Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Advances in the Application of Induced Pluripotent Stem Cells in Alzheimer’s Disease and Parkinson's Disease

Author(s): Yiran Xu, Shuxia Wang* and Ping Zhu*

Volume 18, Issue 2, 2023

Published on: 11 August, 2022

Page: [154 - 162] Pages: 9

DOI: 10.2174/1574888X17666220426114050

Price: $65

Abstract

Induced pluripotent stem cells (iPSCs) are a type of pluripotent stem cells induced by somatic cells. It was found that differentiated cells could be reprogrammed to a pluripotent state by the expression of the four transcription factors such as Oct3/4, Sox2, c-Myc, and Klf4. This technology can be applied to reprogramme the patient cells into iPSCs, which further be induced into research-required cells or tissues. Nowadays, a great number of reprogramming methods and various types of somatic cells can be used to produce iPSCs. The advancement of this technology provides a promising pathway to disease models building, drug development, and the corresponding cell-based therapy.

Alzheimer's diseases (AD) and Parkinson's diseases (PD) are complex diseases affected by many factors, including genetic and environmental factors. Until now, there are no effective treatments to reverse these diseases because the pathogenesis of these complex diseases is still not well understood. One important reason is that the existing disease model cannot fully recapitulate the pathologies of these multifactorial associated diseases and iPSCs have the potential to resolve this difficulty. In this review, we discuss the application progress of iPSCs in AD and PD, including disease modeling, drug development, and cellbased therapies.

Keywords: Induced pluripotent stem cells, Alzheimer's diseases, Parkinson's diseases, disease modeling, drug development, cell-based therapies.

[1]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[2]
Yousefi N, Abdollahii S, Kouhbanani MAJ, Hassanzadeh A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treat-ment of neurodegenerative disease: Mirage or reality? J Cell Physiol 2020; 235(12): 9166-84.
[http://dx.doi.org/10.1002/jcp.29800] [PMID: 32437029]
[3]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[4]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[5]
Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev 2019; 99(1): 79-114.
[http://dx.doi.org/10.1152/physrev.00039.2017] [PMID: 30328784]
[6]
Stansley B, Post J, Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflammation 2012; 9(1): 115.
[http://dx.doi.org/10.1186/1742-2094-9-115] [PMID: 22651808]
[7]
Germena G, Hinkel R. iPSCs and exosomes: Partners in crime fighting cardiovascular diseases. J Pers Med 2021; 11(6): 529.
[http://dx.doi.org/10.3390/jpm11060529] [PMID: 34207562]
[8]
Andrysiak K, Stępniewski J, Dulak J. Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Arch 2021; 473(7): 1061-85.
[http://dx.doi.org/10.1007/s00424-021-02536-z] [PMID: 33629131]
[9]
Liu C, Oikonomopoulos A, Sayed N, Wu JC. Modeling human diseases with induced pluripotent stem cells: From 2D to 3D and beyond. Development 2018; 145(5): dev156166.
[http://dx.doi.org/10.1242/dev.156166] [PMID: 29519889]
[10]
Thies W, Bleiler L. Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 2013; 9(2): 208-45.
[http://dx.doi.org/10.1016/j.jalz.2013.02.003] [PMID: 23507120]
[11]
Wuli W, Tsai ST, Chiou TW, Harn HJ. Human-induced pluripotent stem cells and herbal small-molecule drugs for treatment of Alz-heimer’s Disease. Int J Mol Sci 2020; 21(4): E1327.
[http://dx.doi.org/10.3390/ijms21041327] [PMID: 32079110]
[12]
Majolo F, Marinowic DR, Machado DC, Da Costa JC. Important advances in Alzheimer’s disease from the use of induced pluripotent stem cells. J Biomed Sci 2019; 26(1): 15.
[http://dx.doi.org/10.1186/s12929-019-0501-5] [PMID: 30728025]
[13]
Vehmas AK, Kawas CH, Stewart WF, Troncoso JC. Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 2003; 24(2): 321-31.
[http://dx.doi.org/10.1016/S0197-4580(02)00090-8] [PMID: 12498966]
[14]
Raman S, Brookhouser N, Brafman DA. Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer’s disease (AD) risk. Neurobiol Dis 2020; 138: 104788.
[http://dx.doi.org/10.1016/j.nbd.2020.104788] [PMID: 32032733]
[15]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019; 14: 5541-54.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[16]
Doig AJ. Positive feedback loops in Alzheimer’s Disease: The Alzheimer’s feedback hypothesis. J Alzheimers Dis 2018; 66(1): 25-36.
[http://dx.doi.org/10.3233/JAD-180583] [PMID: 30282364]
[17]
Dubey SK, Ram MS, Krishna KV, et al. Recent expansions on cellular models to uncover the scientific barriers towards drug development for Alzheimer’s Disease. Cell Mol Neurobiol 2019; 39(2): 181-209.
[http://dx.doi.org/10.1007/s10571-019-00653-z] [PMID: 30671696]
[18]
Tai LM, Balu D, Avila-Munoz E, et al. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer’s disease. J Lipid Res 2017; 58(9): 1733-55.
[http://dx.doi.org/10.1194/jlr.R076315] [PMID: 28389477]
[19]
Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron 2003; 39(3): 409-21.
[http://dx.doi.org/10.1016/S0896-6273(03)00434-3] [PMID: 12895417]
[20]
Smit T, Deshayes NAC, Borchelt DR, Kamphuis W, Middeldorp J, Hol EM. Reactive astrocytes as treatment targets in Alzheimer’s dis-ease-Systematic review of studies using the APPswePS1dE9 mouse model. Glia 2021; 69(8): 1852-81.
[http://dx.doi.org/10.1002/glia.23981] [PMID: 33634529]
[21]
Mori T, Koyama N, Arendash GW, Horikoshi-Sakuraba Y, Tan J, Town T. Overexpression of human S100B exacerbates cerebral amyloi-dosis and gliosis in the Tg2576 mouse model of Alzheimer’s disease. Glia 2010; 58(3): 300-14.
[PMID: 19705461]
[22]
Beckman D, Morrison JH. Towards developing a rhesus monkey model of early Alzheimer’s disease focusing on women’s health. Am J Primatol 2021; 83(11): e23289.
[http://dx.doi.org/10.1002/ajp.23289] [PMID: 34056733]
[23]
Israel MA, Yuan SH, Bardy C, et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012; 482(7384): 216-20.
[http://dx.doi.org/10.1038/nature10821] [PMID: 22278060]
[24]
Arber C, Lovejoy C, Wray S. Stem cell models of Alzheimer’s disease: Progress and challenges. Alzheimers Res Ther 2017; 9(1): 42.
[http://dx.doi.org/10.1186/s13195-017-0268-4] [PMID: 28610595]
[25]
Wang Z, Sun H, Zhang Q, et al. Generation of induced pluripotent stem cell line (ZZUi0024-A) from a 51-year-old patient with APP gene mutation in Alzheimer’ s disease. Stem Cell Res (Amst) 2021; 53: 102267.
[http://dx.doi.org/10.1016/j.scr.2021.102267] [PMID: 33652304]
[26]
Lee J, Liu Z, Tusing YG, et al. Generation of inducible pluripotent stem cell lines from Alzheimer’s disease patients with APOE e3/e3 genotype. Stem Cell Res (Amst) 2021; 55: 102498.
[http://dx.doi.org/10.1016/j.scr.2021.102498] [PMID: 34392011]
[27]
Isaja L, Rodríguez-Varela MS, Marazita M, et al. Generation of a human induced pluripotent stem cell line from a familial Alzheimer’s disease PSEN1 T119I patient. Stem Cell Res (Amst) 2021; 53: 102325.
[http://dx.doi.org/10.1016/j.scr.2021.102325] [PMID: 33839546]
[28]
Muñoz SS, Engel M, Balez R, et al. A simple differentiation protocol for generation of induced pluripotent stem cell-derived basal fore-brain-like cholinergic neurons for Alzheimer’s disease and frontotemporal dementia disease modeling. Cells 2020; 9(9): E2018.
[http://dx.doi.org/10.3390/cells9092018] [PMID: 32887382]
[29]
Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ. A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 2012; 4(124): 124ra29.
[http://dx.doi.org/10.1126/scitranslmed.3003771] [PMID: 22344463]
[30]
Butler Iii RR, Kozlova A, Zhang H, et al. The genetic relevance of human induced pluripotent stem cell-derived microglia to Alzheimer’s Disease and major neuropsychiatric disorders. Mol Neuropsychiatry 2020; 5 (Suppl. 1): 85-96.
[http://dx.doi.org/10.1159/000501935] [PMID: 32399472]
[31]
Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 2019; 76(14): 2739-60.
[http://dx.doi.org/10.1007/s00018-019-03111-7] [PMID: 31016348]
[32]
Hu W, Qiu B, Guan W, et al. Direct conversion of normal and Alzheimer’s Disease human fibroblasts into neuronal cells by small mole-cules. Cell Stem Cell 2015; 17(2): 204-12.
[http://dx.doi.org/10.1016/j.stem.2015.07.006] [PMID: 26253202]
[33]
Appelt-Menzel A, Cubukova A, Günther K, et al. Establishment of a human blood-brain barrier co-culture model mimicking the neuro-vascular unit using induced pluri- and multipotent stem cells. Stem Cell Reports 2017; 8(4): 894-906.
[http://dx.doi.org/10.1016/j.stemcr.2017.02.021] [PMID: 28344002]
[34]
Oksanen M, Petersen AJ, Naumenko N, et al. PSEN1 mutant iPSC-derived model reveals severe astrocyte pathology in Alzheimer’s Dis-ease. Stem Cell Reports 2017; 9(6): 1885-97.
[http://dx.doi.org/10.1016/j.stemcr.2017.10.016] [PMID: 29153989]
[35]
Costamagna G, Comi GP, Corti S. Advancing drug discovery for neurological disorders using iPSC-Derived neural organoids. Int J Mol Sci 2021; 22(5): 2659.
[http://dx.doi.org/10.3390/ijms22052659] [PMID: 33800815]
[36]
Fang J, Pieper AA, Nussinov R, et al. Harnessing endophenotypes and network medicine for Alzheimer’s drug repurposing. Med Res Rev 2020; 40(6): 2386-426.
[http://dx.doi.org/10.1002/med.21709] [PMID: 32656864]
[37]
Hawkins KE, Duchen M. Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells. World J Stem Cells 2019; 11(5): 236-53.
[http://dx.doi.org/10.4252/wjsc.v11.i5.236] [PMID: 31171953]
[38]
Yang J, Li S, He XB, Cheng C, Le W. Induced pluripotent stem cells in Alzheimer’s disease: Applications for disease modeling and cell-replacement therapy. Mol Neurodegener 2016; 11(1): 39.
[http://dx.doi.org/10.1186/s13024-016-0106-3] [PMID: 27184028]
[39]
Athar T, Al Balushi K, Khan SA. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep 2021; 48(7): 5629-45.
[http://dx.doi.org/10.1007/s11033-021-06512-9] [PMID: 34181171]
[40]
Garcia-Leon JA, Caceres-Palomo L, Sanchez-Mejias E, et al. Human pluripotent stem cell-derived neural cells as a relevant platform for drug screening in Alzheimer’s Disease. Int J Mol Sci 2020; 21(18): E6867.
[http://dx.doi.org/10.3390/ijms21186867] [PMID: 32962164]
[41]
Cusulin C, Wells I, Badillo S, Duran-Pacheco GC, Baumann K, Patsch C. Gamma secretase modulators and BACE inhibitors reduce Aβ production without altering gene expression in Alzheimer’s disease iPSC-derived neurons and mice. Mol Cell Neurosci 2019; 100: 103392.
[http://dx.doi.org/10.1016/j.mcn.2019.103392] [PMID: 31381983]
[42]
Choi H, Kim HJ, Yang J, et al. Acetylation changes tau interactome to degrade tau in Alzheimer’s disease animal and organoid models. Aging Cell 2020; 19(1): e13081.
[http://dx.doi.org/10.1111/acel.13081] [PMID: 31763743]
[43]
Esmail S, Danter WR. NEUBOrg: Artificially induced pluripotent stem cell-derived brain organoid to model and study genetics of Alz-heimer’s Disease Progression. Front Aging Neurosci 2021; 13: 643889.
[http://dx.doi.org/10.3389/fnagi.2021.643889] [PMID: 33708104]
[44]
Wang X, Yang G. Bone marrow mesenchymal stem cells-derived exosomes reduce Aβ deposition and improve cognitive function recov-ery in mice with Alzheimer’s disease by activating sphingosine kinase/sphingosine-1-phosphate signaling pathway. Cell Biol Int 2021; 45(4): 775-84.
[http://dx.doi.org/10.1002/cbin.11522] [PMID: 33300254]
[45]
Noureddini M, Bagheri-Mohammadi S. Adult Hippocampal neurogenesis and alzheimer’s disease: Novel application of mesenchymal stem cells and their role in hippocampal neurogenesis. Int J Mol Cell Med 2021; 10(1): 1-10.
[PMID: 34268249]
[46]
Neves AF, Camargo C, Premer C, Hare JM, Baumel BS, Pinto M. Intravenous administration of mesenchymal stem cells reduces Tau phosphorylation and inflammation in the 3xTg-AD mouse model of Alzheimer’s disease. Exp Neurol 2021; 341: 113706.
[http://dx.doi.org/10.1016/j.expneurol.2021.113706] [PMID: 33757765]
[47]
Ding M, Shen Y, Wang P, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer’s Disease. Neurochem Res 2018; 43(11): 2165-77.
[http://dx.doi.org/10.1007/s11064-018-2641-5] [PMID: 30259257]
[48]
Cui Y, Ma S, Zhang C, et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 2017; 320: 291-301.
[http://dx.doi.org/10.1016/j.bbr.2016.12.021] [PMID: 28007537]
[49]
Zhang XM, Ouyang YJ, Yu BQ, et al. Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease. Neural Regen Res 2021; 16(5): 893-8.
[http://dx.doi.org/10.4103/1673-5374.297088] [PMID: 33229725]
[50]
Liu Y, Weick JP, Liu H, et al. Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 2013; 31(5): 440-7.
[http://dx.doi.org/10.1038/nbt.2565] [PMID: 23604284]
[51]
Lee IS, Jung K, Kim IS, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener 2015; 10(1): 38.
[http://dx.doi.org/10.1186/s13024-015-0035-6] [PMID: 26293123]
[52]
Kim HJ, Seo SW, Chang JW, et al. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: A phase 1 clinical trial 2015; 1(2): 95-102.
[http://dx.doi.org/10.1016/j.trci.2015.06.007]
[53]
Pons-Espinal M, Blasco-Agell L, Consiglio A. Dissecting the non-neuronal cell contribution to Parkinson’s disease pathogenesis using induced pluripotent stem cells. Cell Mol Life Sci 2021; 78(5): 2081-94.
[http://dx.doi.org/10.1007/s00018-020-03700-x] [PMID: 33210214]
[54]
Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson’s Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells 2019; 8(1): E26.
[http://dx.doi.org/10.3390/cells8010026] [PMID: 30621042]
[55]
Ke M, Chong CM, Su H. Using induced pluripotent stem cells for modeling Parkinson’s disease. World J Stem Cells 2019; 11(9): 634-49.
[http://dx.doi.org/10.4252/wjsc.v11.i9.634] [PMID: 31616540]
[56]
Chen W, Huang Q, Ma S, Li M. Progress in dopaminergic cell replacement and regenerative strategies for Parkinson’s Disease. ACS Chem Neurosci 2019; 10(2): 839-51.
[http://dx.doi.org/10.1021/acschemneuro.8b00389] [PMID: 30346716]
[57]
Avazzadeh S, Baena JM, Keighron C, Feller-Sanchez Y, Quinlan LR. Modelling Parkinson’s Disease: iPSCs towards Better Understanding of Human Pathology. Brain Sci 2021; 11(3): 373.
[http://dx.doi.org/10.3390/brainsci11030373] [PMID: 33799491]
[58]
Malpass K. Parkinson disease: Induced pluripotent stem cells-a new in vitro model to investigate α-synuclein dysfunction in Parkinson disease. Nat Rev Neurol 2011; 7(10): 536.
[http://dx.doi.org/10.1038/nrneurol.2011.144] [PMID: 21931347]
[59]
Flierl A, Oliveira LM, Falomir-Lockhart LJ, et al. Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication. PLoS One 2014; 9(11): e112413.
[http://dx.doi.org/10.1371/journal.pone.0112413] [PMID: 25390032]
[60]
Stathakos P, Jiménez-Moreno N, Crompton LA, et al. A monolayer hiPSC culture system for autophagy/mitophagy studies in human do-paminergic neurons. Autophagy 2021; 17(4): 855-71.
[http://dx.doi.org/10.1080/15548627.2020.1739441] [PMID: 32286126]
[61]
Chen ZZ, Wang JY, Kang Y, et al. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res 2021; 42(4): 469-77.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2021.023] [PMID: 34213093]
[62]
Okarmus J, Havelund JF, Ryding M, et al. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism. Stem Cell Reports 2021; 16(6): 1510-26.
[http://dx.doi.org/10.1016/j.stemcr.2021.04.022] [PMID: 34048689]
[63]
Koh YH, Tan LY, Ng SY. Patient-derived induced pluripotent stem cells and organoids for modeling alpha synuclein propagation in Par-kinson’s Disease. Front Cell Neurosci 2018; 12: 413.
[http://dx.doi.org/10.3389/fncel.2018.00413] [PMID: 30483063]
[64]
Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 2016; 165(5): 1238-54.
[http://dx.doi.org/10.1016/j.cell.2016.04.032] [PMID: 27118425]
[65]
Monzel AS, Smits LM, Hemmer K, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Reports 2017; 8(5): 1144-54.
[http://dx.doi.org/10.1016/j.stemcr.2017.03.010] [PMID: 28416282]
[66]
Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014; 9(10): 2329-40.
[http://dx.doi.org/10.1038/nprot.2014.158] [PMID: 25188634]
[67]
Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuro-melanin-producing neurons. Cell Stem Cell 2016; 19(2): 248-57.
[http://dx.doi.org/10.1016/j.stem.2016.07.005] [PMID: 27476966]
[68]
Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 2010; 107(28): 12704-9.
[http://dx.doi.org/10.1073/pnas.0910106107] [PMID: 20615974]
[69]
Rai SN, Singh P, Varshney R, et al. Promising drug targets and associated therapeutic interventions in Parkinson’s disease. Neural Regen Res 2021; 16(9): 1730-9.
[http://dx.doi.org/10.4103/1673-5374.306066] [PMID: 33510062]
[70]
Brimson JM, Brimson S, Chomchoei C, Tencomnao T. Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain. Expert Opin Ther Targets 2020; 24(10): 1009-28.
[http://dx.doi.org/10.1080/14728222.2020.1805435] [PMID: 32746649]
[71]
Ng J, Barral S, De La Fuente Barrigon C, et al. Gene therapy restores dopamine transporter expression and ameliorates pathology in iPSC and mouse models of infantile parkinsonism Sci Transl Med 2021; 13(594): eaaw1564.
[http://dx.doi.org/10.1126/scitranslmed.aaw1564] [PMID: 34011628]
[72]
Schweitzer JS, Song B, Herrington TM, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s Disease. N Engl J Med 2020; 382(20): 1926-32.
[http://dx.doi.org/10.1056/NEJMoa1915872] [PMID: 32402162]
[73]
Le Bras A. Stem cell transplantation improves Parkinson’s disease in monkeys. Lab Anim (NY) 2021; 50(4): 87.
[http://dx.doi.org/10.1038/s41684-021-00743-w] [PMID: 33731937]
[74]
Chen YR, Lai PL, Chien Y, et al. Improvement of impaired motor functions by human dental exfoliated deciduous teeth stem cell-derived factors in a rat model of Parkinson’s Disease. Int J Mol Sci 2020; 21(11): E3807.
[http://dx.doi.org/10.3390/ijms21113807] [PMID: 32471263]
[75]
Bagheri-Mohammadi S, Karimian M, Alani B, Verdi J, Tehrani RM, Noureddini M. Stem cell-based therapy for Parkinson’s disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 2019; 234(2): 1326-35.
[http://dx.doi.org/10.1002/jcp.27182] [PMID: 30146713]
[76]
Kim TW, Koo SY, Studer L. Pluripotent stem cell therapies for Parkinson Disease: Present challenges and future opportunities. Front Cell Dev Biol 2020; 8: 729.
[http://dx.doi.org/10.3389/fcell.2020.00729] [PMID: 32903681]
[77]
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson’s disease: A novel cell source of cell therapy and disease model-ing. Prog Neurobiol 2015; 134: 161-77.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.009] [PMID: 26408505]
[78]
Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell therapy for Parkinson’s Disease. Cell Transplant 2017; 26(9): 1551-9.
[http://dx.doi.org/10.1177/0963689717735411] [PMID: 29113472]
[79]
Si Z, Wang X. Stem cell therapies in Alzheimer’s Disease: Applications for disease modeling. J Pharmacol Exp Ther 2021; 377(2): 207-17.
[http://dx.doi.org/10.1124/jpet.120.000324] [PMID: 33558427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy