Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

An Overview of Conventional Drugs and Nanotherapeutic Options for the Treatment and Management of Pediatric Acute Lymphoblastic Leukemia

Author(s): Andre Yohan, Christopher Jacques, Tafaswa Fletcher, Thanaphorn Suk-in and Robert B. Campbell*

Volume 22, Issue 18, 2022

Published on: 15 July, 2022

Page: [3050 - 3061] Pages: 12

DOI: 10.2174/1871520622666220426105922

Price: $65

Abstract

Acute lymphoblastic leukemia (ALL) is a common form of pediatric cancer affecting the lymphoblast, a type of white blood cell found in the bone marrow. In this disease, the normal lymphoblast cells transform into leukemic cells and subsequently enter the bloodstream. Leukemic cells found in patients with ALL have shown differences in cholesterol uptake and utilization. Current treatment consists of chemotherapy, chimeric antigen receptor (CAR) therapy, and hematopoietic stem cell transplantation (HSCT). In addition, minimal residual disease (MRD) has become an effective tool for measuring treatment efficacy and the potential for relapse.

Chemotherapy resistance remains a significant barrier in the treatment of ALL. Biomarkers such as an upregulated Akt signaling pathway and an overexpressed VLA-4 integrin-protein have been associated with drug resistance. Nanoparticles have been used to favorably alter the pharmacokinetic profile of conventional drug agents. These drug-delivery systems are designed to selectively deliver their drug payloads to desired targets. Therefore, nanoparticles offer advantages such as improved efficacy and reduced toxicity.

This review highlights conventional treatment options, distinctive characteristics of pediatric ALL, therapeutic challenges encountered during therapy, and the key role that nanotherapeutics play in the treatment of ALL.

Keywords: Cancer therapy, drug resistance, nanomedicine, acute lymphoblastic leukemia, pediatric, relapse.

[1]
Society, A.C. Key statistics of childhood leukemia atlanta; American Cancer Society: GA, 2020. Available from: https://www.cancer.org/cancer/leukemia-in-children/about/key- statistics.html#references
[2]
Hunger, S.P.; Mullighan, C.G. Acute lymphoblastic leukemia in children. N. Engl. J. Med., 2015, 373(16), 1541-1552.
[http://dx.doi.org/10.1056/NEJMra1400972] [PMID: 26465987]
[3]
Cancer CSfCs. About acute lymphoblastic leukemia (ALL) Baltimore, MD: Cure search for children. , 2020. Available from: https://curesearch.org/Acute-Lymphoblastic-Leukemia-in-
[4]
Society AC. Causes, Risk factors, and prevention: American cancer society. , 2021. Available from: https://www.cancer.org/cancer/leukemia-in-children/causes-risks-prevention/what-causes.html
[5]
Society, A.C. Prognostic factors in childhood leukemia (ALL or AML); American Cancer Society: Atlanta, GA, 2020. Available from: https://www.cancer.org/cancer/leukemia-in-children/detection-diagnosis-staging/prognostic-factors.html
[6]
Acute lymphoblastic leukemia -version 2.2021: national comprehensive cancer network. 2021. Available from: https://www.nccn.org/professionals/physician_gls/pdf/all.pdf
[7]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[8]
Kato, M.; Manabe, A. Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr. Int., 2018, 60(1), 4-12.
[http://dx.doi.org/10.1111/ped.13457] [PMID: 29143423]
[9]
Cooper, S.L.; Brown, P.A. Treatment of pediatric acute lymphoblastic leukemia. Pediatr. Clin. North Am., 2015, 62(1), 61-73.
[http://dx.doi.org/10.1016/j.pcl.2014.09.006] [PMID: 25435112]
[10]
Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am. J. Hematol., 2019, 94(S1), S3-S9.
[http://dx.doi.org/10.1002/ajh.25418] [PMID: 30680780]
[11]
Pehlivan, K.C.; Duncan, B.B.; Lee, D.W. CAR-T Cell therapy for acute lymphoblastic leukemia: Transforming the treatment of relapsed and refractory disease. Curr. Hematol. Malig. Rep., 2018, 13(5), 396-406.
[http://dx.doi.org/10.1007/s11899-018-0470-x] [PMID: 30120708]
[12]
Nguyen, K.; Devidas, M.; Cheng, S.C.; La, M.; Raetz, E.A.; Carroll, W.L.; Winick, N.J.; Hunger, S.P.; Gaynon, P.S.; Loh, M.L. Children’s Oncology Group. Factors influencing survival after relapse from acute lymphoblastic leukemia: A Children’s Oncology Group study. Leukemia, 2008, 22(12), 2142-2150.
[http://dx.doi.org/10.1038/leu.2008.251] [PMID: 18818707]
[13]
Khaddour, K; Hana, CK; Mewawalla, P StatPearls Publishing, 2020, LLC, 2020.
[14]
Qin, X.; Zhang, M.Y.; Liu, W.J. Application of minimal residual disease monitoring in pediatric patients with acute lymphoblastic leuke-mia. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(20), 6885-6895.
[PMID: 30402854]
[15]
Shalapour, S.; Hof, J.; Kirschner-Schwabe, R.; Bastian, L.; Eckert, C.; Prada, J.; Henze, G.; von Stackelberg, A.; Seeger, K. High VLA-4 expression is associated with adverse outcome and distinct gene expression changes in childhood B-cell precursor acute lymphoblastic leukemia at first relapse. Haematologica, 2011, 96(11), 1627-1635.
[http://dx.doi.org/10.3324/haematol.2011.047993] [PMID: 21828124]
[16]
Morishita, N.; Tsukahara, H.; Chayama, K.; Ishida, T.; Washio, K.; Miyamura, T.; Yamashita, N.; Oda, M.; Morishima, T. Activation of Akt is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia. Pediatr. Blood Cancer, 2012, 59(1), 83-89.
[http://dx.doi.org/10.1002/pbc.24034] [PMID: 22183914]
[17]
Pollack, I.F.; Hamilton, R.L.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Murdoch, G.H.; Nikiforova, M.N.; Holmes, E.J.; Zhou, T.; Cohen, K.J.; Jakacki, R.I. Children’s Oncology Group. Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: A report from the Children’s Oncology Group. J. Neurooncol., 2010, 99(2), 155-163.
[http://dx.doi.org/10.1007/s11060-010-0297-3] [PMID: 20607350]
[18]
Usman, H.; Ameer, F.; Munir, R.; Iqbal, A.; Zaid, M.; Hasnain, S.; Scandiuzzi, L.; Zaidi, N. Leukemia cells display lower levels of intra-cellular cholesterol irrespective of the exogenous cholesterol availability. Clin. Chim. Acta, 2016, 457, 12-17.
[http://dx.doi.org/10.1016/j.cca.2016.03.015] [PMID: 27012514]
[19]
Tucci, J.; Chen, T.; Margulis, K.; Orgel, E.; Paszkiewicz, R.L.; Cohen, M.D.; Oberley, M.J.; Wahhab, R.; Jones, A.E.; Divakaruni, A.S.; Hsu, C.C.; Noll, S.E.; Sheng, X.; Zare, R.N.; Mittelman, S.D. Adipocytes provide fatty acids to acute lymphoblastic leukemia cells. Front. Oncol., 2021, 11, 665763.
[http://dx.doi.org/10.3389/fonc.2021.665763] [PMID: 33968771]
[20]
Gottfried, E.L. Lipids of human leukocytes: Relation to celltype. J. Lipid Res., 1967, 8(4), 321-327.
[http://dx.doi.org/10.1016/S0022-2275(20)39561-4] [PMID: 5231291]
[21]
Madhusoodhan, P.P.; Carroll, W.L.; Bhatla, T. Progress and prospects in pediatric leukemia. Curr. Probl. Pediatr. Adolesc. Health Care, 2016, 46(7), 229-241.
[http://dx.doi.org/10.1016/j.cppeds.2016.04.003] [PMID: 27283082]
[22]
Hijiya, N.; van der Sluis, I.M. Asparaginase-associated toxicity in children with acute lymphoblastic leukemia. Leuk. Lymphoma, 2016, 57(4), 748-757.
[http://dx.doi.org/10.3109/10428194.2015.1101098] [PMID: 26457414]
[23]
Inaba, H.; Pui, C.H. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol., 2010, 11(11), 1096-1106.
[http://dx.doi.org/10.1016/S1470-2045(10)70114-5] [PMID: 20947430]
[24]
Heikamp, E.B.; Pui, C.H. Next-generation evaluation and treatment of pediatric acute lymphoblastic leukemia. J. Pediatr., 2018, 203, 14-24.e2.
[http://dx.doi.org/10.1016/j.jpeds.2018.07.039] [PMID: 30213460]
[25]
Sági, J.C.; Egyed, B.; Kelemen, A.; Kutszegi, N.; Hegyi, M.; Gézsi, A.; Herlitschke, M.A.; Rzepiel, A.; Fodor, L.E.; Ottóffy, G.; Kovács, G.T.; Erdélyi, D.J.; Szalai, C.; Semsei, Á.F. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer, 2018, 18(1), 704.
[http://dx.doi.org/10.1186/s12885-018-4629-6] [PMID: 29970035]
[26]
Thomson, RJ; Moshirfar, M; Ronquillo, Y StatPearls Publishing, 2021, LLC, 2021.
[27]
Nakano, T.; Kobayashi, R.; Matsushima, S.; Hori, D.; Yanagi, M.; Suzuki, D.; Kobayashi, K. Risk factors for delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia and lymphoma. Int. J. Hematol., 2021, 113(5), 744-750.
[http://dx.doi.org/10.1007/s12185-020-03071-w] [PMID: 33389654]
[28]
Board, P.D.Q.P.T.E. Childhood acute lymphoblastic leukemia treatment (PDQ®): Patient version; PDQ Pediatric Treatment Editorial Board, 2002.
[29]
Vairy, S.; Garcia, J.L.; Teira, P.; Bittencourt, H. CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lym-phoblastic leukemia. Drug Des. Devel. Ther., 2018, 12, 3885-3898.
[http://dx.doi.org/10.2147/DDDT.S138765] [PMID: 30518999]
[30]
Schubert, M.L.; Schmitt, A.; Sellner, L.; Neuber, B.; Kunz, J.; Wuchter, P.; Kunz, A.; Gern, U.; Michels, B.; Hofmann, S.; Hückelhoven-Krauss, A.; Kulozik, A.; Ho, A.D.; Müller-Tidow, C.; Dreger, P.; Schmitt, M. Treatment of patients with relapsed or refractory CD19+ lymphoid disease with T lymphocytes transduced by RV-SFG.CD19.CD28.4-1BBzeta retroviral vector: A unicentre phase I/II clinical trial protocol. BMJ Open, 2019, 9(5), e026644.
[http://dx.doi.org/10.1136/bmjopen-2018-026644] [PMID: 31110096]
[31]
Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K.L.; Martin, P.L.; Nemecek, E.R.; Yanik, G.A.; Peters, C.; Baruchel, A.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C.H.; Levine, B.L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K.T.; Zhang, Y.; Sen, K.; Lebwohl, D.; Pulsipher, M.A.; Grupp, S.A. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 439-448.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[32]
Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer, 2018, 6(1), 56.
[http://dx.doi.org/10.1186/s40425-018-0343-9] [PMID: 29907163]
[33]
Enblad, G.; Karlsson, H.; Gammelgård, G.; Wenthe, J.; Lövgren, T.; Amini, R.M.; Wikstrom, K.I.; Essand, M.; Savoldo, B.; Hallböök, H.; Höglund, M.; Dotti, G.; Brenner, M.K.; Hagberg, H.; Loskog, A. A Phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin. Cancer Res., 2018, 24(24), 6185-6194.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0426] [PMID: 30097433]
[34]
Pan, J.; Tan, Y.; Wang, G.; Deng, B.; Ling, Z.; Song, W.; Seery, S.; Zhang, Y.; Peng, S.; Xu, J.; Duan, J.; Wang, Z.; Yu, X.; Zheng, Q.; Xu, X.; Yuan, Y.; Yan, F.; Tian, Z.; Tang, K.; Zhang, J.; Chang, A.H.; Feng, X. Donor-derived CD7 Chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: First-in-human, phase i trial. J. Clin. Oncol., 2021, 39(30), 3340-3351.
[http://dx.doi.org/10.1200/JCO.21.00389] [PMID: 34324392]
[35]
Tokarew, N.; Ogonek, J.; Endres, S.; von Bergwelt-Baildon, M.; Kobold, S. Teaching an old dog new tricks: Next-generation CAR T cells. Br. J. Cancer, 2019, 120(1), 26-37.
[http://dx.doi.org/10.1038/s41416-018-0325-1] [PMID: 30413825]
[36]
Khaddour, K.H.C.; Mewawalla, P. Hematopoietic stem cell transplantation (Bone Marrow Transplant); StatPearls: FL, 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536951/
[37]
Peters, C.; Schrauder, A.; Schrappe, M.; von Stackelberg, A.; Stary, J.; Yaniv, I.; Gadner, H.; Klingebiel, T. Allogeneic haematopoietic stem cell transplantation in children with acute lymphoblastic leukaemia: The BFM/IBFM/EBMT concepts. Bone Marrow Transplant., 2005, 35(1)(Suppl. 1), S9-S11.
[http://dx.doi.org/10.1038/sj.bmt.1704835] [PMID: 15812540]
[38]
Pulsipher, M.A.; Carlson, C.; Langholz, B.; Wall, D.A.; Schultz, K.R.; Bunin, N.; Kirsch, I.; Gastier-Foster, J.M.; Borowitz, M.; Desmarais, C.; Williamson, D.; Kalos, M.; Grupp, S.A. IgH-V(D)J NGS-MRD measurement pre- and early post-allotransplant defines very low- and very high-risk ALL patients. Blood, 2015, 125(22), 3501-3508.
[http://dx.doi.org/10.1182/blood-2014-12-615757] [PMID: 25862561]
[39]
Mateos, M.K.; O’Brien, T.A.; Oswald, C.; Gabriel, M.; Ziegler, D.S.; Cohn, R.J.; Russell, S.J.; Barbaric, D.; Marshall, G.M.; Trahair, T.N. Transplant-related mortality following allogeneic hematopoeitic stem cell transplantation for pediatric acute lymphoblastic leukemia: 25-year retrospective review. Pediatr. Blood Cancer, 2013, 60(9), 1520-1527.
[http://dx.doi.org/10.1002/pbc.24559] [PMID: 23733511]
[40]
Berry, DA; Zhou, S; Higley, H; Mukundan, L; Fu, S; Reaman, GH Association of minimal residual disease with clinical outcome in pediat-ric and adult acute lymphoblastic leukemia: A Meta-analysis. JAMA Oncol, 2017, 3(7), e170580-e.
[http://dx.doi.org/10.1001/jamaoncol.2017.0580]
[41]
van Dongen, J.J.; van der Velden, V.H.; Brüggemann, M.; Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood, 2015, 125(26), 3996-4009.
[http://dx.doi.org/10.1182/blood-2015-03-580027] [PMID: 25999452]
[42]
Gaipa, G.; Basso, G.; Biondi, A.; Campana, D. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry B Clin. Cytom., 2013, 84(6), 359-369.
[http://dx.doi.org/10.1002/cyto.b.21101] [PMID: 23757107]
[43]
Gaynon, P.S.; Qu, R.P.; Chappell, R.J.; Willoughby, M.L.; Tubergen, D.G.; Steinherz, P.G.; Trigg, M.E. Survival after relapse in childhood acute lymphoblastic leukemia: Impact of site and time to first relapse--the Children’s Cancer Group Experience. Cancer, 1998, 82(7), 1387-1395.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19980401)82:7<1387:AID-CNCR24>3.0.CO;2-1] [PMID: 9529033]
[44]
Grobbelaar, C.; Ford, A.M. The role of MicroRNA in paediatric acute lymphoblastic leukaemia: Challenges for diagnosis and therapy. J. Oncol., 2019, 2019, 8941471.
[http://dx.doi.org/10.1155/2019/8941471] [PMID: 31737072]
[45]
Hong, Y.; Zhang, J.; Guo, Q.; Zhu, M.; Chen, B.; Luo, W. Diacetyl hexamethylene diamine (CAHB) exerts pro-apoptotic and anti-proliferative function in leukemic T lymphocytes via downregulating PI3K/Akt signaling. Med. Sci. Monit., 2019, 25, 5211-5218.
[http://dx.doi.org/10.12659/MSM.915840] [PMID: 31301225]
[46]
Sanchez, V.E.; Nichols, C.; Kim, H.N.; Gang, E.J.; Kim, Y.M. Targeting PI3K signaling in acute lymphoblastic leukemia. Int. J. Mol. Sci., 2019, 20(2), E412.
[http://dx.doi.org/10.3390/ijms20020412] [PMID: 30669372]
[47]
Härzschel, A.; Zucchetto, A.; Gattei, V.; Hartmann, T.N. VLA-4 expression and activation in B cell malignancies: Functional and clinical aspects. Int. J. Mol. Sci., 2020, 21(6), E2206.
[http://dx.doi.org/10.3390/ijms21062206] [PMID: 32210016]
[48]
Nowak-Göttl, U.; Ahlke, E.; Fleischhack, G.; Schwabe, D.; Schobess, R.; Schumann, C.; Junker, R. Thromboembolic events in children with acute lymphoblastic leukemia (BFM protocols): Prednisone versus dexamethasone administration. Blood, 2003, 101(7), 2529-2533.
[http://dx.doi.org/10.1182/blood-2002-06-1901] [PMID: 12517808]
[49]
Hori, H.; Kudoh, T.; Nishimura, S.; Oda, M.; Yoshida, M.; Hara, J.; Tawa, A.; Usami, I.; Tanizawa, A.; Yumura-Yagi, K.; Kato, K.; Koba-yashi, R.; Komada, Y.; Matsuo, K.; Horibe, K. Japan Association of Childhood Leukemia Study. Acute and late toxicities of pirarubicin in the treatment of childhood acute lymphoblastic leukemia: Results from a clinical trial by the Japan Association of Childhood Leukemia Study. Int. J. Clin. Oncol., 2017, 22(2), 387-396.
[http://dx.doi.org/10.1007/s10147-016-1062-1] [PMID: 27858183]
[50]
Howard, S.C.; McCormick, J.; Pui, C.H.; Buddington, R.K.; Harvey, R.D. Preventing and managing toxicities of high-dose methotrexate. Oncologist, 2016, 21(12), 1471-1482.
[http://dx.doi.org/10.1634/theoncologist.2015-0164] [PMID: 27496039]
[51]
Morel, S.; Leahy, J.; Fournier, M.; Lamarche, B.; Garofalo, C.; Grimard, G.; Poulain, F.; Delvin, E.; Laverdière, C.; Krajinovic, M.; Drouin, S.; Sinnett, D.; Marcil, V.; Levy, E. Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors. J. Lipid Res., 2017, 58(5), 982-993.
[http://dx.doi.org/10.1194/jlr.M072207] [PMID: 28274961]
[52]
Basha, R.; Sabnis, N.; Heym, K.; Bowman, W.P.; Lacko, A.G. Targeted nanoparticles for pediatric leukemia therapy. Front. Oncol., 2014, 4, 101.
[http://dx.doi.org/10.3389/fonc.2014.00101] [PMID: 24860784]
[53]
Krishnan, V.; Xu, X.; Kelly, D.; Snook, A.; Waldman, S.A.; Mason, R.W.; Jia, X.; Rajasekaran, A.K. CD19-Targeted nanodelivery of dox-orubicin enhances therapeutic efficacy in B-cell acute lymphoblastic leukemia. Mol. Pharm., 2015, 12(6), 2101-2111.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00071] [PMID: 25898125]
[54]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[55]
Tatar, A-S.; Nagy-Simon, T.; Tomuleasa, C.; Boca, S.; Astilean, S. Nanomedicine approaches in acute lymphoblastic leukemia. J. Control. Release, 2016, 238, 123-138.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.035] [PMID: 27460684]
[56]
Szoka, F., Jr; Papahadjopoulos, D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng., 1980, 9(1), 467-508.
[http://dx.doi.org/10.1146/annurev.bb.09.060180.002343] [PMID: 6994593]
[57]
Krishnan, V.; Rajasekaran, A.K. Clinical nanomedicine: A solution to the chemotherapy conundrum in pediatric leukemia therapy. Clin. Pharmacol. Ther., 2014, 95(2), 168-178.
[http://dx.doi.org/10.1038/clpt.2013.174] [PMID: 24013811]
[58]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[59]
Dandamudi, S.; Patil, V.; Fowle, W.; Khaw, B.A.; Campbell, R.B. External magnet improves antitumor effect of vinblastine and the sup-pression of metastasis. Cancer Sci., 2009, 100(8), 1537-1543.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01201.x] [PMID: 19459849]
[60]
Tangutoori, S.; Ohta, A.; Gatley, S.J.; Campbell, R.B. Repurposing an erstwhile cancer drug: A quantitative and therapeutic evaluation of alter-native nanosystems for the delivery of colchicine to solid tumors. J. Cancer Sci. Ther., 2014, 6.
[http://dx.doi.org/10.4172/1948-5956.1000277]
[61]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[62]
Kuesters, G.M.; Campbell, R.B. Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond.), 2010, 5(2), 181-192.
[http://dx.doi.org/10.2217/nnm.09.105] [PMID: 20148631]
[63]
Silverman, J.A.; Deitcher, S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71(3), 555-564.
[http://dx.doi.org/10.1007/s00280-012-2042-4] [PMID: 23212117]
[64]
Webb, M.S.; Harasym, T.O.; Masin, D.; Bally, M.B.; Mayer, L.D. Sphingomyelin-cholesterol liposomes significantly enhance the pharma-cokinetic and therapeutic properties of vincristine in murine and human tumour models. Br. J. Cancer, 1995, 72(4), 896-904.
[http://dx.doi.org/10.1038/bjc.1995.430] [PMID: 7547237]
[65]
Shah, N.N.; Merchant, M.; Cole, D.; Richards, K.; Delbrook, C.; Widemann, B.C.; Wayne, A.S. Vincristine sulfate liposomes injection (VSLI, Marqibo): Interim results from a phase i study in children and adolescents with refractory cancer. Blood, 2012, 120(21), 1497.
[http://dx.doi.org/10.1182/blood.V120.21.1497.1497]
[66]
Shah, N.N.; Merchant, M.S.; Cole, D.E.; Jayaprakash, N.; Bernstein, D.; Delbrook, C.; Richards, K.; Widemann, B.C.; Wayne, A.S. Vin-cristine sulfate liposomes injection (VSLI, Marqibo®): Results from a phase i study in children, adolescents, and young adults with refrac-tory solid tumors or leukemias. Pediatr. Blood Cancer, 2016, 63(6), 997-1005.
[http://dx.doi.org/10.1002/pbc.25937] [PMID: 26891067]
[67]
Zhang, Y.; Wang, Y.; Wang, R.; Shen, Y.; Xu, J.; Webster, T.J.; Fang, Y. Personalized nanomedicine: A rapid, sensitive, and selective UV-vis spectrophotometry method for the quantification of nanostructured PEG-asparaginase activity in children’s plasma. Int. J. Nanomedicine, 2018, 13, 6337-6344.
[http://dx.doi.org/10.2147/IJN.S167380] [PMID: 30410325]
[68]
Thomas, X.; Le Jeune, C. Erythrocyte encapsulated l-asparaginase (GRASPA) in acute leukemia. Int. J. Hematol. Oncol., 2016, 5(1), 11-25.
[http://dx.doi.org/10.2217/ijh-2016-0002] [PMID: 30302200]
[69]
Kawedia, J.D.; Rytting, M.E. Asparaginase in acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk., 2014, 14(Suppl.), S14-S17.
[http://dx.doi.org/10.1016/j.clml.2014.06.017] [PMID: 25486949]
[70]
Domenech, C.; Thomas, X.; Chabaud, S.; Baruchel, A.; Gueyffier, F.; Mazingue, F.; Auvrignon, A.; Corm, S.; Dombret, H.; Chevallier, P.; Galambrun, C.; Huguet, F.; Legrand, F.; Mechinaud, F.; Vey, N.; Philip, I.; Liens, D.; Godfrin, Y.; Rigal, D.; Bertrand, Y. l-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: Results of the GRASPALL 2005-01 randomized trial. Br. J. Haematol., 2011, 153(1), 58-65.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08588.x] [PMID: 21332712]
[71]
Kwon, Y.M.; Chung, H.S.; Moon, C.; Yockman, J.; Park, Y.J. Gitlin, SD L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control. Release, 2009, 139(3), 182-189.
[72]
Kravtzoff, R.; Colombat, P.H.; Desbois, I.; Linassier, C.; Muh, J.P.; Philip, T.; Blay, J.Y.; Gardenbas, M.; Poumier-Gaschard, P.; Lamagnere, J.P.; Chassaigne, M.; Ropars, C. Tolerance evaluation of L-asparaginase loaded in red blood cells. Eur. J. Clin. Pharmacol., 1996, 51(3-4), 221-225.
[http://dx.doi.org/10.1007/s002280050187] [PMID: 9010688]
[73]
Carol, H.; Fan, M.M.; Harasym, T.O.; Boehm, I.; Mayer, L.D.; Houghton, P.; Smith, M.A.; Lock, R.B. Efficacy of CPX-351, (cytara-bine:daunorubicin) liposome injection, against acute lymphoblastic leukemia (ALL) xenograft models of the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer, 2015, 62(1), 65-71.
[http://dx.doi.org/10.1002/pbc.25133] [PMID: 25203866]
[74]
Mayer, L.D.; Tardi, P.; Louie, A.C. CPX-351: A nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodis-tribution and tumor cell uptake properties. Int. J. Nanomedicine, 2019, 14, 3819-3830.
[http://dx.doi.org/10.2147/IJN.S139450] [PMID: 31213803]
[75]
Danesh, N.M.; Lavaee, P.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Targeted and controlled release delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer-modified gold nanoparticles. Int. J. Pharm., 2015, 489(1-2), 311-317.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.072] [PMID: 25936625]
[76]
Carroll, R.T.; Bhatia, D.; Geldenhuys, W.; Bhatia, R.; Miladore, N.; Bishayee, A.; Sutariya, V. Brain-targeted delivery of Tempol-loaded nanoparticles for neurological disorders. J. Drug Target., 2010, 18(9), 665-674.
[http://dx.doi.org/10.3109/10611861003639796] [PMID: 20158436]
[77]
Nair, R.R.; Piktel, D.; Geldenhuys, W.J.; Gibson, L.F. Combination of cabazitaxel and plicamycin induces cell death in drug resistant B-cell acute lymphoblastic leukemia. Leuk. Res., 2018, 72, 59-66.
[http://dx.doi.org/10.1016/j.leukres.2018.08.002] [PMID: 30103201]
[78]
Taghdisi, S.M.; Danesh, N.M.; Lavaee, P.; Emrani, A.S.; Hassanabad, K.Y.; Ramezani, M.; Abnous, K. Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater. Sci. Eng. C, 2016, 61, 753-761.
[http://dx.doi.org/10.1016/j.msec.2016.01.009] [PMID: 26838906]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy