Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

A Review of Computational Approaches Targeting SARS-CoV-2 Main Protease to the Discovery of New Potential Antiviral Compounds

Author(s): Juan A. Castillo-Garit*, Yudith Cañizares-Carmenate, Hai Pham-The, Virginia Pérez-Doñate, Francisco Torrens and Facundo Pérez-Giménez

Volume 23, Issue 1, 2023

Published on: 27 July, 2022

Page: [3 - 16] Pages: 14

DOI: 10.2174/2667387816666220426133555

Price: $65

Abstract

The new pandemic caused by the coronavirus (SARS-CoV-2) has become the biggest challenge that the world is facing today. It has been creating a devastating global crisis, causing countless deaths and great panic. The search for an effective treatment remains a global challenge owing to controversies related to available vaccines. A great research effort (clinical, experimental, and computational) has emerged in response to this pandemic, and more than 125000 research reports have been published in relation to COVID-19. The majority of them focused on the discovery of novel drug candidates or repurposing of existing drugs through computational approaches that significantly speed up drug discovery. Among the different used targets, the SARS-CoV-2 main protease (Mpro), which plays an essential role in coronavirus replication, has become the preferred target for computational studies. In this review, we examine a representative set of computational studies that use the Mpro as a target for the discovery of small-molecule inhibitors of COVID-19. They will be divided into two main groups, structure-based and ligand-based methods, and each one will be subdivided according to the strategies used in the research. From our point of view, the use of combined strategies could enhance the possibilities of success in the future, permitting to development of more rigorous computational studies in future efforts to combat current and future pandemics.

Keywords: Computational, Coronavirus, COVID-19, Main protease inhibitor, SARS-CoV-2, Pandamic.

Graphical Abstract

[1]
Aghaee, E.; Ghodrati, M.; Ghasemi, J.B. In silico exploration of novel protease inhibitors against coronavirus 2019 (COVID-19). Inform. Med. Unlocked, 2021, 23, 100516.
[http://dx.doi.org/10.1016/j.imu.2021.100516] [PMID: 33457495]
[2]
Kuzikov, M.; Costanzi, E.; Reinshagen, J.; Esposito, F.; Vangeel, L.; Wolf, M.; Ellinger, B.; Claussen, C.; Geisslinger, G.; Corona, A.; Iaconis, D.; Talarico, C.; Manelfi, C.; Cannalire, R.; Rossetti, G.; Gossen, J.; Albani, S.; Musiani, F.; Herzog, K.; Ye, Y.; Giabbai, B.; Demitri, N.; Jochmans, D.; Jonghe, S.; Rymenants, J.; Summa, V.; Tramontano, E.; Beccari, A.R.; Leyssen, P.; Storici, P.; Neyts, J.; Gribbon, P.; Zaliani, A. Identification of inhibitors of SARS-CoV-2 3CL-pro enzymatic activity using a small molecule in vitro repurposing screen. ACS Pharmacol. Transl. Sci., 2021, 4(3), 1096-1110.
[http://dx.doi.org/10.1021/acsptsci.0c00216] [PMID: 35287429]
[3]
Amendola, G.; Ettari, R.; Previti, S.; Di Chio, C.; Messere, A.; Di Maro, S.; Hammerschmidt, S.J.; Zimmer, C.; Zimmermann, R.A.; Schirmeister, T.; Zappalà, M.; Cosconati, S. Lead discovery of SARS-CoV-2 main protease inhibitors through covalent docking-based virtual screening. J. Chem. Inf. Model., 2021, 61(4), 2062-2073.
[http://dx.doi.org/10.1021/acs.jcim.1c00184] [PMID: 33784094]
[4]
WHO coronavirus (COVID-19) dashboard: (2021). 2021. Available from: https://covid19.who.int/table
[5]
Ivanov, J.; Polshakov, D.; Kato-Weinstein, J.; Zhou, Q.; Li, Y.; Granet, R.; Garner, L.; Deng, Y.; Liu, C.; Albaiu, D.; Wilson, J.; Aultman, C. Quantitative structure-activity relationship machine learning models and their applications for identifying viral 3CLpro and RdRp-targeting compounds as potential therapeutics for COVID-19 and related viral infections. ACS Omega, 2020, 5(42), 27344-27358.
[http://dx.doi.org/10.1021/acsomega.0c03682] [PMID: 33134697]
[6]
Mohan, A.; Rendine, N.; Mohammed, M.K.S.; Jeeva, A.; Ji, H-F.; Talluri, V.R. Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 Mpro; Mol Div, 2021.
[http://dx.doi.org/10.1007/s11030-021-10298-0]
[7]
El-Hoshoudy, A.N. Investigating the potential antiviral activity drugs against SARS-CoV-2 by molecular docking simulation. J. Mol. Liq., 2020, 318, 113968.
[http://dx.doi.org/10.1016/j.molliq.2020.113968] [PMID: 32839634]
[8]
Saxena, A. Drug targets for COVID-19 therapeutics: Ongoing global efforts. J. Biosci., 2020, 45(1), 87.
[http://dx.doi.org/10.1007/s12038-020-00067-w] [PMID: 32661214]
[9]
Muratov, E.N.; Amaro, R.; Andrade, C.H.; Brown, N.; Ekins, S.; Fourches, D.; Isayev, O.; Kozakov, D.; Medina-Franco, J.L.; Merz, K.M.; Oprea, T.I.; Poroikov, V.; Schneider, G.; Todd, M.H.; Varnek, A.; Winkler, D.A.; Zakharov, A.V.; Cherkasov, A.; Tropsha, A. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem. Soc. Rev., 2021, 50(16), 9121-9151.
[http://dx.doi.org/10.1039/D0CS01065K] [PMID: 34212944]
[10]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[11]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S-H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[12]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[13]
Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; Wang, J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res., 2020, 30(8), 678-692.
[http://dx.doi.org/10.1038/s41422-020-0356-z] [PMID: 32541865]
[14]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[15]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[16]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[17]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[18]
Dai, W.; Zhang, B.; Jiang, X-M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L-K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[19]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[20]
Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment molecular orbital based interaction analyses on COVID-19 main protease - inhibitor N3 complex (PDB ID: 6LU7). J. Chem. Inf. Model., 2020, 60(7), 3593-3602.
[http://dx.doi.org/10.1021/acs.jcim.0c00283] [PMID: 32539372]
[21]
Macip, G.; Garcia-Segura, P.; Mestres-Truyol, J.; Saldivar-Espinoza, B.; Ojeda-Montes, M.J.; Gimeno, A.; Cereto-Massagué, A.; Garcia-Vallvé, S.; Pujadas, G. Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Med. Res. Rev., 2022, 42(2), 744-769.
[http://dx.doi.org/10.1002/med.21862] [PMID: 34697818]
[22]
Hung, H-C.; Ke, Y-Y.; Huang, S.Y.; Huang, P-N.; Kung, Y-A.; Chang, T-Y.; Yen, K-J.; Peng, T-T.; Chang, S-E.; Huang, C-T.; Tsai, Y-R.; Wu, S-H.; Lee, S-J.; Lin, J-H.; Liu, B-S.; Sung, W-C.; Shih, S-R.; Chen, C-T.; Hsu, J.T-A. Discovery of M protease inhibitors encoded by SARS-CoV-2. Antimicrob. Agents Chemother., 2020, 64(9), e00872-e00820.
[http://dx.doi.org/10.1128/AAC.00872-20] [PMID: 32669265]
[23]
Gahlawat, A.; Kumar, N.; Kumar, R.; Sandhu, H.; Singh, I.P.; Singh, S.; Sjöstedt, A.; Garg, P. Structure-based virtual screening to discover potential lead molecules for the SARS-CoV-2 main protease. J. Chem. Inf. Model., 2020, 60(12), 5781-5793.
[http://dx.doi.org/10.1021/acs.jcim.0c00546] [PMID: 32687345]
[24]
Franco, L.S.; Maia, R.C.; Barreiro, E.J. Identification of LASSBio-1945 as an inhibitor of SARS-CoV-2 main protease (MPRO) through in silico screening supported by molecular docking and a fragment-based pharmacophore model. RSC Med Chem, 2020, 12(1), 110-119.
[http://dx.doi.org/10.1039/D0MD00282H] [PMID: 34046603]
[25]
Rut, W.; Groborz, K.; Zhang, L.; Sun, X.; Zmudzinski, M.; Pawlik, B.; Wang, X.; Jochmans, D.; Neyts, J.; Młynarski, W.; Hilgenfeld, R.; Drag, M. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol., 2021, 17(2), 222-228.
[http://dx.doi.org/10.1038/s41589-020-00689-z] [PMID: 33093684]
[26]
Ghahremanpour, M.M.; Tirado-Rives, J.; Deshmukh, M.; Ippolito, J.A.; Zhang, C-H.; Cabeza de Vaca, I.; Liosi, M-E.; Anderson, K.S.; Jorgensen, W.L. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med. Chem. Lett., 2020, 11(12), 2526-2533.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00521] [PMID: 33324471]
[27]
Coelho, C.; Gallo, G.; Campos, C.B.; Hardy, L.; Würtele, M. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One, 2020, 15(10), e0240079.
[http://dx.doi.org/10.1371/journal.pone.0240079] [PMID: 33022015]
[28]
Peele, K.A.; Potla Durthi, C.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Babu, D.J.; Indira, M.; Reddy, A.R.; Venkateswarulu, T.C. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform Med Unlocked, 2020, 19, 100345.
[http://dx.doi.org/10.1016/j.imu.2020.100345] [PMID: 32395606]
[29]
Welker, A.; Kersten, C.; Müller, C.; Madhugiri, R.; Zimmer, C.; Müller, P.; Zimmermann, R.; Hammerschmidt, S.; Maus, H.; Ziebuhr, J.; Sotriffer, C.; Schirmeister, T. Structure-activity relationships of benzamides and isoindolines designed as SARS-CoV protease inhibitors effective against SARS-CoV-2. ChemMedChem, 2021, 16(2), 340-354.
[http://dx.doi.org/10.1002/cmdc.202000548] [PMID: 32930481]
[30]
Serafim, M.S.M.; Gertrudes, J.C.; Costa, D.M.A.; Oliveira, P.R.; Maltarollo, V.G.; Honorio, K.M. Knowing and combating the enemy: A brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates. Biosci. Rep., 2021, 41(3), BSR20202616.
[http://dx.doi.org/10.1042/BSR20202616] [PMID: 33624754]
[31]
Zev, S.; Raz, K.; Schwartz, R.; Tarabeh, R.; Gupta, P.K.; Major, D.T. Benchmarking the ability of common docking programs to correctly reproduce and score binding modes in SARS-CoV-2 protease Mpro. J. Chem. Inf. Model., 2021, 61(6), 2957-2966.
[http://dx.doi.org/10.1021/acs.jcim.1c00263] [PMID: 34047191]
[32]
Kneller, D.W.; Phillips, G.; O’Neill, H.M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun., 2020, 11(1), 3202.
[http://dx.doi.org/10.1038/s41467-020-16954-7] [PMID: 32581217]
[33]
Chaves, O.A.; Sacramento, C.Q.; Ferreira, A.C.; Mattos, M.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Vazquez, L.; Pinto, D.P.; da Silveira, G.P.E.; da Fonseca, L.B.; Pereira, H.M.; Carlos, A.S.; d’Avila, J.C.; Viola, J.P.B.; Monteiro, R.Q.; Bozza, P.T.; Castro-Faria-Neto, H.C.; Souza, T.M.L. Atazanavir is a competitive inhibitor of SARS-CoV-2 Mpro, impairing variants replication in vitro and in vivo. Pharmaceuticals (Basel), 2021, 15(1), 21.
[http://dx.doi.org/10.3390/ph15010021] [PMID: 35056078]
[34]
Goodsell, D.S.; Olson, A.J. Automated docking of substrates to proteins by simulated annealing. Proteins, 1990, 8(3), 195-202.
[http://dx.doi.org/10.1002/prot.340080302] [PMID: 2281083]
[35]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[36]
Zhu, K.; Borrelli, K.W.; Greenwood, J.R.; Day, T.; Abel, R.; Farid, R.S.; Harder, E. Docking covalent inhibitors: A parameter free approach to pose prediction and scoring. J. Chem. Inf. Model., 2014, 54(7), 1932-1940.
[http://dx.doi.org/10.1021/ci500118s] [PMID: 24916536]
[37]
Meng, E.C.; Shoichet, B.K.; Kuntz, I.D. Automated docking with grid-based energy evaluation. J. Comput. Chem., 1992, 13(4), 505-524.
[http://dx.doi.org/10.1002/jcc.540130412]
[38]
DrugBank. Available from: www.drugbank.ca
[39]
Sterling, T.; Irwin, J.J. ZINC 15--Ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[http://dx.doi.org/10.1021/acs.jcim.5b00559] [PMID: 26479676]
[40]
Siramshetty, V.B.; Eckert, O.A.; Gohlke, B-O.; Goede, A.; Chen, Q.; Devarakonda, P.; Preissner, S.; Preissner, R. SuperDRUG2: A one stop resource for approved/marketed drugs. Nucleic Acids Res., 2018, 46(D1), D1137-D1143.
[http://dx.doi.org/10.1093/nar/gkx1088] [PMID: 29140469]
[41]
Tang, J.; Tanoli, Z.U.; Ravikumar, B.; Alam, Z.; Rebane, A.; Vähä-Koskela, M.; Peddinti, G.; van Adrichem, A.J.; Wakkinen, J.; Jaiswal, A.; Karjalainen, E.; Gautam, P.; He, L.; Parri, E.; Khan, S.; Gupta, A.; Ali, M.; Yetukuri, L.; Gustavsson, A.L.; Seashore-Ludlow, B.; Hersey, A.; Leach, A.R.; Overington, J.P.; Repasky, G.; Wennerberg, K.; Aittokallio, T. Drug target commons: A community effort to build a consensus knowledge base for drug-target interactions. Cell Chem. Biol., 2018, 25(2), 224-229.e2.
[http://dx.doi.org/10.1016/j.chembiol.2017.11.009] [PMID: 29276046]
[42]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue)(Suppl. 1), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[43]
Galindez, G.; Matschinske, J.; Rose, T.D.; Sadegh, S.; Salgado-Albarrán, M.; Späth, J.; Baumbach, J.; Pauling, J.K. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat. Comput. Sci., 2021, 1(1), 33-41.
[http://dx.doi.org/10.1038/s43588-020-00007-6]
[44]
Ton, A-T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of sars-cov-2 main protease by deep docking of 1.3 billion compounds. Mol. Inform., 2020, 39(8), e2000028.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[45]
Turlington, M.; Chun, A.; Tomar, S.; Eggler, A.; Grum-Tokars, V.; Jacobs, J.; Daniels, J.S.; Dawson, E.; Saldanha, A.; Chase, P.; Baez-Santos, Y.M.; Lindsley, C.W.; Hodder, P.; Mesecar, A.D.; Stauffer, S.R. Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: Identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorg. Med. Chem. Lett., 2013, 23(22), 6172-6177.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.112] [PMID: 24080461]
[46]
Rabie, A.M. Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): Successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New J. Chem., 2021, 45(2), 761-771.
[http://dx.doi.org/10.1039/D0NJ03708G]
[47]
McGann, M. FRED and HYBRID docking performance on standardized datasets. J. Comput. Aided Mol. Des., 2012, 26(8), 897-906.
[http://dx.doi.org/10.1007/s10822-012-9584-8] [PMID: 22669221]
[48]
Das, S.; Shimshi, M.; Raz, K.; Nitoker Eliaz, N.; Mhashal, A.R.; Ansbacher, T.; Major, D.T. EnzyDock: Protein-ligand docking of multiple reactive states along a reaction coordinate in enzymes. J. Chem. Theory Comput., 2019, 15(9), 5116-5134.
[http://dx.doi.org/10.1021/acs.jctc.9b00366] [PMID: 31386808]
[49]
Elseginy, S.A.; Fayed, B.; Hamdy, R.; Mahrous, N.; Mostafa, A.; Almehdi, A.M.; S M Soliman, S. Promising anti-SARS-CoV-2 drugs by effective dual targeting against the viral and host proteases. Bioorg. Med. Chem. Lett., 2021, 43, 128099.
[http://dx.doi.org/10.1016/j.bmcl.2021.128099] [PMID: 33984473]
[50]
Kumar, A.; Choudhir, G.; Shukla, S.K.; Sharma, M.; Tyagi, P.; Bhushan, A.; Rathore, M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn., 2021, 39(10), 3760-3770.
[http://dx.doi.org/10.1080/07391102.2020.1772112] [PMID: 32448034]
[51]
Fischer, A.; Sellner, M.; Neranjan, S.; Smieško, M.; Lill, M.A. Potential inhibitors for novel coronavirus protease identified by virtual screening of 606 million compounds. Int. J. Mol. Sci., 2020, 21(10), 3626.
[http://dx.doi.org/10.3390/ijms21103626] [PMID: 32455534]
[52]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2012, 64, 4-17.
[http://dx.doi.org/10.1016/j.addr.2012.09.019] [PMID: 11259830]
[53]
Kumar, S.; Sharma, P.P.; Shankar, U.; Kumar, D.; Joshi, S.K.; Pena, L.; Durvasula, R.; Kumar, A.; Kempaiah, P.; Poonam; Rathi, B. Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure-activity relationship studies. J. Chem. Inf. Model., 2020, 60(12), 5754-5770.
[http://dx.doi.org/10.1021/acs.jcim.0c00326] [PMID: 32551639]
[54]
Wu, G.; Robertson, D.H.; Brooks, C.L., III; Vieth, M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. J. Comput. Chem., 2003, 24(13), 1549-1562.
[http://dx.doi.org/10.1002/jcc.10306] [PMID: 12925999]
[55]
Bianco, G.; Forli, S.; Goodsell, D.S.; Olson, A.J. Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Sci., 2016, 25(1), 295-301.
[http://dx.doi.org/10.1002/pro.2733] [PMID: 26103917]
[56]
Castillo-Garit, J.A.; Flores-Balmaseda, N.; Álvarez, O.; Pham-The, H.; Pérez-Doñate, V.; Torrens, F.; Pérez-Giménez, F. Computational identification of chemical compounds with potential activity against leishmania amazonensis using nonlinear machine learning techniques. Curr. Top. Med. Chem., 2018, 18(27), 2347-2354.
[http://dx.doi.org/10.2174/1568026619666181130121558] [PMID: 30499402]
[57]
Castillo-Garit, J.A.; Del Toro-Cortés, O.; Kouznetsov, V.V.; Puentes, C.O.; Romero Bohórquez, A.R.; Vega, M.C.; Rolón, M.; Escario, J.A.; Gómez-Barrio, A.; Marrero-Ponce, Y.; Torrens, F.; Abad, C. Identification in silico and in vitro of novel trypanosomicidal drug-like compounds. Chem. Biol. Drug Des., 2012, 80(1), 38-45.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01378.x] [PMID: 22405194]
[58]
Castillo-Garit, J.A.; del Toro-Cortés, O.; Vega, M.C.; Rolón, M.; Rojas de Arias, A.; Casañola-Martin, G.M.; Escario, J.A.; Gómez-Barrio, A.; Marrero-Ponce, Y.; Torrens, F.; Abad, C. Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening. Eur. J. Med. Chem., 2015, 96(0), 238-244.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.063] [PMID: 25884114]
[59]
Kode srl, 2017, Dragon: Dragon (software for molecular descriptor calculation) version 7.0.10. 2017. Available from: https://chm.kode-solutions.net
[60]
Mauri, A. Ecotoxicological QSARs; Roy, K., Ed.; Springer: New York, 2020, pp. 801-820.
[61]
Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The chemistry development kit (CDK): An open-source java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci., 2003, 43(2), 493-500.
[http://dx.doi.org/10.1021/ci025584y] [PMID: 12653513]
[62]
Ruggiu, F.; Marcou, G.; Varnek, A.; Horvath, D. ISIDA property-labelled fragment descriptors. Mol. Inform., 2010, 29(12), 855-868.
[http://dx.doi.org/10.1002/minf.201000099] [PMID: 27464350]
[63]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[64]
Guo, J.; Chen, H.; Sun, Z.; Lin, Y. A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Proteins, 2004, 54(4), 738-743.
[http://dx.doi.org/10.1002/prot.10634] [PMID: 14997569]
[65]
Ghosh, K.; Amin, S.A.; Gayen, S.; Jha, T. Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors. J. Mol. Struct., 2021, 1224, 129026.
[http://dx.doi.org/10.1016/j.molstruc.2020.129026] [PMID: 32834115]
[66]
Aha, D.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn., 1991, 6(1), 37-66.
[http://dx.doi.org/10.1007/BF00153759]
[67]
Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov., 2019, 18(6), 463-477.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[68]
Castillo-Garit, J.A.; Casañola-Martin, G.M.; Barigye, S.J.; Pham-The, H.; Torrens, F.; Torreblanca, A. Machine learning-based models to predict modes of toxic action of phenols to Tetrahymena pyriformis. SAR QSAR Environ. Res., 2017, 28(9), 735-747.
[http://dx.doi.org/10.1080/1062936X.2017.1376705] [PMID: 29022372]
[69]
Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett., 2006, 27(8), 861-874.
[http://dx.doi.org/10.1016/j.patrec.2005.10.010]
[70]
Galvez, J.; Zanni, R.; Galvez-Llompart, M.; Benlloch, J.M. Macrolides may prevent severe acute respiratory syndrome coronavirus 2 entry into cells: A quantitative structure activity relationship study and experimental validation. J. Chem. Inf. Model., 2021, 61(4), 2016-2025.
[http://dx.doi.org/10.1021/acs.jcim.0c01394] [PMID: 33734704]
[71]
Kumar, V.; Roy, K. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases. SAR QSAR Environ. Res., 2020, 31(7), 511-526.
[http://dx.doi.org/10.1080/1062936X.2020.1776388] [PMID: 32543892]
[72]
Ghaleb, A.; Aouidate, A.; Ayouchia, H.B.E.; Aarjane, M.; Anane, H.; Stiriba, S-E. In silico molecular investigations of pyridine N-Oxide compounds as potential inhibitors of SARS-CoV-2: 3D QSAR, molecular docking modeling, and ADMET screening. J. Biomol. Struct. Dyn., 2020, 1-11.
[PMID: 32799761]
[73]
Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 2016, 21(6), 748.
[http://dx.doi.org/10.3390/molecules21060748] [PMID: 27294896]
[74]
Tinkov, O.V.; Grigorev, V.Y.; Grigoreva, L.D. Virtual screening and molecular design of potential SARS-COV-2 inhibitors. Moscow Univ. Chem. Bull., 2021, 76(2), 95-113.
[http://dx.doi.org/10.3103/S0027131421020127]
[75]
Ishola, A.A.; Adedirin, O.; Joshi, T.; Chandra, S. QSAR modeling and pharmacoinformatics of SARS coronavirus 3C-like protease inhibitors. Comput. Biol. Med., 2021, 134, 104483.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104483] [PMID: 34020129]
[76]
Oubahmane, M.; Hdoufane, I.; Bjij, I.; Jerves, C.; Villemin, D.; Cherqaoui, D. COVID-19: In silico identification of potent α-ketoamide inhibitors targeting the main protease of the SARS-CoV-2. J. Mol. Struct., 2021, 1244, 130897.
[http://dx.doi.org/10.1016/j.molstruc.2021.130897] [PMID: 34149065]
[77]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis and validation of QSAR MLR models. J. Comput. Chem., 2013, 34(24), 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[78]
Gramatica, P. Principles of QSAR modeling: Comments and suggestions from personal experience. Int. J. Quant. Struct.-. Prop. Relat., 2020, 5(3), 1-37.
[http://dx.doi.org/10.4018/IJQSPR.20200701.oa1]
[79]
Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem., 2014, 35(13), 1036-1044.
[http://dx.doi.org/10.1002/jcc.23576] [PMID: 24599647]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy