Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Drug Targeting and Conventional Treatment of Multiple Myeloma: Analysis of Target-specific Nanotherapies in Disease Models

Author(s): Christina Tran, Eden Park, Pedro L. Rodriguez Flores and Robert B. Campbell*

Volume 17, Issue 5, 2022

Published on: 22 July, 2022

Page: [306 - 317] Pages: 12

DOI: 10.2174/1574885517666220426092902

Price: $65

Abstract

Extensive studies have explored potential therapies against multiple myeloma (MM), whether in hospitals, universities, or in private institutional settings. Scientists continue to study the mechanism(s) underlying the disease as a basis for the development of more effective treatment options. There are many therapeutic agents and treatment regimens used for multiple myeloma. Unfortunately, no cure or definitive treatment options exist. The goal of treatment is to maintain the patient in remission for as long as possible. Therapeutic agents used in combination can effectively maintain patients in remission. While these therapies have increased patient survival, a significant number of patients relapse. The off-target toxicity and resistance exhibited by target cells remain a challenge for existing approaches. Ongoing efforts to understand the biology of the disease offer the greatest chance to improve therapeutic options. Nanoparticles (targeted drug delivery systems) offer new hope and directions for therapy. This review summarizes FDA-approved agents for the treatment of MM, highlights the clinical barriers to treatment, including adverse side effects normally associated with the use of conventional agents, and describes how nanotherapeutics have overcome barriers to impede conventional treatments.

Keywords: Cancer therapy, drug resistance, nanotechnology, multiple myeloma, nanomedicine, liposomes.

Graphical Abstract

[1]
Kyle RA, Rajkumar SV. Multiple myeloma. N Engl J Med 2004; 351(18): 1860-73.
[http://dx.doi.org/10.1056/NEJMra041875] [PMID: 15509819]
[2]
Bianchi G, Anderson KC. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J Clin 2014; 64(6): 422-44.
[http://dx.doi.org/10.3322/caac.21252] [PMID: 25266555]
[3]
Zaidi AA, Vesole DH. Multiple myeloma: An old disease with new hope for the future. CA Cancer J Clin 2001; 51(5): 273-85.
[http://dx.doi.org/10.3322/canjclin.51.5.273] [PMID: 11577492]
[4]
Barlogie B, Epstein J, Selvanayagam P, Alexanian R. Plasma cell myeloma--new biological insights and advances in therapy. Blood 1989; 73(4): 865-79.
[http://dx.doi.org/10.1182/blood.V73.4.865.865] [PMID: 2465790]
[5]
Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol 2005; 23(15): 3412-20.
[http://dx.doi.org/10.1200/JCO.2005.04.242] [PMID: 15809451]
[6]
Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011; 364(11): 1046-60.
[http://dx.doi.org/10.1056/NEJMra1011442] [PMID: 21410373]
[7]
Altekruse SFKC, Krapcho M, Neyman N, et al. SEER cancer statistics review, 1975-2007. National Cancer Institute. Bethesda, MD. Available from: https://seer.cancer.gov/csr/1975_2007/
[8]
Howlader NNA, Krapcho M, Miller D, et al. SEER cancer statistics review, 1975-2017. National Cancer Institute. Bethesda, MD. Available from https://seer.cancer.gov/csr/1975_2017/
[9]
Zhan F, Tian E, Bumm K, Smith R, Barlogie B, Shaughnessy J Jr. Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 2003; 101(3): 1128-40.
[http://dx.doi.org/10.1182/blood-2002-06-1737] [PMID: 12393520]
[10]
Mahindra A, Laubach J, Raje N, Munshi N, Richardson PG, Anderson K. Latest advances and current challenges in the treatment of multiple myeloma. Nat Rev Clin Oncol 2012; 9(3): 135-43.
[http://dx.doi.org/10.1038/nrclinonc.2012.15] [PMID: 22349016]
[11]
Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: A Report From International Myeloma Working Group. J Clin Oncol 2015; 33(26): 2863-9.
[http://dx.doi.org/10.1200/JCO.2015.61.2267] [PMID: 26240224]
[12]
de la Puente P, Azab AK. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur J Haematol 2017; 98(6): 529-41.
[http://dx.doi.org/10.1111/ejh.12870] [PMID: 28208215]
[13]
Zheleznyak A, Shokeen M, Achilefu S. Nanotherapeutics for multiple myeloma. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(6): e1526.
[http://dx.doi.org/10.1002/wnan.1526] [PMID: 29701006]
[14]
Campbell RB. Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med Chem 2006; 6(6): 503-12.
[http://dx.doi.org/10.2174/187152006778699077] [PMID: 17100555]
[15]
Campbell RB, Ying B, Kuesters GM, Hemphill R. Fighting cancer: From the bench to bedside using second generation cationic liposomal therapeutics. J Pharm Sci 2009; 98(2): 411-29.
[http://dx.doi.org/10.1002/jps.21458] [PMID: 18563780]
[16]
Gultepe E, Reynoso FJ, Jhaveri A, et al. Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution. Nanomedicine (Lond) 2010; 5(8): 1173-82.
[http://dx.doi.org/10.2217/nnm.10.84]
[17]
Li Z, Li X, Cao Z, et al. Camptothecin nanocolloids based on N,N,N-trimethyl chitosan: Efficient suppression of growth of multiple myeloma in a murine model. Oncol Rep 2012; 27(4): 1035-40.
[http://dx.doi.org/10.3892/or.2012.1635] [PMID: 22245938]
[18]
Kuesters GM, Campbell RB. Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine (Lond) 2010; 5(2): 181-92.
[http://dx.doi.org/10.2217/nnm.09.105] [PMID: 20148631]
[19]
Swami A, Reagan MR, Basto P, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci USA 2014; 111(28): 10287-92.
[http://dx.doi.org/10.1073/pnas.1401337111] [PMID: 24982170]
[20]
Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327(5971): 1345-50.
[http://dx.doi.org/10.1126/science.1177319] [PMID: 20223979]
[21]
Davies F, Baz R. Lenalidomide mode of action: Linking bench and clinical findings. Blood Rev 2010; 24 (Suppl. 1): S13-9.
[http://dx.doi.org/10.1016/S0268-960X(10)70004-7] [PMID: 21126632]
[22]
Hideshima T, Chauhan D, Shima Y, et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96(9): 2943-50.
[http://dx.doi.org/10.1182/blood.V96.9.2943] [PMID: 11049970]
[23]
Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101(4): 1530-4.
[http://dx.doi.org/10.1182/blood-2002-08-2543] [PMID: 12393500]
[24]
Siegel DS, Martin T, Wang M, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 2012; 120(14): 2817-25.
[http://dx.doi.org/10.1182/blood-2012-05-425934] [PMID: 22833546]
[25]
Deckert J, Wetzel M-C, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res 2014; 20(17): 4574-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0695] [PMID: 24987056]
[26]
de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 2011; 186(3): 1840-8.
[http://dx.doi.org/10.4049/jimmunol.1003032] [PMID: 21187443]
[27]
Fancher KM, Bunk EJ. Elotuzumab: The first monoclonal antibody for the treatment of multiple myeloma. J Adv Pract Oncol 2016; 7(5): 542-7.
[PMID: 29282429]
[28]
Lonial S, Vij R, Harousseau JL, et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol 2012; 30(16): 1953-9.
[http://dx.doi.org/10.1200/JCO.2011.37.2649] [PMID: 22547589]
[29]
Richardson PG, Lee HC, Abdallah AO, et al. Single-agent belantamab mafodotin for relapsed/refractory multiple myeloma: Analysis of the lyophilised presentation cohort from the pivotal DREAMM-2 study. Blood Cancer J 2020; 10(10): 106.
[http://dx.doi.org/10.1038/s41408-020-00369-0] [PMID: 33097687]
[30]
Lonial S, Lee HC, Badros A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol 2020; 21(2): 207-21.
[http://dx.doi.org/10.1016/S1470-2045(19)30788-0] [PMID: 31859245]
[31]
Rajkumar SV, Kumar S. Multiple myeloma: Diagnosis and treatment. Mayo Clin Proc 2016; 91(1): 101-19.
[http://dx.doi.org/10.1016/j.mayocp.2015.11.007] [PMID: 26763514]
[32]
Rosiñol L, Oriol A, Rios R, et al. Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma. Blood 2019; 134(16): 1337-45.
[http://dx.doi.org/10.1182/blood.2019000241] [PMID: 31484647]
[33]
Durie BGM, Hoering A, Abidi MH, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): A randomised, open-label, phase 3 trial. Lancet 2017; 389(10068): 519-27.
[http://dx.doi.org/10.1016/S0140-6736(16)31594-X] [PMID: 28017406]
[34]
Benboubker L, Dimopoulos MA, Dispenzieri A, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med 2014; 371(10): 906-17.
[http://dx.doi.org/10.1056/NEJMoa1402551] [PMID: 25184863]
[35]
Fermand JP, Ravaud P, Chevret S, et al. High-dose therapy and autologous peripheral blood stem cell transplantation in multiple myeloma: Up-front or rescue treatment? Results of a multicenter sequential randomized clinical trial. Blood 1998; 92(9): 3131-6.
[http://dx.doi.org/10.1182/blood.V92.9.3131] [PMID: 9787148]
[36]
Eom KS, Min CK, Lee S, et al. Efficacy of up-front treatment with a double stem cell transplantation in multiple myeloma. Jpn J Clin Oncol 2006; 36(7): 432-8.
[http://dx.doi.org/10.1093/jjco/hyl041] [PMID: 16782727]
[37]
Barlogie B, Jagannath S, Vesole DH, et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood 1997; 89(3): 789-93.
[http://dx.doi.org/10.1182/blood.V89.3.789] [PMID: 9028309]
[38]
Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 2012; 366(19): 1782-91.
[http://dx.doi.org/10.1056/NEJMoa1114138] [PMID: 22571202]
[39]
Cavo M, Gay F, Beksac M, et al. Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): A multicentre, randomised, open-label, phase 3 study. Lancet Haematol 2020; 7(6): e456-68.
[http://dx.doi.org/10.1016/S2352-3026(20)30099-5] [PMID: 32359506]
[40]
Sonneveld P, Schmidt-Wolf IG, van der Holt B, et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: Results of the randomized phase III HOVON-65/GMMG-HD4 trial. J Clin Oncol 2012; 30(24): 2946-55.
[http://dx.doi.org/10.1200/JCO.2011.39.6820] [PMID: 22802322]
[41]
Palumbo A, Hajek R, Delforge M, et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med 2012; 366(19): 1759-69.
[http://dx.doi.org/10.1056/NEJMoa1112704] [PMID: 22571200]
[42]
Rajkumar SV, Jacobus S, Callander NS, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: An open-label randomised controlled trial. Lancet Oncol 2010; 11(1): 29-37.
[http://dx.doi.org/10.1016/S1470-2045(09)70284-0] [PMID: 19853510]
[43]
Gertz MA, Lacy MQ, Inwards DJ, et al. Early harvest and late transplantation as an effective therapeutic strategy in multiple myeloma. Bone Marrow Transplant 1999; 23(3): 221-6.
[http://dx.doi.org/10.1038/sj.bmt.1701559] [PMID: 10084252]
[44]
Pineda-Roman M, Zangari M, van Rhee F, et al. VTD combination therapy with bortezomib-thalidomide-dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia 2008; 22(7): 1419-27.
[http://dx.doi.org/10.1038/leu.2008.99] [PMID: 18432260]
[45]
Ferlay J. Cancer incidence, mortality and prevalence worldwide GLOBOCAN2002 2004.
[46]
Girnius S, Munshi NC. Challenges in multiple myeloma diagnosis and treatment. Leuk Suppl 2013; 2(S1) (Suppl. 1): S3-9.
[http://dx.doi.org/10.1038/leusup.2013.2] [PMID: 27175259]
[47]
Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003; 78(1): 21-33.
[http://dx.doi.org/10.4065/78.1.21] [PMID: 12528874]
[48]
Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: A multicenter international myeloma working group study. Leukemia 2012; 26(1): 149-57.
[http://dx.doi.org/10.1038/leu.2011.196] [PMID: 21799510]
[49]
Shaughnessy JD Jr, Qu P, Usmani S, et al. Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with total therapy 3. Blood 2011; 118(13): 3512-24.
[http://dx.doi.org/10.1182/blood-2010-12-328252] [PMID: 21628408]
[50]
Buda G, Ricci D, Huang CC, et al. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 2010; 89(11): 1133-40.
[http://dx.doi.org/10.1007/s00277-010-0992-3] [PMID: 20532504]
[51]
Nojima M, Maruyama R, Yasui H, et al. Genomic screening for genes silenced by DNA methylation revealed an association between RASD1 inactivation and dexamethasone resistance in multiple myeloma. Clin Cancer Res 2009; 15(13): 4356-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-3336] [PMID: 19549772]
[52]
Ciechanover A. Intracellular protein degradation: From a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew Chem Int Ed 2005; 44(37): 5944-67.
[http://dx.doi.org/10.1002/anie.200501428] [PMID: 16142822]
[53]
Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genomics 2015; 8(1): 37.
[http://dx.doi.org/10.1186/s12920-015-0115-z] [PMID: 26173390]
[54]
Türk D, Szakács G. Relevance of multidrug resistance in the age of targeted therapy. Curr Opin Drug Discov Devel 2009; 12(2): 246-52.
[PMID: 19333870]
[55]
Sonneveld P, Broijl A. Treatment of relapsed and refractory multiple myeloma. Haematologica 2016; 101(4): 396-406.
[http://dx.doi.org/10.3324/haematol.2015.129189] [PMID: 27033237]
[56]
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[57]
Llinàs-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: An update. Open Biol 2017; 7(9): 170152.
[http://dx.doi.org/10.1098/rsob.170152] [PMID: 28931650]
[58]
Hanje AJ, Shamp JL, Thomas FB, Meis GM. Thalidomide-induced severe hepatotoxicity. Pharmacotherapy 2006; 26(7): 1018-22.
[http://dx.doi.org/10.1592/phco.26.7.1018] [PMID: 16803426]
[59]
Bringhen S, Larocca A, Rossi D, et al. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood 2010; 116(23): 4745-53.
[http://dx.doi.org/10.1182/blood-2010-07-294983] [PMID: 20807892]
[60]
Zangari M, Barlogie B, Anaissie E, et al. Deep vein thrombosis in patients with multiple myeloma treated with thalidomide and chemotherapy: Effects of prophylactic and therapeutic anticoagulation. Br J Haematol 2004; 126(5): 715-21.
[http://dx.doi.org/10.1111/j.1365-2141.2004.05078.x] [PMID: 15327525]
[61]
Palumbo A, Rajkumar SV, Dimopoulos MA, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 2008; 22(2): 414-23.
[http://dx.doi.org/10.1038/sj.leu.2405062] [PMID: 18094721]
[62]
Chen C, Reece DE, Siegel D, et al. Expanded safety experience with lenalidomide plus dexamethasone in relapsed or refractory multiple myeloma. Br J Haematol 2009; 146(2): 164-70.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07728.x] [PMID: 19545290]
[63]
Ashley JD, Quinlan CJ, Schroeder VA, et al. Dual carfilzomib and doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther 2016; 15(7): 1452-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0867] [PMID: 27196779]
[64]
Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65(1): 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[65]
Duggan ST, Keating GM. Pegylated liposomal doxorubicin: A review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi’s sarcoma. Drugs 2011; 71(18): 2531-58.
[http://dx.doi.org/10.2165/11207510-000000000-00000] [PMID: 22141391]
[66]
Wu D, Zhu L, Li Y, et al. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: A review. Carbohydr Polym 2020; 238: 116126.
[http://dx.doi.org/10.1016/j.carbpol.2020.116126] [PMID: 32299572]
[67]
Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomater Artif Cells Artif Organs 1990; 18(1): 1-24.
[http://dx.doi.org/10.3109/10731199009117286] [PMID: 2185854]
[68]
Lall A, Kamdem Tamo A, Doench I, et al. Nanoparticles and colloidal hydrogels of chitosan–caseinate polyelectrolyte complexes for drug-controlled release applications. Int J Mol Sci 2020; 21(16): 5602.
[http://dx.doi.org/10.3390/ijms21165602] [PMID: 32764340]
[69]
Hatefi A, Amsden B. Camptothecin delivery methods. Pharm Res 2002; 19(10): 1389-99.
[http://dx.doi.org/10.1023/A:1020427227285] [PMID: 12425455]
[70]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[71]
Tsukioka Y, Matsumura Y, Hamaguchi T, Koike H, Moriyasu F, Kakizoe T. Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res 2002; 93(10): 1145-53.
[http://dx.doi.org/10.1111/j.1349-7006.2002.tb01217.x] [PMID: 12417045]
[72]
Wang Z, Yang J, Kirk C, et al. Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab Dispos 2013; 41(1): 230-7.
[http://dx.doi.org/10.1124/dmd.112.047662] [PMID: 23118326]
[73]
Ao L, Reichel D, Hu D, et al. Polymer micelle formulations of proteasome inhibitor carfilzomib for improved metabolic stability and anticancer efficacy in human multiple myeloma and lung cancer cell lines. J Pharmacol Exp Ther 2015; 355(2): 168-73.
[http://dx.doi.org/10.1124/jpet.115.226993] [PMID: 26311812]
[74]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[75]
Sofias AM, Dunne M, Storm G, Allen C. The battle of “nano” paclitaxel. Adv Drug Deliv Rev 2017; 122: 20-30.
[http://dx.doi.org/10.1016/j.addr.2017.02.003] [PMID: 28257998]
[76]
Yang C, Wang J, Chen D, et al. Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138(-) CD34(-) tumor stem-like cells in multiple myeloma-bearing mice. Int J Nanomedicine 2013; 8: 1439-49.
[PMID: 23610522]
[77]
Sahakyan N, Haddad A, Richardson S, et al. Personalized nanoparticles for cancer therapy: A call for greater precision. Anticancer Agents Med Chem 2017; 17(8): 1033-9.
[http://dx.doi.org/10.2174/1871520617666170102150730]
[78]
Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93(5): 1658-67.
[http://dx.doi.org/10.1182/blood.V93.5.1658] [PMID: 10029595]
[79]
Ashley JD, Stefanick JF, Schroeder VA, et al. Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. J Control Release 2014; 196: 113-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.005] [PMID: 25312543]
[80]
Reagan MR, Ghobrial IM. Multiple myeloma mesenchymal stem cells: Characterization, origin, and tumor-promoting effects. Clin Cancer Res 2012; 18(2): 342-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2212] [PMID: 22065077]
[81]
Ozaki S, Tanaka O, Fujii S, et al. Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma. Int J Hematol 2007; 86(2): 180-5.
[http://dx.doi.org/10.1532/IJH97.07030] [PMID: 17875535]
[82]
Sun CY, Li JY, Chu ZB, Zhang L, Chen L, Hu Y. Efficacy and safety of bortezomib maintenance in patients with newly diagnosed multiple myeloma: A meta-analysis. Biosci Rep 2017; 37(4): BSR20170304.
[http://dx.doi.org/10.1042/BSR20170304] [PMID: 28706008]
[83]
Zhang S, Gangal G. Uludağ H. ‘Magic bullets’ for bone diseases: Progress in rational design of bone-seeking medicinal agents. Chem Soc Rev 2007; 36(3): 507-31.
[http://dx.doi.org/10.1039/B512310K] [PMID: 17325789]
[84]
Azab AK, Quang P, Azab F, et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 2012; 119(6): 1468-78.
[http://dx.doi.org/10.1182/blood-2011-07-368050] [PMID: 22096244]
[85]
Azab AK, Runnels JM, Pitsillides C, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113(18): 4341-51.
[http://dx.doi.org/10.1182/blood-2008-10-186668] [PMID: 19139079]
[86]
Azab AK, Azab F, Blotta S, et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 2009; 114(3): 619-29.
[http://dx.doi.org/10.1182/blood-2009-01-199281] [PMID: 19443661]
[87]
Federico C, Alhallak K, Sun J, et al. Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nat Commun 2020; 11(1): 6037.
[http://dx.doi.org/10.1038/s41467-020-19932-1] [PMID: 33247158]
[88]
Yadav A, Murthy M, Shete A, Sakhare S. Stability aspects of liposomes. Indian J Pharm Educ Res 2011; 45(4): 402-13.
[89]
Briuglia ML, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 2015; 5(3): 231-42.
[http://dx.doi.org/10.1007/s13346-015-0220-8] [PMID: 25787731]
[90]
Demel RA, De Kruyff B. The function of sterols in membranes. Biochimica et Biophysica Acta (BBA)-. Reviews on Biomembranes 1976; 457(2): 109-32.
[91]
Papahadjopoulos D, Jacobson K, Nir S, Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta 1973; 311(3): 330-48.
[http://dx.doi.org/10.1016/0005-2736(73)90314-3] [PMID: 4729825]
[92]
Mohammed AR, Weston N, Coombes AGA, Fitzgerald M, Perrie Y. Liposome formulation of poorly water soluble drugs: Optimisation of drug loading and ESEM analysis of stability. Int J Pharm 2004; 285(1-2): 23-34.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.010] [PMID: 15488676]
[93]
Yavasoglu I, Tombuloglu M, Kadikoylu G, Donmez A, Cagirgan S, Bolaman Z. Cholesterol levels in patients with multiple myeloma. Ann Hematol 2008; 87(3): 223-8.
[http://dx.doi.org/10.1007/s00277-007-0375-6] [PMID: 17874102]
[94]
Fra AM, Williamson E, Simons K, Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc Natl Acad Sci USA 1995; 92(19): 8655-9.
[http://dx.doi.org/10.1073/pnas.92.19.8655] [PMID: 7567992]
[95]
Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev 2004; 84(4): 1341-79.
[http://dx.doi.org/10.1152/physrev.00046.2003] [PMID: 15383654]
[96]
Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 2005; 288(3): C494-506.
[http://dx.doi.org/10.1152/ajpcell.00458.2004] [PMID: 15692148]
[97]
Chatterjee M, Hönemann D, Lentzsch S, et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 2002; 100(9): 3311-8.
[http://dx.doi.org/10.1182/blood-2002-01-0102] [PMID: 12384432]
[98]
Podar K, Tai Y-T, Cole CE, et al. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem 2003; 278(8): 5794-801.
[http://dx.doi.org/10.1074/jbc.M208636200] [PMID: 12482878]
[99]
Yin W, Li Z, Zhang W. Modulation of bone and marrow niche by cholesterol. Nutrients 2019; 11(6): 1394.
[http://dx.doi.org/10.3390/nu11061394] [PMID: 31234305]
[100]
Vladimirova SG, Tarasova LN. Lipid metabolism in patients with hematologic cancers. Ter Arkh 2016; 88(3): 116-20.
[http://dx.doi.org/10.17116/terarkh2015883116-120] [PMID: 28635913]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy