Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antitumor Effects of Turmeric on OVCAR-3 Ovarian Cancer Cell Lines

Author(s): Hulusi Goktug Gurer*, Ozlem Ozgur Gursoy, Ceren Yildiz Eren and Canan Vejselova Sezer

Volume 22, Issue 16, 2022

Published on: 08 June, 2022

Page: [2896 - 2901] Pages: 6

DOI: 10.2174/1871520622666220426103332

open access plus

Abstract

Introduction: Ovarian cancer is the deadliest gynecological malignancy, usually not detected until the late stages. In vitro cell culture is a method used to study the behavior of cells in a controlled environment. Turmeric has attracted the attention of scientists due to its anticancer potential.

Methods: OVCAR-3 cells were cultured in RPMI medium with 100 units/mL-100 μg/mL of penicillin-streptomycin and 10% foetal bovine serum in a CO2 incubator. Turmeric extract was diluted in DMSO. Different concentrations of turmeric extract were prepared. Annexin-V staining was performed to test the translocation of phosphatidylserine to the outer side of the cell membrane as a clear indicator of apoptosis.

Results: Turmeric extract significantly reduced the viability of OVCAR-3 cells both within 24 and 48 hours of exposure. OVCAR-3 cells were treated with IC50 concentration of turmeric extract for 24 hours. 82.60% of cells were viable. The percentages of the dead, early apoptotic, and late apoptotic cells were detected to be 0.80%, 9.70%, and 6.90%, respectively. Untreated OVCAR-3 cells had migration ability. OVCAR-3 cells exposed to an IC50 concentration of turmeric extract for 24 hours did not close the scratch area.

Conclusion: In this research, anticancer effects of turmeric have been demonstrated by different analysis methods.

Keywords: Turmeric, OVCAR-3, anti-cancer effects, MTT, Annexin-V, migration assay.

Graphical Abstract

[1]
The American Cancer Society. Key statistics for ovarian cancer., 2021. Available from: https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html
[2]
Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers (Basel), 2019, 11(8), 1-18.
[http://dx.doi.org/10.3390/cancers11081098] [PMID: 31374935]
[3]
Hynds, R.E.; Vladimirou, E.; Janes, S.M. The secret lives of cancer cell lines. Dis. Model. Mech., 2018, 11(11), 1-5.
[http://dx.doi.org/10.1242/dmm.037366] [PMID: 30459183]
[4]
Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods, 1989, 119(2), 203-210.
[http://dx.doi.org/10.1016/0022-1759(89)90397-9] [PMID: 2470825]
[5]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[6]
Philippeos, C.; Hughes, R.D.; Dhawan, A.; Mitry, R.R. Introduction to cell culture. Methods Mol. Biol., 2012, 806, 1-13.
[http://dx.doi.org/10.1007/978-1-61779-367-7_1] [PMID: 22057441]
[7]
Ahmadi, A.; Shadboorestan, A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr. Cancer, 2016, 68(1), 29-39.
[http://dx.doi.org/10.1080/01635581.2015.1078822] [PMID: 26381129]
[8]
Manzan, A.C.C.M.; Toniolo, F.S.; Bredow, E.; Povh, N.P. Extraction of essential oil and pigments from Curcuma longa [L] by steam distillation and extraction with volatile solvents. J. Agric. Food Chem., 2003, 51(23), 6802-6807.
[http://dx.doi.org/10.1021/jf030161x] [PMID: 14582978]
[9]
Sylvester, P.W. Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol. Biol., 2011, 716, 157-168.
[http://dx.doi.org/10.1007/978-1-61779-012-6_9] [PMID: 21318905]
[10]
Rieger, A.M.; Nelson, K.L.; Konowalchuk, J.D.; Barreda, D.R. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J. Vis. Exp., 2011, 50, 2597.
[http://dx.doi.org/10.3791/2597] [PMID: 21540825]
[11]
Justus, C.R.; Leffler, N.; Ruiz-Echevarria, M.; Yang, L.V. In vitro cell migration and invasion assays. J. Vis. Exp., 2014, 88, 51046.
[http://dx.doi.org/10.3791/51046] [PMID: 24962652]
[12]
Tada, H.; Shiho, O.; Kuroshima, K.; Koyama, M.; Tsukamoto, K. An improved colorimetric assay for interleukin 2. J. Immunol. Methods, 1986, 93(2), 157-165.
[http://dx.doi.org/10.1016/0022-1759(86)90183-3] [PMID: 3490518]
[13]
Pijuan, J.; Barceló, C.; Moreno, D.F.; Maiques, O.; Sisó, P.; Marti, R.M.; Macià, A.; Panosa, A. In vitro Cell Migration, Invasion, and Adhesion Assays: From Cell Imaging to Data Analysis. Front. Cell Dev. Biol., 2019, 7(170), 107.
[http://dx.doi.org/10.3389/fcell.2019.00107] [PMID: 31259172]
[14]
Crowley, L.C.; Marfell, B.J.; Scott, A.P.; Waterhouse, N.J. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb. Protoc., 2016, 2016(11), , pdb.prot087288..
[http://dx.doi.org/10.1101/pdb.prot087288] [PMID: 27803250]
[15]
Asiimwe, J.B.; Nagendrappa, P.B.; Atukunda, E.C.; Kamatenesi, M.M.; Nambozi, G.; Tolo, C.U.; Ogwang, P.E.; Sarki, A.M. Prevalence of the use of herbal medicines among patients with cancer: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2021, 2021, 9963038.
[http://dx.doi.org/10.1155/2021/9963038] [PMID: 34055029]
[16]
Nagahama, K.; Utsumi, T.; Kumano, T.; Maekawa, S.; Oyama, N.; Kawakami, J. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency. Sci. Rep., 2016, 6(1), 30962.
[http://dx.doi.org/10.1038/srep30962] [PMID: 27476814]
[17]
Sen, R.; Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46(5), 705-716.
[http://dx.doi.org/10.1016/0092-8674(86)90346-6] [PMID: 3091258]
[18]
Anthwal, A.; Thakur, B.K.; Rawat, M.S.M.; Rawat, D.S.; Tyagi, A.K.; Aggarwal, B.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. BioMed Res. Int., 2014, 2014, 524161.
[http://dx.doi.org/10.1155/2014/524161] [PMID: 25157362]
[19]
To, K.F.; Chan, M.W.Y.; Leung, W.K.; Ng, E.K.W.; Yu, J.; Bai, A.H.C.; Lo, A.W.; Chu, S.H.; Tong, J.H.; Lo, K.W.; Sung, J.J.; Chan, F.K. Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. Br. J. Cancer, 2004, 91(7), 1335-1341.
[http://dx.doi.org/10.1038/sj.bjc.6602133] [PMID: 15354212]
[20]
Leupold, J.H.; Yang, H-S.; Colburn, N.H.; Asangani, I.; Post, S.; Allgayer, H. Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene, 2007, 26(31), 4550-4562.
[http://dx.doi.org/10.1038/sj.onc.1210234] [PMID: 17297470]
[21]
Cho, S-G; Yi, Z; Pang, X; Yi, T; Wang, Y; Luo, J Kisspeptin-10, a KISS1-derived decapeptide, inhibits tumor angiogenesis by suppressing Sp1-mediated vegf expression and FAK/Rho GTPase activation. Cancer Res, 2009, 69(17), , 7062 LP-7070..
[22]
Lou, Zhenjun Down-regulation of overexpressed SP1 protein in human fibrosarcoma cell lines inhibits tumor formation. Cancer Res, 2005, 65(3), , 1007 LP-1017..
[23]
Shi, Q; Le, X; Abbruzzese, JL; Peng, Z; Qian, C-N Tang, H Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res, 2001, 61(10), , 4143 LP-4154..
[24]
Zhou, D-Y.; Zhang, K.; Conney, A.H.; Ding, N.; Cui, X-X.; Wang, H.; Verano, M.; Zhao, S.Q.; Fan, Y.X.; Zheng, X.; Du, Z.Y. Synthesis and evaluation of curcumin-related compounds containing benzyl piperidone for their effects on human cancer cells. Chem. Pharm. Bull. (Tokyo), 2013, 61(11), 1149-1155.
[http://dx.doi.org/10.1248/cpb.c13-00507] [PMID: 23985704]
[25]
Liu, H-T.; Ho, Y-S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness, 2018, 7(2), 134-137.
[http://dx.doi.org/10.1016/j.fshw.2018.06.001]
[26]
Pourhanifeh, M.H.; Darvish, M.; Tabatabaeian, J.; Fard, M.R.; Mottaghi, R.; Azadchehr, M.J.; Jahanshahi, M.; Sahebkar, A.; Mirzaei, H. Therapeutic role of curcumin and its novel formulations in gynecological cancers. J. Ovarian Res., 2020, 13(1), 130.
[http://dx.doi.org/10.1186/s13048-020-00731-7] [PMID: 33148295]
[27]
Jahanbakhshi, F.; Maleki Dana, P.; Badehnoosh, B.; Yousefi, B.; Mansournia, M.A.; Jahanshahi, M.; Asemi, Z.; Halajzadeh, J. Curcumin anti-tumor effects on endometrial cancer with focus on its molecular targets. Cancer Cell Int., 2021, 21(1), 120.
[http://dx.doi.org/10.1186/s12935-021-01832-z] [PMID: 33602218]
[28]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[29]
Nozhat, Z.; Heydarzadeh, S.; Memariani, Z.; Ahmadi, A. Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int., 2021, 21(1), 574.
[http://dx.doi.org/10.1186/s12935-021-02282-3] [PMID: 34715860]
[30]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]

© 2025 Bentham Science Publishers | Privacy Policy