Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Binding Sites of Anticancer Drugs on Human Serum Albumin (HSA): A Review

Author(s): Pejman Molaei, Hanie Mahaki, Hamed Manoochehri and Hamid Tanzadehpanah*

Volume 29, Issue 8, 2022

Published on: 22 August, 2022

Page: [651 - 675] Pages: 25

DOI: 10.2174/0929866529666220426124834

Price: $65

Abstract

Background: To recognize the action of pharmacologically approved anticancer drugs in biological systems, information regarding its pharmacokinetics, such as its transport within the plasma and delivery to its target site, is essential. In this study, we have tried to collect and present complete information about how these drugs bind to human serum albumin (HSA) protein. HSA functions as the main transport protein for an enormous variety of ligands in circulation and plays a vital role in the efficacy, metabolism, distribution, and elimination of these agents.

Methods: Therefore, this study includes information about the quenching constant, the binding constant obtained from Stern-Volmer and Hill equations, and molecular docking.

Results: Molecular docking was carried out to detect the binding models of HSA–anticancer drugs and the binding site of the drugs in HSA, which further revealed the contribution of amino acid residues of HSA in the drug complex binding.

Conclusion: This review study showed that site I of the protein located in domain II can be considered the most critical binding site for anticancer drugs.

Keywords: Human serum albumin, anticancer drug, neoplasm, molecular docking, binding site, fluorescence spectroscopy.

Graphical Abstract

[1]
Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.010]
[2]
Moghadam, N.H.; Salehzadeh, S.; Tanzadehpanah, H.; Saidijam, M.; Karimi, J.; Khazalpour, S. In vitro cytotoxicity and DNA/HSA interaction study of triamterene using molecular modelling and multi-spectroscopic methods. J. Biomol. Struct. Dyn., 2019, 37(9), 2242-2253.
[http://dx.doi.org/10.1080/07391102.2018.1489305] [PMID: 30043689]
[3]
Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth., 2000, 85(4), 599-610.
[http://dx.doi.org/10.1093/bja/85.4.599] [PMID: 11064620]
[4]
Mulvihill, J.N.; Faradji, A.; Oberling, F.; Cazenave, J.P. Surface passivation by human albumin of plasmaperesis circuits reduces platelet accumulation and thrombus formation. Experimental and clinical studies. J. Biomed. Mater. Res., 1990, 24(2), 155-163.
[http://dx.doi.org/10.1002/jbm.820240203] [PMID: 2329112]
[5]
Tanzadehpanah, H.; Mahaki, H.; Moghadam, N.H.; Salehzadeh, S.; Rajabi, O.; Najafi, R.; Amini, R.; Saidijam, M. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J. Biomol. Struct. Dyn., 2019, 37(4), 823-836.
[http://dx.doi.org/10.1080/07391102.2018.1441073] [PMID: 29447084]
[6]
Tamion, F. Albumin in sepsis. Ann. Fr. Anesth. Reanim., 2010, 29(9), 629-634.
[http://dx.doi.org/10.1016/j.annfar.2010.05.035] [PMID: 20675098]
[7]
Mahaki, H.; Tanzadehpanah, H.; Abou-Zied, O.K.; Moghadam, N.H.; Bahmani, A.; Salehzadeh, S.; Dastan, D.; Saidijam, M. Cytotoxicity and antioxidant activity of Kamolonol acetate from Ferula pseudalliacea, and studying its interactions with calf thymus DNA (ct-DNA) and Human Serum Albumin (HSA) by spectroscopic and molecular docking techniques. Process Biochem., 2019, 79, 203-213.
[http://dx.doi.org/10.1016/j.procbio.2018.12.004]
[8]
Andreeva, A.M. Structure of fish serum albumins. Zh. Evol. Biokhim. Fiziol., 2010, 46(2), 111-118.
[PMID: 20432704]
[9]
Tanzadehpanah, H.; Mahaki, H.; Samadi, P.; Karimi, J.; Moghadam, N.H.; Salehzadeh, S.; Dastan, D.; Saidijam, M. Anticancer activity, calf thymus DNA and human serum albumin binding properties of Farnesiferol C from Ferula pseudalliacea. J. Biomol. Struct. Dyn., 2019, 37(11), 2789-2800.
[http://dx.doi.org/10.1080/07391102.2018.1497543] [PMID: 30052136]
[10]
Hazarika, Z.; Jha, A.N. Computational analysis of the silver nanoparticle–human serum albumin complex. ACS Omega, 2020, 5(1), 170-178.
[http://dx.doi.org/10.1021/acsomega.9b02340] [PMID: 31956763]
[11]
Baker, M.E. Albumin, steroid hormones and the origin of vertebrates. J. Endocrinol., 2002, 175(1), 121-127.
[http://dx.doi.org/10.1677/joe.0.1750121] [PMID: 12379496]
[12]
Tanzadehpanah, H.; Mahaki, H.; Moradi, M.; Afshar, S.; Moghadam, N.H.; Salehzadeh, S. The use of molecular docking and spectroscopic methods for investigation of the interaction between regorafenib with Human Serum Albumin (HSA) and calf thymus DNA (Ct-DNA) In the presence of different site markers. Protein Pept. Lett., 2021, 28(3), 290-303.
[PMID: 32957871]
[13]
Petitpas, I.; Bhattacharya, A.A.; Twine, S.; East, M.; Curry, S. Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. J. Biol. Chem., 2001, 276(25), 22804-22809.
[http://dx.doi.org/10.1074/jbc.M100575200] [PMID: 11285262]
[14]
Kratz, F.; Elsadek, B. Clinical impact of serum proteins on drug delivery. J. Control. Release, 2012, 161(2), 429-445.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.028]
[15]
Zitvogel, L.; Galluzzi, L.; Smyth, M.J.; Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity, 2013, 39(1), 74-88.
[http://dx.doi.org/10.1016/j.immuni.2013.06.014] [PMID: 23890065]
[16]
Kim, R.; Tanabe, K.; Uchida, Y.; Emi, M.; Inoue, H.; Toge, T. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. Cancer Chemother. Pharmacol., 2002, 50(5), 343-352.
[http://dx.doi.org/10.1007/s00280-002-0522-7] [PMID: 12439591]
[17]
Moradi, M.; Najafi, R.; Amini, R.; Solgi, R.; Tanzadehpanah, H.; Esfahani, A.M.; Saidijam, M. Remarkable apoptotic pathway of Hemiscorpius lepturus scorpion venom on CT26 cell line. Cell Biol. Toxicol., 2019, 35(4), 373-385.
[http://dx.doi.org/10.1007/s10565-018-09455-3] [PMID: 30617443]
[18]
Tanzadehpanah, H.; Mahaki, H.; Moradi, M.; Afshar, S.; Rajabi, O.; Najafi, R.; Amini, R.; Saidijam, M. Human serum albumin binding and synergistic effects of Gefitinib in combination with Regorafenib on colorectal cancer cell lines. Colorectal Cancer, 2018, 7(2), CRC03.
[http://dx.doi.org/10.2217/crc-2017-0018]
[19]
Tanzadehpanah, H.; Asoodeh, A.; Saberi, M.R.; Chamani, J. Identification of a novel angiotensin-I converting enzyme inhibitory peptide from ostrich egg white and studying its interactions with the enzyme. Innov. Food Sci. Emerg. Technol., 2013, 18, 212-219.
[http://dx.doi.org/10.1016/j.ifset.2013.02.002]
[20]
Tanzadehpanah, H.; Asoodeh, A.; Saidijam, M.; Chamani, J.; Mahaki, H. Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J. Biomol. Struct. Dyn., 2018, 36(14), 3803-3818.
[http://dx.doi.org/10.1080/07391102.2017.1401001] [PMID: 29173094]
[21]
Zohoorian-Abootorabi, T.; Sanee, H.; Iranfar, H.; Saberi, M.R.; Chamani, J. Separate and simultaneous binding effects through a non-cooperative behavior between cyclophosphamide hydrochloride and fluoxymesterone upon interaction with human serum albumin: Multi-spectroscopic and molecular modeling approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 88, 177-191.
[http://dx.doi.org/10.1016/j.saa.2011.12.026] [PMID: 22217702]
[22]
Yue, Y.; Chen, X.; Qin, J.; Yao, X. Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling. Colloids Surf. B Biointerfaces, 2009, 69(1), 51-57.
[http://dx.doi.org/10.1016/j.colsurfb.2008.10.016] [PMID: 19084386]
[23]
Siddiqi, M.; Nusrat, S.; Alam, P.; Malik, S.; Chaturvedi, S.K.; Ajmal, M.R.; Abdelhameed, A.S.; Khan, R.H. Investigating the site selective binding of Busulfan to human serum albumin: Biophysical and molecular docking approaches. Int. J. Biol. Macromol., 2018, 107(Pt B), 1414-1421.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.006] [PMID: 28987797]
[24]
Rubio-Camacho, M.; Encinar, J.A.; Martínez-Tomé, M.J.; Esquembre, R.; Mateo, C.R. The interaction of Temozolomide with blood components suggests the potential use of human serum albumin as a biomimetic carrier for the drug. Biomolecules, 2020, 10(7), 1015.
[http://dx.doi.org/10.3390/biom10071015] [PMID: 32659914]
[25]
Alavianmehr, M.M.; Yousefi, R.; Keshavarz, F.; Mohammad-Aghaie, D. Probing the binding of thioTEPA to human serum albumin using spectroscopic and molecular simulation approaches. Can. J. Chem., 2014, 92(11), 1066-1073.
[http://dx.doi.org/10.1139/cjc-2013-0571]
[26]
Wu, D.; Yan, J.; Sun, P.; Xu, K.; Li, S.; Yang, H.; Li, H. Comparative analysis of the interaction of Capecitabine and Gefitinib with human serum albumin using 19 F nuclear magnetic resonance-based approach. J. Pharm. Biomed. Anal., 2016, 129, 15-20.
[http://dx.doi.org/10.1016/j.jpba.2016.06.034] [PMID: 27392172]
[27]
Xu, X.; Qian, Y.; Wu, P.; Zhang, H.; Cai, C. Probing the anticancer-drug-binding-induced microenvironment alterations in subdomain IIA of human serum albumin. J. Colloid Interface Sci., 2015, 445, 102-111.
[http://dx.doi.org/10.1016/j.jcis.2014.12.033] [PMID: 25612933]
[28]
Cheng, L.Y.; Fang, M.; Bai, A.M.; Ouyang, Y.; Hu, Y.J. Insights into the interaction of methotrexate and human serum albumin: A spectroscopic and molecular modeling approach. Luminescence, 2017, 32(5), 873-879.
[http://dx.doi.org/10.1002/bio.3267] [PMID: 28071855]
[29]
Han, X.; Hao, H.; Li, Q.; Liu, C.; Lei, J.; Yu, F.; Chen, K.; Liu, Y.; Huang, T. The interaction mechanism between Fludarabine and human serum albumin researched by comprehensive spectroscopic methods and molecular docking technique. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 233, 118170.
[http://dx.doi.org/10.1016/j.saa.2020.118170] [PMID: 32143170]
[30]
Ishtikhar, M.; Khan, A.; Chang, C.K.; Lin, L.T.W.; Wang, S.S.S.; Khan, R.H. Effect of Guanidine hydrochloride and urea on the interaction of 6-thioguanine with human serum albumin: A spectroscopic and molecular dynamics based study. J. Biomol. Struct. Dyn., 2016, 34(7), 1409-1420.
[http://dx.doi.org/10.1080/07391102.2015.1054433] [PMID: 26208966]
[31]
Ajmal, M.R.; Nusrat, S.; Alam, P.; Zaidi, N.; Khan, M.V.; Zaman, M.; Shahein, Y.E.; Mahmoud, M.H.; Badr, G.; Khan, R.H. Interaction of anticancer drug clofarabine with human serum albumin and human α-1 acid glycoprotein. Spectroscopic and molecular docking approach. J. Pharm. Biomed. Anal., 2017, 135, 106-115.
[http://dx.doi.org/10.1016/j.jpba.2016.12.001] [PMID: 28012306]
[32]
Xu, L.; Hu, Y.X.; Li, J.; Liu, Y.F.; Zhang, L.; Ai, H.X.; Liu, H.S. Probing the binding reaction of cytarabine to human serum albumin using multispectroscopic techniques with the aid of molecular docking. J. Photochem. Photobiol. B, 2017, 173, 187-195.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.039] [PMID: 28595073]
[33]
Pawar, S.K.; Naik, R.S.; Seetharamappa, J. Exploring the binding of two potent anticancer drugs Bosutinib and Imatinib mesylate with bovine serum albumin: Spectroscopic and molecular dynamic simulation studies. Anal. Bioanal. Chem., 2017, 409(27), 6325-6335.
[http://dx.doi.org/10.1007/s00216-017-0565-6] [PMID: 28852787]
[34]
Tayyab, S.; Izzudin, M.M.; Kabir, M.Z.; Feroz, S.R.; Tee, W.V.; Mohamad, S.B.; Alias, Z. Binding of an anticancer drug, Axitinib to human serum albumin: Fluorescence quenching and molecular docking study. J. Photochem. Photobiol. B, 2016, 162, 386-394.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.049] [PMID: 27424099]
[35]
Suo, Z.; Xiong, X.; Sun, Q.; Zhao, L.; Tang, P.; Hou, Q.; Zhang, Y.; Wu, D.; Li, H. Investigation on the interaction of Dabrafenib with human serum albumin using combined experiment and molecular dynamics simulation: Exploring the binding mechanism, esterase-like activity, and antioxidant activity. Mol. Pharm., 2018, 15(12), 5637-5645.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00806] [PMID: 30422663]
[36]
Tang, B.; Tang, P.; He, J.; Yang, H.; Li, H. Characterization of the binding of a novel antitumor drug Ibrutinib with human serum albumin: Insights from spectroscopic, calorimetric and docking studies. J. Photochem. Photobiol. B, 2018, 184, 18-26.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.008] [PMID: 29777941]
[37]
Tayyab, S.; Sam, S.E.; Kabir, M.Z.; Ridzwan, N.F.W.; Mohamad, S.B. Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 214, 199-206.
[http://dx.doi.org/10.1016/j.saa.2019.02.028] [PMID: 30780089]
[38]
Suo, Z.; Sun, Q.; Yang, H.; Tang, P.; Gan, R.; Xiong, X.; Li, H. Combined spectroscopy methods and molecular simulations for the binding properties of Trametinib to human serum albumin. RSC Advances, 2018, 8(9), 4742-4749.
[http://dx.doi.org/10.1039/C7RA12890H] [PMID: 35539509]
[39]
Kabir, M.Z.; Feroz, S.R.; Mukarram, A.K.; Alias, Z.; Mohamad, S.B.; Tayyab, S. Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. J. Biomol. Struct. Dyn., 2016, 34(8), 1693-1704.
[http://dx.doi.org/10.1080/07391102.2015.1089187] [PMID: 26331959]
[40]
Abdelhameed, A.S.; Alanazi, A.M.; Bakheit, A.H.; Darwish, H.W.; Ghabbour, H.A.; Darwish, I.A. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 171, 174-182.
[http://dx.doi.org/10.1016/j.saa.2016.08.005] [PMID: 27526341]
[41]
Kabir, M.Z.; Mukarram, A.K.; Mohamad, S.B.; Alias, Z.; Tayyab, S. Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. J. Photochem. Photobiol. B, 2016, 160, 229-239.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.005] [PMID: 27128364]
[42]
Ye, Z.; Ying, Y.; Yang, X.; Zheng, Z.; Shi, J.; Sun, Y.; Huang, P. A spectroscopic study on the interaction between the anticancer drug erlotinib and human serum albumin. J. Incl. Phenom. Macrocycl. Chem., 2014, 78(1-4), 405-413.
[http://dx.doi.org/10.1007/s10847-013-0311-4]
[43]
Hegde, A.H.; Punith, R.; Seetharamappa, J. Optical, structural and thermodynamic studies of the association of an anti-leucamic drug imatinib mesylate with transport protein. J. Fluoresc., 2012, 22(1), 521-528.
[http://dx.doi.org/10.1007/s10895-011-0986-0] [PMID: 21947613]
[44]
Alam, P.; Abdelhameed, A.S.; Rajpoot, R.K.; Khan, R.H. Interplay of multiple interaction forces: Binding of tyrosine kinase inhibitor nintedanib with human serum albumin. J. Photochem. Photobiol. B, 2016, 157, 70-76.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.02.009] [PMID: 26894847]
[45]
Kabir, M.Z.; Tee, W.V.; Mohamad, S.B.; Alias, Z.; Tayyab, S. Comprehensive insight into the binding of sunitinib, a multi-targeted anticancer drug to human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 181, 254-263.
[http://dx.doi.org/10.1016/j.saa.2017.03.059] [PMID: 28376387]
[46]
Wani, T.A.; Bakheit, A.H.; Zargar, S.; Alanazi, Z.S.; Al-Majed, A.A. Influence of antioxidant flavonoids quercetin and rutin on the in-vitro binding of neratinib to human serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 246, 118977.
[http://dx.doi.org/10.1016/j.saa.2020.118977] [PMID: 33017787]
[47]
Shi, J.H.; Chen, J.; Wang, J.; Zhu, Y.Y.; Wang, Q. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 149, 630-637.
[http://dx.doi.org/10.1016/j.saa.2015.04.034] [PMID: 25985127]
[48]
Gan, N.; Sun, Q.; Tang, P.; Wu, D.; Xie, T.; Zhang, Y.; Li, H. Determination of interactions between human serum albumin and niraparib through multi-spectroscopic and computational methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 126-134.
[http://dx.doi.org/10.1016/j.saa.2018.07.100] [PMID: 30096696]
[49]
Shamsi, A.; Ahmed, A.; Bano, B. Probing the interaction of anticancer drug temsirolimus with human serum albumin: Molecular docking and spectroscopic insight. J. Biomol. Struct. Dyn., 2018, 36(6), 1479-1489.
[http://dx.doi.org/10.1080/07391102.2017.1326320] [PMID: 28464730]
[50]
Alanazi, A.M.; Abdelhameed, A.S.; Bakheit, A.H.; Darwish, I.A. Exploring the interaction forces involved in the binding of the multiple myeloma drug lenalidomide to bovine serum albumin. J. Mol. Liq., 2017, 238, 3-10.
[http://dx.doi.org/10.1016/j.molliq.2017.04.110]
[51]
Zhai, Y.; Deng, P.; Wang, X.; Zhang, C.; Gan, R.; Gan, N.; Sun, Q.; Li, H. Interaction mechanism of olaparib binding to human serum albumin investigated with NMR relaxation data and computational methods. RSC Advances, 2018, 8(55), 31555-31563.
[http://dx.doi.org/10.1039/C8RA05330H] [PMID: 35548207]
[52]
Abdelhameed, A.S.; Bakheit, A.H.; Almutairi, F.M.; AlRabiah, H.; Kadi, A.A. Biophysical and in silico studies of the interaction between the anti-viral agents acyclovir and penciclovir, and human serum albumin. Molecules, 2017, 22(11), 1906.
[http://dx.doi.org/10.3390/molecules22111906] [PMID: 29113080]
[53]
Paal, K.; Shkarupin, A.; Beckford, L. Paclitaxel binding to human serum albumin—Automated docking studies. Bioorg. Med. Chem., 2007, 15(3), 1323-1329.
[http://dx.doi.org/10.1016/j.bmc.2006.11.012] [PMID: 17118665]
[54]
Jang, J.; Liu, H.; Chen, W.; Zou, G. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking. J. Mol. Struct., 2009, 928(1-3), 72-77.
[http://dx.doi.org/10.1016/j.molstruc.2009.03.016]
[55]
Cui, F.; Kong, X.; Qin, L.; Zhang, G.; Liu, Q.; Lei, B.; Yao, X. Specific interaction of 4′-O-(a-l-Cladinosyl) daunorubicin with human serum albumin: The binding site II on HSA molecular using spectroscopy and modeling. J. Photochem. Photobiol. B, 2009, 95(3), 162-169.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.03.001] [PMID: 19345112]
[56]
Khan, S.N.; Islam, B.; Yennamalli, R.; Sultan, A.; Subbarao, N.; Khan, A.U. Interaction of mitoxantrone with human serum albumin: Spectroscopic and molecular modeling studies. Eur. J. Pharm. Sci., 2008, 35(5), 371-382.
[57]
Ishtikhar, M.; Khan, M.V.; Khan, S.; Chaturvedi, S.K.; Badr, G.; Mahmoud, M.H.; Khan, R.H. Biophysical and molecular docking insight into interaction mechanism and thermal stability of human serum albumin isoforms with a semi-synthetic water-soluble camptothecin analog irinotecan hydrochloride. J. Biomol. Struct. Dyn., 2016, 34(7), 1545-1560.
[http://dx.doi.org/10.1080/07391102.2015.1082504] [PMID: 26309154]
[58]
Yang, C.; Di, P.; Fu, J.; Xiong, H.; Jing, Q.; Ren, G.; Tang, Y.; Zheng, W.; Liu, G.; Ren, F. Improving the physicochemical properties of bicalutamide by complex formation with bovine serum albumin. Eur. J. Pharm. Sci., 2017, 106, 381-392.
[http://dx.doi.org/10.1016/j.ejps.2017.05.059] [PMID: 28571783]
[59]
Moradi, N.; Ashrafi-Kooshk, M.R.; Chamani, J.; Shackebaei, D.; Norouzi, F. Separate and simultaneous binding of tamoxifen and estradiol to human serum albumin: Spectroscopic and molecular modeling investigations. J. Mol. Liq., 2018, 249, 1083-1096.
[http://dx.doi.org/10.1016/j.molliq.2017.11.056]
[60]
Fang, F.; Pan, D.; Qiu, M.; Liu, T.T.; Jiang, M.; Wang, Q.; Shi, J. Probing into the binding interaction between medroxyprogesterone acetate and Bovine Serum Albumin (BSA): Spectroscopic and molecular docking methods. Luminescence, 2016, 31(6), 1242-1250.
[http://dx.doi.org/10.1002/bio.3097] [PMID: 26818697]
[61]
Shahlaei, M.; Bijari, N.; Moradi, S.; Ghobadi, S. Elucidating the interaction of letrozole with human serum albumin by combination of spectroscopic and molecular modeling techniques. Res. Pharm. Sci., 2018, 13(4), 304-315.
[http://dx.doi.org/10.4103/1735-5362.235157] [PMID: 30065763]
[62]
Kharazmi-Khorassani, J.; Asoodeh, A.; Tanzadehpanah, H. antioxidant and Angiotensin-Converting Enzyme (ACE) inhibitory activity of thymosin alpha-1 (Thα1) peptide. Bioorg. Chem., 2019, 87, 743-752.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.003] [PMID: 30974297]
[63]
Bahmani, A.; Tanzadehpanah, H.; Hosseinpour, M.N.; Saidijam, M. Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Mol. Divers., 2021, 25(2), 949-965.
[http://dx.doi.org/10.1007/s11030-020-10080-8] [PMID: 32297121]
[64]
Manoochehri, H.; Sheykhhasan, M.; Samadi, P.; Pourjafar, M.; Saidijam, M. System biological and experimental validation of miRNAs target genes involved in colorectal cancer radiation response. Gene Rep., 2019, 17, 100540.
[http://dx.doi.org/10.1016/j.genrep.2019.100540]
[65]
Saraswathy, M.; Gong, S. Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Mater. Today, 2014, 17(6), 298-306.
[http://dx.doi.org/10.1016/j.mattod.2014.05.002]
[66]
Samadi, P.; Saki, S.; Manoochehri, H.; Sheykhhasan, M. Therapeutic applications of mesenchymal stem cells: A comprehensive review. Curr. Stem Cell Res. Ther., 2021, 16(3), 323-353.
[http://dx.doi.org/10.2174/1574888X15666200914142709] [PMID: 32928093]
[67]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[68]
Fu, D.; Calvo, J.A.; Samson, L.D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer, 2012, 12(2), 104-120.
[http://dx.doi.org/10.1038/nrc3185] [PMID: 22237395]
[69]
Agren, R.; Mardinoglu, A.; Asplund, A.; Kampf, C.; Uhlen, M.; Nielsen, J. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling. Mol. Syst. Biol., 2014, 10(3), 721.
[http://dx.doi.org/10.1002/msb.145122] [PMID: 24646661]
[70]
Tomar, V.; Kumar, N.; Tomar, R.; Sood, D.; Dhiman, N.; Dass, S.K.; Prakash, S.; Madan, J.; Chandra, R. Biological evaluation of noscapine analogues as potent and microtubule-targeted anticancer agents. Sci. Rep., 2019, 9(1), 19542.
[http://dx.doi.org/10.1038/s41598-019-55839-8] [PMID: 31862933]
[71]
Levrier, C.; Sadowski, M.C.; Rockstroh, A.; Gabrielli, B.; Kavallaris, M.; Lehman, M.; Davis, R.A.; Nelson, C.C. 6α-Acetoxyanopterine: A novel structure class of mitotic inhibitor disrupting microtubule dynamics in prostate cancer cells. Mol. Cancer Ther., 2017, 16(1), 3-15.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0325] [PMID: 27760837]
[72]
Zamani, A.; Sardarian, K.; Maghsood, A.H.; Farimani, M.; Hajiloii, M.; Saidijam, M.; Rezaeepoor, M.; Mahaki, H. Evaluation of Toxoplasma gondii B1 gene in placental tissues of pregnant women with acute toxoplasmosis. Adv. Biomed. Res., 2018, 7(1), 119.
[http://dx.doi.org/10.4103/abr.abr_58_18] [PMID: 30211132]
[73]
Shrestha, G.; Clair, L.L.S. Lichens: A promising source of antibiotic and anticancer drugs. Phytochem. Rev., 2013, 12(1), 229-244.
[http://dx.doi.org/10.1007/s11101-013-9283-7]
[74]
Sinha, B.K. Topoisomerase inhibitors. Drugs, 1995, 49(1), 11-19.
[http://dx.doi.org/10.2165/00003495-199549010-00002] [PMID: 7705211]
[75]
Fabian, C.J.; Kimler, B.F. Selective estrogen-receptor modulators for primary prevention of breast cancer. J. Clin. Oncol., 2005, 23(8), 1644-1655.
[http://dx.doi.org/10.1200/JCO.2005.11.005] [PMID: 15755972]
[76]
Sarkaria, J.N.; Kitange, G.J.; James, C.D.; Plummer, R.; Calvert, H.; Weller, M.; Wick, W. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin. Cancer Res., 2008, 14(10), 2900-2908.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1719] [PMID: 18483356]
[77]
Ralhan, R.; Kaur, J. Alkylating agents and cancer therapy. Expert Opin. Ther. Pat., 2007, 17(9), 1061-1075.
[http://dx.doi.org/10.1517/13543776.17.9.1061]
[78]
Ahlmann, M.; Hempel, G. The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. Cancer Chemother. Pharmacol., 2016, 78(4), 661-671.
[http://dx.doi.org/10.1007/s00280-016-3152-1] [PMID: 27646791]
[79]
Brock, N.; Wilmanns, H. Effect of a cyclic nitrogen mustard-phosphamidester on experimentally induced tumors in rats; chemotherapeutic effect and pharmacological properties of B 518 ASTA. Deutsche Med. Wochenschrift, 1958, 83(12), 453.
[80]
Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol., 2009, 6(11), 638-647.
[http://dx.doi.org/10.1038/nrclinonc.2009.146] [PMID: 19786984]
[81]
Huitema, A.D.R.; Mathôt, R.A.A.; Tibben, M.M.; Rodenhuis, S.; Beijnen, J.H. A mechanism-based pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. J. Pharmacokinet. Pharmacodyn., 2001, 28(3), 211-230.
[http://dx.doi.org/10.1023/A:1011543508731] [PMID: 11468938]
[82]
Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci., 2019, 218, 112-131.
[http://dx.doi.org/10.1016/j.lfs.2018.12.018] [PMID: 30552952]
[83]
Kodumudi, K.N.; Weber, A.; Sarnaik, A.A.; Pilon-Thomas, S. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T cell therapy in a murine model of melanoma. J. Immunol., 2012, 189(11), 5147-5154.
[http://dx.doi.org/10.4049/jimmunol.1200274] [PMID: 23100512]
[84]
Burcham, P.C.; Thompson, C.A.; Henry, P.J. Invited review: Acrolein and the lung: Chemical, molecular, and pathological aspects. Adv. Mol. Toxicol., 2010, 4, 1-36.
[85]
Stordal, B.; Pavlakis, N.; Davey, R. Oxaliplatin for the treatment of cisplatin-resistant cancer: A systematic review. Cancer Treat. Rev., 2007, 33(4), 347-357.
[http://dx.doi.org/10.1016/j.ctrv.2007.01.009] [PMID: 17383100]
[86]
Ibrahim, A.; Hirschfeld, S.; Cohen, M.H.; Griebel, D.J.; Williams, G.A.; Pazdur, R. FDA drug approval summaries: Oxaliplatin. Oncologist, 2004, 9(1), 8-12.
[http://dx.doi.org/10.1634/theoncologist.9-1-8] [PMID: 14755010]
[87]
Arango, D.; Wilson, A.J.; Shi, Q.; Corner, G.A.; Arañes, M.J.; Nicholas, C.; Lesser, M.; Mariadason, J.M.; Augenlicht, L.H. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br. J. Cancer, 2004, 91(11), 1931-1946.
[http://dx.doi.org/10.1038/sj.bjc.6602215] [PMID: 15545975]
[88]
Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol., 2017, 11(Suppl. 5), 87.
[http://dx.doi.org/10.1186/s12918-017-0464-7] [PMID: 28984210]
[89]
Brodsky, I. Busulfan versus hydroxyurea in the treatment of Polycythemia Vera (PV) and Essential Thrombocythemia (ET). Am. J. Clin. Oncol., 1998, 21(1), 105-106.
[http://dx.doi.org/10.1097/00000421-199802000-00024] [PMID: 9499248]
[90]
Haanen, C.; Mathe, G.; Hayat, M. Treatment of polycythaemia vera by radiophosphorus or busulphan: A randomized trial. Br. J. Cancer, 1981, 44(1), 75-80.
[http://dx.doi.org/10.1038/bjc.1981.150] [PMID: 7020738]
[91]
Galaup, A.; Paci, A. Pharmacology of dimethanesulfonate alkylating agents: Busulfan and treosulfan. Expert Opin. Drug Metab. Toxicol., 2013, 9(3), 333-347.
[http://dx.doi.org/10.1517/17425255.2013.737319] [PMID: 23157726]
[92]
Marsh, J.C. The effects of cancer chemotherapeutic agents on normal hematopoietic precursor cells: A review. Cancer Res., 1976, 36(6), 1853-1882.
[PMID: 773531]
[93]
Mahaki, H.; Saeed, M.M.H.; Nasr, I.Z.; Amir, D.R.; Molaei, P.; Ahmadyousefi, Y.; Vahidzadeh, M.; Lotfiane, E.; Tanzadehpanah, H. The role of peptide-based tumor vaccines on cytokines of adaptive immunity: A review. Int. J. Pept. Res. Ther., 2021, 27(4), 2527-2542.
[http://dx.doi.org/10.1007/s10989-021-10270-4]
[94]
Friedman, H.S.; Kerby, T.; Calvert, H. Temozolomide and treatment of malignant glioma. Clin. Cancer Res., 2000, 6(7), 2585-2597.
[PMID: 10914698]
[95]
Wesolowski, J.R.; Rajdev, P.; Mukherji, S.K. Temozolomide (Temodar). AJNR Am. J. Neuroradiol., 2010, 31(8), 1383-1384.
[http://dx.doi.org/10.3174/ajnr.A2170] [PMID: 20538821]
[96]
Kolb, E.A.; Steinherz, P.G. A new multidrug reinduction protocol with topotecan, vinorelbine, thiotepa, dexamethasone, and gemcitabine for relapsed or refractory acute leukemia. Leukemia, 2003, 17(10), 1967-1972.
[http://dx.doi.org/10.1038/sj.leu.2403097] [PMID: 14513046]
[97]
Frankfurt, O.S. Inhibition of DNA repair and the enhancement of cytotoxicity of alkylating agents. Int. J. Cancer, 1991, 48(6), 916-923.
[http://dx.doi.org/10.1002/ijc.2910480620] [PMID: 1907257]
[98]
Peters, G.J. Novel developments in the use of antimetabolites. Nucleosides Nucleotides Nucleic Acids, 2014, 33(4-6), 358-374.
[http://dx.doi.org/10.1080/15257770.2014.894197] [PMID: 24940694]
[99]
Gmeiner, W.H. Antimetabolite incorporation into DNA: Structural and thermodynamic basis for anticancer activity. Biopolymers, 2002, 65(3), 180-189.
[http://dx.doi.org/10.1002/bip.10214] [PMID: 12228923]
[100]
Shimma, N.; Umeda, I.; Arasaki, M.; Murasaki, C.; Masubuchi, K.; Kohchi, Y.; Miwa, M.; Ura, M.; Sawada, N.; Tahara, H.; Kuruma, I.; Horii, I.; Ishitsuka, H. The design and synthesis of a new tumor-selective fluoropyrimidine carbamate. Capecitabine. Bioorg. Med. Chem., 2000, 8(7), 1697-1706.
[http://dx.doi.org/10.1016/S0968-0896(00)00087-0] [PMID: 10976516]
[101]
McGavin, J.K.; Goa, K.L. Capecitabine. Drugs, 2001, 61(15), 2309-2326.
[http://dx.doi.org/10.2165/00003495-200161150-00015] [PMID: 11772141]
[102]
Blagosklonny, M.V. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle, 2004, 3(8), 1033-1040.
[http://dx.doi.org/10.4161/cc.3.8.1023] [PMID: 15254418]
[103]
Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J. Alteration of methotrexate binding to human serum albumin induced by oxidative stress. Spectroscopic comparative study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 537-550.
[http://dx.doi.org/10.1016/j.saa.2014.12.113] [PMID: 25619857]
[104]
Weinstein, G.D. Methotrexate. Ann. Intern. Med., 1977, 86(2), 199-204.
[http://dx.doi.org/10.7326/0003-4819-86-2-199] [PMID: 319725]
[105]
Eichhorst, B.F.; Busch, R.; Hopfinger, G.; Pasold, R.; Hensel, M.; Steinbrecher, C.; Siehl, S.; Jäger, U.; Bergmann, M.; Stilgenbauer, S.; Schweighofer, C.; Wendtner, C.M.; Döhner, H.; Brittinger, G.; Emmerich, B.; Hallek, M. Fludarabine plus cyclophosphamide versus fludarabine alone in first-line therapy of younger patients with chronic lymphocytic leukemia. Blood, 2005, 107(3), 885-891.
[http://dx.doi.org/10.1182/blood-2005-06-2395] [PMID: 16219797]
[106]
Gandhi, V.; Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet., 2002, 41(2), 93-103.
[http://dx.doi.org/10.2165/00003088-200241020-00002] [PMID: 11888330]
[107]
Huang, P.; Sandoval, A.; Van Den Neste, E.; Keating, M.J.; Plunkett, W. Inhibition of RNA transcription: A biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia, 2000, 14(8), 1405-1413.
[http://dx.doi.org/10.1038/sj.leu.2401845] [PMID: 10942236]
[108]
Munshi, P.N.; Lubin, M.; Bertino, J.R. 6-thioguanine: A drug with unrealized potential for cancer therapy. Oncologist, 2014, 19(7), 760-765.
[http://dx.doi.org/10.1634/theoncologist.2014-0178] [PMID: 24928612]
[109]
Somerville, L.; Krynetski, E.Y.; Krynetskaia, N.F.; Beger, R.D.; Zhang, W.; Marhefka, C.A.; Evans, W.E.; Kriwacki, R.W. Structure and dynamics of thioguanine-modified duplex DNA. J. Biol. Chem., 2003, 278(2), 1005-1011.
[http://dx.doi.org/10.1074/jbc.M204243200] [PMID: 12401802]
[110]
Bayoumy, A.B.; Simsek, M.; Seinen, M.L.; Mulder, C.J.J.; Ansari, A.; Peters, G.J.; De Boer, N.K. The continuous rediscovery and the benefit–risk ratio of thioguanine, a comprehensive review. Expert Opin. Drug Metab. Toxicol., 2020, 16(2), 1-13.
[http://dx.doi.org/10.1080/17425255.2020.1719996] [PMID: 32090622]
[111]
Bonate, P.L.; Arthaud, L.; Cantrell, W.R., Jr; Stephenson, K.; Secrist, J.A., III; Weitman, S. Discovery and development of clofarabine: A nucleoside analogue for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 855-863.
[http://dx.doi.org/10.1038/nrd2055] [PMID: 17016426]
[112]
Pui, C.H.; Jeha, S Kirkpatrick, P. Clofarabine. Nat. Rev. Drug Discov., 2005, 4(S12-3), 369-370.
[113]
Löwenberg, B.; Pabst, T.; Vellenga, E.; van Putten, W.; Schouten, H.C.; Graux, C.; Ferrant, A.; Sonneveld, P.; Biemond, B.J.; Gratwohl, A.; de Greef, G.E.; Verdonck, L.F.; Schaafsma, M.R.; Gregor, M.; Theobald, M.; Schanz, U.; Maertens, J.; Ossenkoppele, G.J. Cytarabine dose for acute myeloid leukemia. N. Engl. J. Med., 2011, 364(11), 1027-1036.
[http://dx.doi.org/10.1056/NEJMoa1010222] [PMID: 21410371]
[114]
Camera, A.; Cerciello, G.; Perna, F.; Rinaldi, C.R.; Michele, E.; Ferrari, S. Liposomal cytarabine (Depocyte®) for the treatment of meningeal or CNS disease in Acute Leukemias (AL) and Non-Hodgkin Lymphomas (NHL): A single centre experience. Blood, 2006, 108(11), 4540.
[115]
Reese, N.D.; Schiller, G.J. High-dose cytarabine (HD araC) in the treatment of leukemias: A review. Curr. Hematol. Malig. Rep., 2013, 8(2), 141-148.
[http://dx.doi.org/10.1007/s11899-013-0156-3] [PMID: 23666364]
[116]
Blair, H.A. Daunorubicin/cytarabine liposome: A review in acute myeloid leukaemia. Drugs, 2018, 78(18), 1903-1910.
[http://dx.doi.org/10.1007/s40265-018-1022-3] [PMID: 30511323]
[117]
Birhanu, G.; Javar, H.A.; Seyedjafari, E.; Zandi-Karimi, A. Nanotechnology for delivery of gemcitabine to treat pancreatic cancer. Biomed. Pharmacother., 2017, 88, 635-643.
[http://dx.doi.org/10.1016/j.biopha.2017.01.071] [PMID: 28142120]
[118]
Moore, M. Activity of gemcitabine in patients with advanced pancreatic carcinoma: A review. Cancer, 1996, 78(3), 633-638.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19960801)78:3<633:AID-CNCR44>3.0.CO;2-X] [PMID: 8681302]
[119]
Dent, S.; Messersmith, H.; Trudeau, M. Gemcitabine in the management of metastatic breast cancer: A systematic review. Breast Cancer Res. Treat., 2008, 108(3), 319-331.
[http://dx.doi.org/10.1007/s10549-007-9610-z] [PMID: 17530427]
[120]
Moysan, E.; Bastiat, G.; Benoit, J.P. Gemcitabine versus modified gemcitabine: A review of several promising chemical modifications. Mol. Pharm., 2013, 10(2), 430-444.
[http://dx.doi.org/10.1021/mp300370t] [PMID: 22978251]
[121]
Clegg, A.; Scott, D.A.; Hewitson, P.; Sidhu, M.; Waugh, N. Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: A systematic review. Thorax, 2002, 57(1), 20-28.
[http://dx.doi.org/10.1136/thorax.57.1.20] [PMID: 11809985]
[122]
Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol., 2006, 17(Suppl. 5), v7-v12.
[http://dx.doi.org/10.1093/annonc/mdj941] [PMID: 16807468]
[123]
Shen, H.; Gu, Z.; Jian, K.; Qi, J. In vitro study on the binding of gemcitabine to bovine serum albumin. J. Pharm. Biomed. Anal., 2013, 75, 86-93.
[http://dx.doi.org/10.1016/j.jpba.2012.11.021] [PMID: 23261804]
[124]
Kularatne, S.A.; Venkatesh, C.; Santhapuram, H.K.R.; Wang, K.; Vaitilingam, B.; Henne, W.A.; Low, P.S. Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J. Med. Chem., 2010, 53(21), 7767-7777.
[http://dx.doi.org/10.1021/jm100729b] [PMID: 20936874]
[125]
Druker, B.J. Translation of the Philadelphia chromosome into therapy for CML. Blood, 2008, 112(13), 4808-4817.
[http://dx.doi.org/10.1182/blood-2008-07-077958] [PMID: 19064740]
[126]
Ojima, I. Guided molecular missiles for tumor-targeting chemotherapy--case studies using the second-generation taxoids as warheads. Acc. Chem. Res., 2008, 41(1), 108-119.
[http://dx.doi.org/10.1021/ar700093f] [PMID: 17663526]
[127]
Cortes, J.E.; Kim, D.W.; Kantarjian, H.M.; Brümmendorf, T.H.; Dyagil, I.; Griskevicius, L.; Malhotra, H.; Powell, C.; Gogat, K.; Countouriotis, A.M.; Gambacorti-Passerini, C. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: Results from the BELA trial. J. Clin. Oncol., 2012, 30(28), 3486-3492.
[http://dx.doi.org/10.1200/JCO.2011.38.7522] [PMID: 22949154]
[128]
Remsing Rix, L.L.; Rix, U.; Colinge, J.; Hantschel, O.; Bennett, K.L.; Stranzl, T.; Müller, A.; Baumgartner, C.; Valent, P.; Augustin, M.; Till, J.H.; Superti-Furga, G. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia, 2009, 23(3), 477-485.
[http://dx.doi.org/10.1038/leu.2008.334] [PMID: 19039322]
[129]
Keller, G.; Schafhausen, P.; Brümmendorf, T.H. Bosutinib. Recent Results Cancer Res., 2010, 184, 119-127.
[130]
Summy, J.M.; Gallick, G.E. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev., 2003, 22(4), 337-358.
[http://dx.doi.org/10.1023/A:1023772912750] [PMID: 12884910]
[131]
Johnson, F.M.; Gallick, G.E. SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer. Agents Med. Chem., 2007, 7(6), 651-659.
[http://dx.doi.org/10.2174/187152007784111278]
[132]
Chen, Y.; Tortorici, M.A.; Garrett, M.; Hee, B.; Klamerus, K.J.; Pithavala, Y.K. Clinical pharmacology of axitinib. Clin. Pharmacokinet., 2013, 52(9), 713-725.
[http://dx.doi.org/10.1007/s40262-013-0068-3] [PMID: 23677771]
[133]
Ballantyne, A.D.; Garnock-Jones, K.P. Dabrafenib: First global approval. Drugs, 2013, 73(12), 1367-1376.
[http://dx.doi.org/10.1007/s40265-013-0095-2] [PMID: 23881668]
[134]
Menzies, A.M.; Long, G.V.; Murali, R. Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Des. Devel. Ther., 2012, 6, 391-405.
[PMID: 23251089]
[135]
Mittapalli, R.K.; Vaidhyanathan, S.; Dudek, A.Z.; Elmquist, W.F. Mechanisms limiting distribution of the threonine-protein kinase B-RaF(V600E) inhibitor dabrafenib to the brain: Implications for the treatment of melanoma brain metastases. J. Pharmacol. Exp. Ther., 2013, 344(3), 655-664.
[http://dx.doi.org/10.1124/jpet.112.201475] [PMID: 23249624]
[136]
Kantarjian, H.; Jabbour, E.; Grimley, J.; Kirkpatrick, P. Dasatinib. Nat. Rev. Drug Discov., 2006, 5(9), 717-718.
[http://dx.doi.org/10.1038/nrd2135]
[137]
Li, X.; He, Y.; Ruiz, C.H.; Koenig, M.; Cameron, M.D.; Vojkovsky, T. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab. Dispos., 2009, 37(6), 1242-1250.
[http://dx.doi.org/10.1124/dmd.108.025932] [PMID: 19282395]
[138]
Sesumi, Y.; Suda, K.; Mizuuchi, H.; Kobayashi, Y.; Sato, K.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; Mitsudomi, T. Effect of dasatinib on EMT-mediated-mechanism of resistance against EGFR inhibitors in lung cancer cells. Lung Cancer, 2017, 104, 85-90.
[http://dx.doi.org/10.1016/j.lungcan.2016.12.012] [PMID: 28213007]
[139]
Naik, R.; Jaldappagari, S. Spectral and computational attributes: Binding of a potent anticancer agent, dasatinib to a transport protein. J. Mol. Liq., 2019, 293, 111492.
[http://dx.doi.org/10.1016/j.molliq.2019.111492]
[140]
Byrd, J.C.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; Devereux, S.; Barr, P.M.; Furman, R.R.; Kipps, T.J.; Cymbalista, F.; Pocock, C.; Thornton, P.; Caligaris-Cappio, F.; Robak, T.; Delgado, J.; Schuster, S.J.; Montillo, M.; Schuh, A.; de Vos, S.; Gill, D.; Bloor, A.; Dearden, C.; Moreno, C.; Jones, J.J.; Chu, A.D.; Fardis, M.; McGreivy, J.; Clow, F.; James, D.F.; Hillmen, P. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. Engl. J. Med., 2014, 371(3), 213-223.
[http://dx.doi.org/10.1056/NEJMoa1400376] [PMID: 24881631]
[141]
Advani, R.H.; Buggy, J.J.; Sharman, J.P.; Smith, S.M.; Boyd, T.E.; Grant, B.; Kolibaba, K.S.; Furman, R.R.; Rodriguez, S.; Chang, B.Y.; Sukbuntherng, J.; Izumi, R.; Hamdy, A.; Hedrick, E.; Fowler, N.H. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol., 2013, 31(1), 88-94.
[http://dx.doi.org/10.1200/JCO.2012.42.7906] [PMID: 23045577]
[142]
Mohamed, A.J.; Yu, L.; Bäckesjö, C.M.; Vargas, L.; Faryal, R.; Aints, A.; Christensson, B.; Berglöf, A.; Vihinen, M.; Nore, B.F.; Edvard Smith, C.I. Bruton’s tyrosine kinase (Btk): Function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev., 2009, 228(1), 58-73.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00741.x] [PMID: 19290921]
[143]
Cortes, J.E.; Kantarjian, H.; Shah, N.P.; Bixby, D.; Mauro, M.J.; Flinn, I.; O’Hare, T.; Hu, S.; Narasimhan, N.I.; Rivera, V.M.; Clackson, T.; Turner, C.D.; Haluska, F.G.; Druker, B.J.; Deininger, M.W.N.; Talpaz, M. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N. Engl. J. Med., 2012, 367(22), 2075-2088.
[http://dx.doi.org/10.1056/NEJMoa1205127] [PMID: 23190221]
[144]
Paech, F.; Mingard, C.; Grünig, D.; Abegg, V.F.; Bouitbir, J.; Krähenbühl, S. Mechanisms of mitochondrial toxicity of the kinase inhibitors ponatinib, regorafenib and sorafenib in human hepatic HepG2 cells. Toxicology, 2018, 395, 34-44.
[http://dx.doi.org/10.1016/j.tox.2018.01.005] [PMID: 29341879]
[145]
Wright, C.J.M.; McCormack, P.L. Trametinib: First global approval. Drugs, 2013, 73(11), 1245-1254.
[http://dx.doi.org/10.1007/s40265-013-0096-1] [PMID: 23846731]
[146]
Odogwu, L.; Mathieu, L.; Blumenthal, G.; Larkins, E.; Goldberg, K.B.; Griffin, N.; Bijwaard, K.; Lee, E.Y.; Philip, R.; Jiang, X.; Rodriguez, L.; McKee, A.E.; Keegan, P.; Pazdur, R. FDA approval summary: Dabrafenib and trametinib for the treatment of metastatic non‐small cell lung cancers harboring BRAF V600E mutations. Oncologist, 2018, 23(6), 740-745.
[http://dx.doi.org/10.1634/theoncologist.2017-0642] [PMID: 29438093]
[147]
Banks, M.; Crowell, K.; Proctor, A.; Jensen, B.C. Cardiovascular effects of the MEK inhibitor, trametinib: A case report, literature review, and consideration of mechanism. Cardiovasc. Toxicol., 2017, 17(4), 487-493.
[http://dx.doi.org/10.1007/s12012-017-9425-z] [PMID: 28861837]
[148]
Wells, S.A., Jr; Gosnell, J.E.; Gagel, R.F.; Moley, J.; Pfister, D.; Sosa, J.A.; Skinner, M.; Krebs, A.; Vasselli, J.; Schlumberger, M. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J. Clin. Oncol., 2010, 28(5), 767-772.
[http://dx.doi.org/10.1200/JCO.2009.23.6604] [PMID: 20065189]
[149]
Commander, H.; Whiteside, G.; Perry, C. Vandetanib. Drugs, 2011, 71(10), 1355-1365.
[http://dx.doi.org/10.2165/11595310-000000000-00000] [PMID: 21770481]
[150]
Kazandjian, D.; Blumenthal, G.M.; Chen, H.Y.; He, K.; Patel, M.; Justice, R.; Keegan, P.; Pazdur, R. FDA approval summary: Crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements. Oncologist, 2014, 19(10), e5-e11.
[http://dx.doi.org/10.1634/theoncologist.2014-0241] [PMID: 25170012]
[151]
Medina, P.; Goodin, S. Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin. Ther., 2008, 30(8), 1426-1447.
[http://dx.doi.org/10.1016/j.clinthera.2008.08.008] [PMID: 18803986]
[152]
Ryan, Q.; Ibrahim, A.; Cohen, M.H.; Johnson, J.; Ko, C.; Sridhara, R.; Justice, R.; Pazdur, R. FDA drug approval summary: Lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist, 2008, 13(10), 1114-1119.
[http://dx.doi.org/10.1634/theoncologist.2008-0816] [PMID: 18849320]
[153]
Dowell, J.; Minna, J.D.; Kirkpatrick, P. Erlotinib hydrochloride. Nat. Rev. Drug Discov., 2005, 4(1), 13-14.
[http://dx.doi.org/10.1038/nrd1612] [PMID: 15690599]
[154]
Tang, P.A.; Tsao, M.S.; Moore, M.J. A review of erlotinib and its clinical use. Expert Opin. Pharmacother., 2006, 7(2), 177-193.
[http://dx.doi.org/10.1517/14656566.7.2.177] [PMID: 16433583]
[155]
Dömötör, O.; Pelivan, K.; Borics, A.; Keppler, B.K.; Kowol, C.R.; Enyedy, É.A. Comparative studies on the human serum albumin binding of the clinically approved EGFR inhibitors gefitinib, erlotinib, afatinib, osimertinib and the investigational inhibitor KP2187. J. Pharm. Biomed. Anal., 2018, 154, 321-331.
[http://dx.doi.org/10.1016/j.jpba.2018.03.011] [PMID: 29567575]
[156]
Bijnsdorp, I.V.; Kruyt, F.A.E.; Fukushima, M.; Smid, K.; Gokoel, S.; Peters, G.J. Molecular mechanism underlying the synergistic interaction between trifluorothymidine and the epidermal growth factor receptor inhibitor erlotinib in human colorectal cancer cell lines. Cancer Sci., 2010, 101(2), 440-447.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01375.x] [PMID: 19886911]
[157]
Cohen, M.H.; Johnson, J.R.; Chen, Y.F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. Oncologist, 2005, 10(7), 461-466.
[http://dx.doi.org/10.1634/theoncologist.10-7-461] [PMID: 16079312]
[158]
Thurston, D.E. Chemistry and pharmacology of anticancer drugs, 1st ed; CRC Press: Boca Raton, 2006.
[http://dx.doi.org/10.1201/9781420008906]
[159]
Afshar, S.; Sedighi Pashaki, A.; Najafi, R.; Nikzad, S.; Amini, R.; Shabab, N.; Khiabanchian, O.; Tanzadehpanah, H.; Saidijam, M. Cross-resistance of acquired Radioresistant colorectal Cancer cell line to gefitinib and regorafenib. Iran. J. Med. Sci., 2020, 45(1), 50-58.
[PMID: 32038059]
[160]
Moulder, S.L.; Yakes, F.M.; Muthuswamy, S.K.; Bianco, R.; Simpson, J.F.; Arteaga, C.L. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res., 2001, 61(24), 8887-8895.
[PMID: 11751413]
[161]
Segovia-Mendoza, M.; González-González, M.E.; Barrera, D.; Díaz, L.; García-Becerra, R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: Preclinical and clinical evidence. Am. J. Cancer Res., 2015, 5(9), 2531-2561.
[PMID: 26609467]
[162]
Shen, G.F.; Liu, T.T.; Wang, Q.; Jiang, M.; Shi, J.H. Spectroscopic and molecular docking studies of binding interaction of gefitinib, lapatinib and sunitinib with Bovine Serum Albumin (BSA). J. Photochem. Photobiol. B, 2015, 153, 380-390.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.10.023] [PMID: 26555641]
[163]
Di Muzio, E.; Polticelli, F.; Trezza, V.; Fanali, G.; Fasano, M.; Ascenzi, P. Imatinib binding to human serum albumin modulates heme association and reactivity. Arch. Biochem. Biophys., 2014, 560, 100-112.
[http://dx.doi.org/10.1016/j.abb.2014.07.001] [PMID: 25057771]
[164]
Peng, B.; Lloyd, P.; Schran, H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet., 2005, 44(9), 879-894.
[http://dx.doi.org/10.2165/00003088-200544090-00001] [PMID: 16122278]
[165]
Fitos, I. Simon, Á.; Zsila, F.; Mády, G.; Bencsura, Á.; Varga, Z.; Őrfi, L.; Kéri, G.; Visy, J. Characterization of binding mode of imatinib to human α1-acid glycoprotein. Int. J. Biol. Macromol., 2012, 50(3), 788-795.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.023] [PMID: 22142793]
[166]
Druker, B.J. Perspectives on the development of imatinib and the future of cancer research. Nat. Med., 2009, 15(10), 1149-1152.
[http://dx.doi.org/10.1038/nm1009-1149] [PMID: 19812576]
[167]
Awasthi, N.; Hinz, S.; Brekken, R.A.; Schwarz, M.A.; Schwarz, R.E. Nintedanib, a triple angiokinase inhibitor, enhances cytotoxic therapy response in pancreatic cancer. Cancer Lett., 2015, 358(1), 59-66.
[http://dx.doi.org/10.1016/j.canlet.2014.12.027] [PMID: 25527450]
[168]
Hanna, N.H.; Kaiser, R.; Sullivan, R.N.; Aren, O.R.; Ahn, M-J.; Tiangco, B. Lume-lung 2: A multicenter, randomized, double-blind, phase III study of nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with advanced nonsquamous Non-Small Cell Lung Cancer (NSCLC) after failure of first-line chemotherapy. J. Clin. Oncol., 2013, 31, 8034-8034.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.8034]
[169]
Le Tourneau, C.; Raymond, E.; Faivre, S. Sunitinib: A novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and Gastrointestinal Stromal Tumors (GIST). Ther. Clin. Risk Manag., 2007, 3(2), 341-348.
[http://dx.doi.org/10.2147/tcrm.2007.3.2.341] [PMID: 18360643]
[170]
Blumenthal, G.M.; Cortazar, P.; Zhang, J.J.; Tang, S.; Sridhara, R.; Murgo, A.; Justice, R.; Pazdur, R. FDA approval summary: Sunitinib for the treatment of progressive well-differentiated locally advanced or metastatic pancreatic neuroendocrine tumors. Oncologist, 2012, 17(8), 1108-1113.
[http://dx.doi.org/10.1634/theoncologist.2012-0044] [PMID: 22836448]
[171]
Mendel, D.B.; Laird, A.D.; Xin, X.; Louie, S.G.; Christensen, J.G.; Li, G.; Schreck, R.E.; Abrams, T.J.; Ngai, T.J.; Lee, L.B.; Murray, L.J.; Carver, J.; Chan, E.; Moss, K.G.; Haznedar, J.O.; Sukbuntherng, J.; Blake, R.A.; Sun, L.; Tang, C.; Miller, T.; Shirazian, S.; McMahon, G.; Cherrington, J.M. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmaco-] dynamic relationship. Clin. Cancer Res., 2003, 9(1), 327-337.
[PMID: 12538485]
[172]
Singh, H.; Walker, A.J.; Amiri-Kordestani, L.; Cheng, J.; Tang, S.; Balcazar, P.; Barnett-Ringgold, K.; Palmby, T.R.; Cao, X.; Zheng, N.; Liu, Q.; Yu, J.; Pierce, W.F.; Daniels, S.R.; Sridhara, R.; Ibrahim, A.; Kluetz, P.G.; Blumenthal, G.M.; Beaver, J.A.; Pazdur, R. US food and drug administration approval: Neratinib for the extended adjuvant treatment of early-stage HER2-positive breast cancer. Clin. Cancer Res., 2018, 24(15), 3486-3491.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3628] [PMID: 29523624]
[173]
Tiwari, S.R.; Mishra, P.; Abraham, J. Neratinib, a novel HER2-targeted tyrosine kinase inhibitor. Clin. Breast Cancer, 2016, 16(5), 344-348.
[http://dx.doi.org/10.1016/j.clbc.2016.05.016] [PMID: 27405796]
[174]
Rabindran, S.K.; Discafani, C.M.; Rosfjord, E.C.; Baxter, M.; Floyd, M.B.; Golas, J.; Hallett, W.A.; Johnson, B.D.; Nilakantan, R.; Overbeek, E.; Reich, M.F.; Shen, R.; Shi, X.; Tsou, H.R.; Wang, Y.F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res., 2004, 64(11), 3958-3965.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2868] [PMID: 15173008]
[175]
Kane, R.C.; Farrell, A.T.; Madabushi, R.; Booth, B.; Chattopadhyay, S.; Sridhara, R.; Justice, R.; Pazdur, R. Sorafenib for the treatment of unresectable hepatocellular carcinoma. Oncologist, 2009, 14(1), 95-100.
[http://dx.doi.org/10.1634/theoncologist.2008-0185] [PMID: 19144678]
[176]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[177]
Tanzadehpanah, H.; Bahmani, A.; Hosseinpour, M.N.; Gholami, H.; Mahaki, H.; Farmany, A.; Saidijam, M. Synthesis, anticancer activity, and β‐lactoglobulin binding interactions of multitargeted kinase inhibitor sorafenib tosylate (SORt) using spectroscopic and molecular modelling approaches. Luminescence, 2021, 36(1), 117-128.
[http://dx.doi.org/10.1002/bio.3929] [PMID: 32725773]
[178]
Lu, Z.; Qi, L.; Li, G.; Li, Q.; Sun, G.; Xie, R. In vitro characterization for human serum albumin binding sorafenib, a multi kinase inhibitor: Spectroscopic study. J. Solution Chem., 2014, 43(11), 2010-2025.
[http://dx.doi.org/10.1007/s10953-014-0256-2]
[179]
Ison, G.; Howie, L.J.; Amiri-Kordestani, L.; Zhang, L.; Tang, S.; Sridhara, R.; Pierre, V.; Charlab, R.; Ramamoorthy, A.; Song, P.; Li, F.; Yu, J.; Manheng, W.; Palmby, T.R.; Ghosh, S.; Horne, H.N.; Lee, E.Y.; Philip, R.; Dave, K.; Chen, X.H.; Kelly, S.L.; Janoria, K.G.; Banerjee, A.; Eradiri, O.; Dinin, J.; Goldberg, K.B.; Pierce, W.F.; Ibrahim, A.; Kluetz, P.G.; Blumenthal, G.M.; Beaver, J.A.; Pazdur, R. FDA approval summary: Niraparib for the maintenance treatment of patients with recurrent ovarian cancer in response to platinum-based chemotherapy. Clin. Cancer Res., 2018, 24(17), 4066-4071.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0042] [PMID: 29650751]
[180]
Scott, L.J. Niraparib: First global approval. Drugs, 2017, 77(9), 1029-1034.
[http://dx.doi.org/10.1007/s40265-017-0752-y] [PMID: 28474297]
[181]
Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; Kovacevic, Z.; Lesovoy, V.; Schmidt-Wolf, I.G.H.; Barbarash, O.; Gokmen, E.; O’Toole, T.; Lustgarten, S.; Moore, L.; Motzer, R.J. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med., 2007, 356(22), 2271-2281.
[http://dx.doi.org/10.1056/NEJMoa066838] [PMID: 17538086]
[182]
Wang, H.W.; Yang, S.H.; Huang, G.D.; Lin, J.K.; Chen, W.S.; Jiang, J.K.; Lan, Y.T.; Lin, C.C.; Hwang, W.L.; Tzeng, C.H.; Li, A.F.Y.; Yen, C.C.; Teng, H.W. Temsirolimus enhances the efficacy of cetuximab in colon cancer through a CIP2A-dependent mechanism. J. Cancer Res. Clin. Oncol., 2014, 140(4), 561-571.
[http://dx.doi.org/10.1007/s00432-014-1596-4] [PMID: 24493623]
[183]
Weber, D.M.; Chen, C.; Niesvizky, R.; Wang, M.; Belch, A.; Stadtmauer, E.A.; Siegel, D.; Borrello, I.; Rajkumar, S.V.; Chanan-Khan, A.A.; Lonial, S.; Yu, Z.; Patin, J.; Olesnyckyj, M.; Zeldis, J.B.; Knight, R.D. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N. Engl. J. Med., 2007, 357(21), 2133-2142.
[http://dx.doi.org/10.1056/NEJMoa070596] [PMID: 18032763]
[184]
Kotla, V.; Goel, S.; Nischal, S.; Heuck, C.; Vivek, K.; Das, B.; Verma, A. Mechanism of action of lenalidomide in hematological malignancies. J. Hematol. Oncol., 2009, 2(1), 36.
[http://dx.doi.org/10.1186/1756-8722-2-36] [PMID: 19674465]
[185]
Fink, E.C.; Ebert, B.L. The novel mechanism of lenalidomide activity. Blood, 2015, 126(21), 2366-2369.
[http://dx.doi.org/10.1182/blood-2015-07-567958] [PMID: 26438514]
[186]
Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[187]
Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; Reinacher-Schick, A.; Tortora, G.; Algül, H.; O’Reilly, E.M.; McGuinness, D.; Cui, K.Y.; Schlienger, K.; Locker, G.Y.; Kindler, H.L. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med., 2019, 381(4), 317-327.
[http://dx.doi.org/10.1056/NEJMoa1903387] [PMID: 31157963]
[188]
Chen, Y.; Zhang, L.; Hao, Q. Olaparib: A promising PARP inhibitor in ovarian cancer therapy. Arch. Gynecol. Obstet., 2013, 288(2), 367-374.
[http://dx.doi.org/10.1007/s00404-013-2856-2] [PMID: 23619942]
[189]
Wagstaff, A.J.; Faulds, D.; Goa, K.L. Aciclovir. Drugs, 1994, 47(1), 153-205.
[http://dx.doi.org/10.2165/00003495-199447010-00009] [PMID: 7510619]
[190]
Tang, I.T.; Shepp, D.H. Herpes simplex virus infection in cancer patients: Prevention and treatment. Oncology, 1992, 6(7), 101-106.
[PMID: 1322152]
[191]
Hammer, K.D.P.; Dietz, J.; Lo, T.S.; Johnson, E.M. A systematic review on the efficacy of topical acyclovir, penciclovir, and docosanol for the treatment of herpes simplex labialis. EMJ Dermatol., 2018, 6(1), 118-123.
[192]
Acosta, E.; Flexner, C. Antiviral agents (nonretroviral). In: Goodman and Gilman’s The pharmacological basis of Therapeutics, 12th ed; Brunton, L.L.; Hilal-Dandan, R.; Knollmann, B.C., Eds.; Mcgraw Hill Companies: New York, 2011; pp. 1613-1615.
[193]
Shaimerdenova, M.; Karapina, O.; Mektepbayeva, D.; Alibek, K.; Akilbekova, D. The effects of antiviral treatment on breast cancer cell line. Infect. Agent. Cancer, 2017, 12(1), 18.
[http://dx.doi.org/10.1186/s13027-017-0128-7] [PMID: 28344640]
[194]
Jiang, N.; Wang, X.; Yang, Y.; Dai, W. Advances in mitotic inhibitors for cancer treatment. Mini Rev. Med. Chem., 2006, 6(8), 885-895.
[http://dx.doi.org/10.2174/138955706777934955] [PMID: 16918495]
[195]
Schmidt, M.; Bastians, H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist. Updat., 2007, 10(4-5), 162-181.
[http://dx.doi.org/10.1016/j.drup.2007.06.003] [PMID: 17669681]
[196]
Schmidt, J.M.; Tremblay, G.B.; Pagé, M.; Mercure, J.; Feher, M.; Dunn-Dufault, R.; Peter, M.G.; Redden, P.R. Synthesis and evaluation of a novel nonsteroidal-specific endothelial cell proliferation inhibitor. J. Med. Chem., 2003, 46(8), 1289-1292.
[http://dx.doi.org/10.1021/jm034007d] [PMID: 12672229]
[197]
Horwitz, S.B.; Lothstein, L.; Manfredi, J.J.; Mellado, W.; Parness, J.; Roy, S.N.; Schiff, P.B.; Sorbara, L.; Zeheb, R. Taxol: Mechanisms of action and resistance. Ann. N. Y. Acad. Sci., 1986, 466(1), 733-744.
[http://dx.doi.org/10.1111/j.1749-6632.1986.tb38455.x] [PMID: 2873780]
[198]
Choy, H. Taxanes in combined modality therapy for solid tumors. Crit. Rev. Oncol. Hematol., 2001, 37(3), 237-247.
[http://dx.doi.org/10.1016/S1040-8428(00)00112-8] [PMID: 11248579]
[199]
Rowinsky, E.K.; Donehower, R.C. Paclitaxel (Taxol). N. Engl. J. Med., 1995, 332(15), 1004-1014.
[http://dx.doi.org/10.1056/NEJM199504133321507] [PMID: 7885406]
[200]
Scripture, C.D.; Figg, W.D.; Sparreboom, A. Paclitaxel chemotherapy: From empiricism to a mechanism-based formulation strategy. Ther. Clin. Risk Manag., 2005, 1(2), 107-114.
[http://dx.doi.org/10.2147/tcrm.1.2.107.62910] [PMID: 18360550]
[201]
Ferlini, C.; Raspaglio, G.; Mozzetti, S.; Distefano, M.; Filippetti, F.; Martinelli, E.; Ferrandina, G.; Gallo, D.; Ranelletti, F.O.; Scambia, G. Bcl-2 down-regulation is a novel mechanism of paclitaxel resistance. Mol. Pharmacol., 2003, 64(1), 51-58.
[http://dx.doi.org/10.1124/mol.64.1.51] [PMID: 12815160]
[202]
Trynda-Lemiesz, L. Łuczkowski, M. Human serum albumin: Spectroscopic studies of the paclitaxel binding and proximity relationships with cisplatin and adriamycin. J. Inorg. Biochem., 2004, 98(11), 1851-1856.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.08.015] [PMID: 15522412]
[203]
Lamb, R.; Ozsvari, B.; Lisanti, C.L.; Tanowitz, H.B.; Howell, A.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget, 2015, 6(7), 4569-4584.
[http://dx.doi.org/10.18632/oncotarget.3174] [PMID: 25625193]
[204]
Rabbani, A.; Finn, R.M.; Ausió, J. The anthracycline antibiotics: Antitumor drugs that alter chromatin structure. BioEssays, 2005, 27(1), 50-56.
[http://dx.doi.org/10.1002/bies.20160] [PMID: 15612030]
[205]
Bradner, W.T.; Mitomycin, C. A clinical update. Cancer Treat. Rev., 2001, 27(1), 35-50.
[http://dx.doi.org/10.1053/ctrv.2000.0202] [PMID: 11237776]
[206]
Paz, M.M.; Zhang, X.; Lu, J.; Holmgren, A. A new mechanism of action for the anticancer drug mitomycin C: Mechanism-based inhibition of thioredoxin reductase. Chem. Res. Toxicol., 2012, 25(7), 1502-1511.
[http://dx.doi.org/10.1021/tx3002065] [PMID: 22694104]
[207]
Snodgrass, R.G.; Collier, A.C.; Coon, A.E.; Pritsos, C.A. Mitomycin C inhibits ribosomal RNA: A novel cytotoxic mechanism for bioreductive drugs. J. Biol. Chem., 2010, 285(25), 19068-19075.
[http://dx.doi.org/10.1074/jbc.M109.040477] [PMID: 20418373]
[208]
Wu, K-Y.; Wang, H-Z.; Hong, S-J. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells. Mol. Vis., 2008, 14, 1705-1712.
[PMID: 18806879]
[209]
Laurent, G.; Jaffrézou, J.P. Signaling pathways activated by daunorubicin. Blood, 2001, 98(4), 913-924.
[http://dx.doi.org/10.1182/blood.V98.4.913] [PMID: 11493433]
[210]
Morell, A.; Novotná, E.; Milan, J.; Danielisová, P.; Büküm, N.; Wsól, V. Selective inhibition of aldo-keto reductase 1C3: A novel mechanism involved in midostaurin and daunorubicin synergism. Arch. Toxicol., 2021, 95(1), 67-78.
[http://dx.doi.org/10.1007/s00204-020-02884-2] [PMID: 33025066]
[211]
Scott, L.J.; Figgitt, D.P. Mitoxantrone. CNS Drugs, 2004, 18(6), 379-396.
[http://dx.doi.org/10.2165/00023210-200418060-00010] [PMID: 15089110]
[212]
Fox, E.J. Mechanism of action of mitoxantrone. Neurology, 2004, 63(12)(Suppl. 6), S15-S18.
[http://dx.doi.org/10.1212/WNL.63.12_suppl_6.S15] [PMID: 15623664]
[213]
Regev, R.; Yeheskely-Hayon, D.; Katzir, H.; Eytan, G.D. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol., 2005, 70(1), 161-169.
[http://dx.doi.org/10.1016/j.bcp.2005.03.032] [PMID: 15919056]
[214]
Mahaki, H.; Jabarivasal, N.; Sardarian, K.; Zamani, A. Effects of various densities of 50 Hz electromagnetic field on serum IL-9, IL-10, and TNF-&#945. Levels. Int. J. Occup. Environ. Med., 2020, 11(1), 24-32.
[http://dx.doi.org/10.15171/ijoem.2020.1572] [PMID: 31647056]
[215]
Sordet, O.; Khan, Q.; Kohn, K.; Pommier, Y. Apoptosis induced by topoisomerase inhibitors. Curr. Med. Chem. Anticancer Agents, 2003, 3(4), 271-290.
[http://dx.doi.org/10.2174/1568011033482378] [PMID: 12769773]
[216]
Awasthi, P.; Foiani, M.; Kumar, A. ATM and ATR signaling at a glance. J. Cell Sci., 2015, 128(23), jcs.169730..
[http://dx.doi.org/10.1242/jcs.169730] [PMID: 26567218]
[217]
Bernstein, N.; Karimi-Busheri, F.; Rasouli-Nia, A.; Mani, R.; Dianov, G.; Glover, J. Polynucleotide kinase as a potential target for enhancing cytotoxicity by ionizing radiation and topoisomerase I inhibitors. Anticancer. Agents Med. Chem., 2008, 8(4), 358-367.
[http://dx.doi.org/10.2174/187152008784220311]
[218]
Di Bartolomeo, M.; Ciarlo, A.; Bertolini, A.; Barni, S.; Verusio, C.; Aitini, E.; Pietrantonio, F.; Iacovelli, R.; Dotti, K.F.; Maggi, C.; Perrone, F.; Bajetta, E. Capecitabine, oxaliplatin and irinotecan in combination, with bevacizumab (COI-B regimen) as first-line treatment of patients with advanced colorectal cancer. An Italian Trials of Medical Oncology phase II study. Eur. J. Cancer, 2015, 51(4), 473-481.
[http://dx.doi.org/10.1016/j.ejca.2014.12.020] [PMID: 25637137]
[219]
Bendell, J.C.; Lenz, H.J.; Ryan, T.; El-Rayes, B.F.; Marshall, J.L.; Modiano, M.R.; Hart, L.L.; Kingsley, C.D.; George, T.J.; Nakashima, D.; Berlin, J.D. Phase 1/2 study of KRN330, a fully human anti-A33 monoclonal antibody, plus irinotecan as second-line treatment for patients with metastatic colorectal cancer. Invest. New Drugs, 2014, 32(4), 682-690.
[http://dx.doi.org/10.1007/s10637-014-0088-3] [PMID: 24691674]
[220]
Negoro, S.; Fukuoka, M.; Masuda, N.; Takada, M.; Kusunoki, Y.; Matsui, K.; Takifuji, N.; Kudoh, S.; Niitani, H.; Taguchi, T. Phase I study of weekly intravenous infusions of CPT-11, a new derivative of camptothecin, in the treatment of advanced non-small-cell lung cancer. J. Natl. Cancer Inst., 1991, 83(16), 1164-1168.
[http://dx.doi.org/10.1093/jnci/83.16.1164] [PMID: 1653362]
[221]
Tang, W.; Su, G.; Li, J.; Liao, J.; Chen, S.; Huang, C.; Liu, F.; Chen, Q.; Ye, Y. Enhanced anti-colorectal cancer effects of carfilzomib combined with CPT-11 via downregulation of nuclear factor-κB in vitro and in vivo. Int. J. Oncol., 2014, 45(3), 995-1010.
[http://dx.doi.org/10.3892/ijo.2014.2513] [PMID: 24968890]
[222]
Xu, Y.; Villalona-Calero, M.A. Irinotecan: Mechanisms of tumor resistance and novel strategies for modulating its activity. Ann. Oncol., 2002, 13(12), 1841-1851.
[http://dx.doi.org/10.1093/annonc/mdf337] [PMID: 12453851]
[223]
Dodds, H.M.; Rivory, L.P. The mechanism for the inhibition of acetylcholinesterases by irinotecan (CPT-11). Mol. Pharmacol., 1999, 56(6), 1346-1353.
[http://dx.doi.org/10.1124/mol.56.6.1346] [PMID: 10570064]
[224]
Fabian, C.J. The what, why and how of aromatase inhibitors: Hormonal agents for treatment and prevention of breast cancer. Int. J. Clin. Pract., 2007, 61(12), 2051-2063.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01587.x] [PMID: 17892469]
[225]
Groenland, S.L.; van Nuland, M.; Verheijen, R.B.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R.; Steeghs, N. Therapeutic drug monitoring of oral anti-hormonal drugs in oncology. Clin. Pharmacokinet., 2019, 58(3), 299-308.
[http://dx.doi.org/10.1007/s40262-018-0683-0] [PMID: 29862467]
[226]
Mcleod, D.G. Hormonal therapy: Historical perspective to future directions. Urology, 2003, 61(2)(Suppl. 1), 3-7.
[http://dx.doi.org/10.1016/S0090-4295(02)02393-2] [PMID: 12667881]
[227]
Cockshott, I.D. Bicalutamide. Clin. Pharmacokinet., 2004, 43(13), 855-878.
[http://dx.doi.org/10.2165/00003088-200443130-00003] [PMID: 15509184]
[228]
Fischer, J.; Ganellin, C.R.; Ganesan, A.; Proudfoot, J. Analogue-Based Drug Discovery II; Wiley-VCH: Hoboken, NJ, 2010.
[229]
Colquhoun, A.J.; Venier, N.A.; Vandersluis, A.D.; Besla, R.; Sugar, L.M.; Kiss, A.; Fleshner, N.E.; Pollak, M.; Klotz, L.H.; Venkateswaran, V. Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis., 2012, 15(4), 346-352.
[http://dx.doi.org/10.1038/pcan.2012.16] [PMID: 22614062]
[230]
Wang, Z.; Ho, J.X.; Ruble, J.R.; Rose, J.; Rüker, F.; Ellenburg, M.; Murphy, R.; Click, J.; Soistman, E.; Wilkerson, L.; Carter, D.C. Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(12), 5356-5374.
[http://dx.doi.org/10.1016/j.bbagen.2013.06.032] [PMID: 23838380]
[231]
Ingle, J.N.; Suman, V.J.; Mailliard, J.A.; Kugler, J.W.; Krook, J.E.; Michalak, J.C.; Pisansky, T.M.; Wold, L.E.; Donohue, J.H.; Goetz, M.P.; Perez, E.A. Randomized trial of tamoxifen alone or combined with fluoxymesterone as adjuvant therapy in postmenopausal women with resected estrogen receptor positive breast cancer. North Central Cancer Treatment Group Trial 89-30-52. Breast Cancer Res. Treat., 2006, 98(2), 217-222.
[http://dx.doi.org/10.1007/s10549-005-9152-1] [PMID: 16538529]
[232]
Lowe, R.; De Lorimier, A.A., Jr; Gordan, G.S.; Goldman, L. Antitumor efficacy of fluoxymesterone. Use in advanced breast cancer. Arch. Intern. Med., 1961, 107(2), 241-244.
[http://dx.doi.org/10.1001/archinte.1961.03620020091008] [PMID: 13763814]
[233]
Jordan, V.C. Tamoxifen: A most unlikely pioneering medicine. Nat. Rev. Drug Discov., 2003, 2(3), 205-213.
[http://dx.doi.org/10.1038/nrd1031] [PMID: 12612646]
[234]
Mandlekar, S.; Kong, A.N.T. Mechanisms of tamoxifen-induced apoptosis. Apoptosis, 2001, 6(6), 469-477.
[http://dx.doi.org/10.1023/A:1012437607881] [PMID: 11595837]
[235]
Balkhi, B.; Seoane-Vazquez, E.; Rodriguez-Monguio, R. Changes in the utilization of osteoporosis drugs after the 2010 FDA bisphosphonate drug safety communication. Saudi Pharm. J., 2018, 26(2), 238-243.
[http://dx.doi.org/10.1016/j.jsps.2017.12.005] [PMID: 30166922]
[236]
Irani, J.; Salomon, L.; Oba, R.; Bouchard, P.; Mottet, N. Efficacy of venlafaxine, medroxyprogesterone acetate, and cyproterone acetate for the treatment of vasomotor hot flushes in men taking gonadotropin-releasing hormone analogues for prostate cancer: A double-blind, randomised trial. Lancet Oncol., 2010, 11(2), 147-154.
[http://dx.doi.org/10.1016/S1470-2045(09)70338-9] [PMID: 19963436]
[237]
Ghatge, R.P.; Jacobsen, B.M.; Schittone, S.A.; Horwitz, K.B. The progestational and androgenic properties of medroxyprogesterone acetate: Gene regulatory overlap with dihydrotestosterone in breast cancer cells. Breast Cancer Res., 2005, 7(6), R1036-R1050.
[http://dx.doi.org/10.1186/bcr1340] [PMID: 16457685]
[238]
Moore, N.L.; Hanson, A.R.; Ebrahimie, E.; Hickey, T.E.; Tilley, W.D. Anti-proliferative transcriptional effects of medroxyprogesterone acetate in estrogen receptor positive breast cancer cells are predominantly mediated by the progesterone receptor. J. Steroid Biochem. Mol. Biol., 2020, 199, 105548.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105548] [PMID: 31805393]
[239]
Simpson, D.; Curran, M.P.; Perry, C.M. Letrozole. Drugs, 2004, 64(11), 1213-1230.
[http://dx.doi.org/10.2165/00003495-200464110-00005] [PMID: 15161328]
[240]
Cohen, M.H.; Johnson, J.R.; Li, N.; Chen, G.; Pazdur, R. Approval summary: Letrozole in the treatment of postmenopausal women with advanced breast cancer. Clin. Cancer Res., 2002, 8(3), 665-669.
[PMID: 11895893]
[241]
Bhatnagar, A.S. The discovery and mechanism of action of letrozole. Breast Cancer Res. Treat., 2007, 105(Suppl. 1), 7-17.
[http://dx.doi.org/10.1007/s10549-007-9696-3] [PMID: 17912633]
[242]
Ingle, J.N.; Long, H.J.; Twito, D.I.; Schaid, D.J.; Cullinan, S.A.; Gerstner, J.G.; Krook, J.E.; Mailliard, J.A.; Tschetter, L.K.; Windschitl, H.E.; Levitt, R.; Pfeifle, D.M. Combination hormonal therapy with tamoxifen plus fluoxymesterone versus tamoxifen alone in postmenopausal women with metastatic breast cancer. An updated analysis. Cancer, 1991, 67(4), 886-891.
[http://dx.doi.org/10.1002/1097-0142(19910215)67:4<886:AID-CNCR2820670405>3.0.CO;2-O] [PMID: 1991261]
[243]
Gou, Y.; Zhang, Z.; Li, D.; Zhao, L.; Cai, M.; Sun, Z.; Li, Y.; Zhang, Y.; Khan, H.; Sun, H.; Wang, T.; Liang, H.; Yang, F. HSA-based multi-target combination therapy: Regulating drugs’ release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv., 2018, 25(1), 321-329.
[http://dx.doi.org/10.1080/10717544.2018.1428245] [PMID: 29350051]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy