectal cancer: A mechanistic approach. Endocr Metab Immune Disord Drug Targets 2021; 21(1): 67-76.
[http://dx.doi.org/10.2174/1871530320666200917112802] [PMID: 32940190]
[75]
Ahluwalia P, Kolhe R, Gahlay GK. The clinical relevance of gene expression based prognostic signatures in colorectal cancer. Biochim Biophys Acta Rev Cancer 2021; 1875(2): 188513.
[http://dx.doi.org/10.1016/j.bbcan.2021.188513] [PMID: 33493614]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy