Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Inhaled Atorvastatin Nanoparticles for Lung Cancer

Author(s): Alaa S. Tulbah*

Volume 19, Issue 10, 2022

Published on: 02 June, 2022

Page: [1073 - 1082] Pages: 10

DOI: 10.2174/1567201819666220426091500

Price: $65

Abstract

Objective: Lung cancer is one of the main causes of mortality globally. This research paper aims a the development of inhaled nanotechnology for lung cancer to deliver an atorvastatin calcium compound, for lung cancer, capable of reaching the tumor site directly via inhalation.

Methods: Atorvastatin calcium micellar nanoparticles (ATO-NPs) encapsulated with Pluronic F-127 and polyvinyl alcohol (PVA) were manufactured utilizing the solvent and anti-solvent precipitation technique. The physicochemical features of the formulation were evaluated in terms of their physicochemical characteristics using Fourier transform infrared spectroscopy, differential scanning calorimetry, and dynamic light scattering. Additionally, the Andersen Cascade impactor was used at 15 L/minutes to assist in the aerosols performances of the formulation. The ATO-NPs formula's cell viability was tested in vitro using the A549 non-small cell lung cancer cell type.

Results: Transmission electron microscopy was utilized to determine the ATO-NPs particle morphology, demonstrating a spherical shape with a smooth surface. The fine particle fraction of the aerosol produced was 62.70 ± 1.18%. This finding suggests that atorvastatin micellar nanoparticles are suitable for medication administration by inhalation with a wide particle size dispersion. Moreover, it was found in vitro that concentrations of up to 21 μg/mL of the atorvastatin nanoparticles were safe and non-toxic in the cell model.

Conclusion: This study found that atorvastatin micellar nanoparticles for inhalation could potentially be used for lung cancer treatment.

Keywords: Atorvastatin calcium, nanoparticles, micellar, inhalation, nebulizer, lung cancer.

[1]
WHO. Noncommunicable Diseases, 2018. Available from: https://www.who.int/en/news-room/fact-sheets/detail/noncommuni-cable-diseases
[2]
[3]
Alberg, A.J.; Brock, M.V.; Samet, J.M. Epidemiology of lung cancer: Looking to the future. J. Clin. Oncol., 2005, 23(14), 3175-3185.
[http://dx.doi.org/10.1200/JCO.2005.10.462] [PMID: 15886304]
[4]
Khurana, V.; Bejjanki, H.R.; Caldito, G.; Owens, M.W. Statins reduce the risk of lung cancer in humans: A large case-control study of US veterans. Chest, 2007, 131(5), 1282-1288.
[http://dx.doi.org/10.1378/chest.06-0931] [PMID: 17494779]
[5]
Mustafa, M.; Azizi, A.R.J. IIIzam, E.; Nazirah, A.; Sharifa, S.; Abbas, S. Lung cancer: Risk factors, management, and prognosis. IOSR J. Dent. Med. Sci., 2016, 15(10), 94-101.
[http://dx.doi.org/10.9790/0853-15100494101]
[6]
Tulbah, A.S.; Gamal, A. Design and characterization of atorvastatin dry powder formulation as a potential lung cancer treatment. Saudi Pharm. J., 2021, 29(12), 1449-1457.
[http://dx.doi.org/10.1016/j.jsps.2021.11.002] [PMID: 35002383]
[7]
Ruiz-Ceja, K.A.; Chirino, Y.I. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed. Pharmacother., 2017, 90, 24-37.
[http://dx.doi.org/10.1016/j.biopha.2017.03.018] [PMID: 28340378]
[8]
Tanaka, T.; Delong, P.A.; Amin, K.; Henry, A.; Kruklitis, R.; Kapoor, V.; Kaiser, L.R.; Albelda, S.M. Treatment of lung cancer using clinically relevant oral doses of the cyclooxygenase-2 inhibitor rofecoxib: Potential value as adjuvant therapy after surgery. Ann. Surg., 2005, 241(1), 168-178.
[http://dx.doi.org/10.1097/01.sla.0000149427.84712.d9] [PMID: 15622005]
[9]
Bröker, L.E.; Giaccone, G. The role of new agents in the treatment of non-small cell lung cancer. Eur. J. Cancer, 2002, 38(18), 2347-2361.
[http://dx.doi.org/10.1016/S0959-8049(02)00457-4] [PMID: 12460778]
[10]
Yang, Y.; Tsifansky, M.D.; Shin, S.; Lin, Q.; Yeo, Y. Mannitol-guided delivery of Ciprofloxacin in artificial cystic fibrosis mucus model. Biotechnol. Bioeng., 2011, 108(6), 1441-1449.
[http://dx.doi.org/10.1002/bit.23046] [PMID: 21488050]
[11]
Barnes, P.J.; Adcock, I.M. Glucocorticoid resistance in inflammatory diseases. Lancet, 2009, 373(9678), 1905-1917.
[http://dx.doi.org/10.1016/S0140-6736(09)60326-3] [PMID: 19482216]
[12]
Dhanani, J.; Fraser, J.F.; Chan, H-K.; Rello, J.; Cohen, J.; Roberts, J.A. Fundamentals of aerosol therapy in critical care. Crit. Care, 2016, 20(1), 269.
[http://dx.doi.org/10.1186/s13054-016-1448-5] [PMID: 27716346]
[13]
Patton, J.S.; Platz, R.M. (D) Routes of delivery: Case studies:(2) Pulmonary delivery of peptides and proteins for systemic action. Adv. Drug Deliv. Rev., 1992, 8(2-3), 179-196.
[http://dx.doi.org/10.1016/0169-409X(92)90002-8]
[14]
Yano, T.; Haro, A.; Yoshida, T.; Morodomi, Y.; Ito, K.; Shikada, Y.; Shoji, F.; Maruyama, R.; Maehara, Y. Prognostic impact of local treat-ment against postoperative oligometastases in non-small cell lung cancer. J. Surg. Oncol., 2010, 102(7), 852-855.
[http://dx.doi.org/10.1002/jso.21750] [PMID: 20886558]
[15]
Ahmad, J.; Akhter, S.; Rizwanullah, M.; Amin, S.; Rahman, M.; Ahmad, M.Z.; Rizvi, M.A.; Kamal, M.A.; Ahmad, F.J. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol. Sci. Appl., 2015, 8, 55-66.
[PMID: 26640374]
[16]
Johnson, K.A. Preparation of peptide and protein powders for inhalation. Adv. Drug Deliv. Rev., 1997, 26(1), 3-15.
[http://dx.doi.org/10.1016/S0169-409X(97)00506-1] [PMID: 10837528]
[17]
Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm., 2010, 392(1-2), 1-19.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.017] [PMID: 20223286]
[18]
Kim, C.S.; Duncan, B.; Creran, B.; Rotello, V.M. Triggered nanoparticles as therapeutics. Nano Today, 2013, 8(4), 439-447.
[http://dx.doi.org/10.1016/j.nantod.2013.07.004] [PMID: 24159362]
[19]
Wen, C-S. The Fundamentals of Aerosol Dynamics; World Scientific: Singapore, 1996.
[http://dx.doi.org/10.1142/3101]
[20]
Hess, D.R. Nebulizers: Principles and performance. Respir. Care, 2000, 45(6), 609-622.
[PMID: 10894454]
[21]
Alhaddad, B.; Smith, F.J.; Robertson, T.; Watman, G.; Taylor, K.M. Patients’ practices and experiences of using nebuliser therapy in the management of COPD at home. BMJ Open Respir. Res., 2015, 2(1), e000076.
[http://dx.doi.org/10.1136/bmjresp-2014-000076] [PMID: 25806114]
[22]
Yuan, C.; Zhou, L.; Cheng, J.; Zhang, J.; Teng, Y.; Huang, M.; Adcock, I.M.; Barnes, P.J.; Yao, X. Statins as potential therapeutic drug for asthma? Respir. Res., 2012, 13(1), 108.
[http://dx.doi.org/10.1186/1465-9921-13-108] [PMID: 23176705]
[23]
Labiris, N.R.; Dolovich, M.B. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol., 2003, 56(6), 588-599.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01892.x] [PMID: 14616418]
[24]
Azarmi, S.; Roa, W.H.; Löbenberg, R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev., 2008, 60(8), 863-875.
[http://dx.doi.org/10.1016/j.addr.2007.11.006] [PMID: 18308418]
[25]
Ong, H.X.; Traini, D.; Cipolla, D.; Gonda, I.; Bebawy, M.; Agus, H.; Young, P.M. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm. Res., 2012, 29(12), 3335-3346.
[http://dx.doi.org/10.1007/s11095-012-0827-0] [PMID: 22833052]
[26]
Tulbah, A.S.; Pisano, E.; Landh, E.; Scalia, S.; Young, P.M.; Traini, D.; Ong, H.X. Simvastatin nanoparticles reduce inflammation in LPS-stimulated alveolar macrophages. J. Pharm. Sci., 2019, 108(12), 3890-3897.
[http://dx.doi.org/10.1016/j.xphs.2019.08.029] [PMID: 31494116]
[27]
Delong, R.K.; Risor, A.; Kanomata, M.; Laymon, A.; Jones, B.; Zimmerman, S.D.; Williams, J.; Witkowski, C.; Warner, M.; Ruff, M.; Garrad, R.; Fallon, J.K.; Hickey, A.J.; Sedaghat-Herati, R. Characterization of biomolecular nanoconjugates by high-throughput delivery and spectro-scopic difference. Nanomedicine (Lond.), 2012, 7(12), 1851-1862.
[http://dx.doi.org/10.2217/nnm.12.70] [PMID: 22943129]
[28]
Mehanna, M.M.; Mohyeldin, S.M.; Elgindy, N.A. Respirable nanocarriers as a promising strategy for antitubercular drug delivery. J. Control. Release, 2014, 187, 183-197.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.038] [PMID: 24878180]
[29]
Lee, W.H.; Bebawy, M.; Loo, C.Y.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. J. Biomed. Nanotechnol., 2015, 11(6), 1093-1105.
[http://dx.doi.org/10.1166/jbn.2015.2041] [PMID: 26353597]
[30]
Tulbah, A.S.; Pisano, E.; Scalia, S.; Young, P.M.; Traini, D.; Ong, H.X. Inhaled simvastatin nanoparticles for inflammatory lung disease. Nanomedicine (Lond.), 2017, 12(20), 2471-2485.
[http://dx.doi.org/10.2217/nnm-2017-0188] [PMID: 28972463]
[31]
Anand, P.; Nair, H.B.; Sung, B.; Kunnumakkara, A.B.; Yadav, V.R.; Tekmal, R.R.; Aggarwal, B.B. Design of curcumin-loaded PLGA nano-particles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol., 2010, 79(3), 330-338.
[http://dx.doi.org/10.1016/j.bcp.2009.09.003] [PMID: 19735646]
[32]
Sou, K.; Inenaga, S.; Takeoka, S.; Tsuchida, E. Loading of curcumin into macrophages using lipid-based nanoparticles. Int. J. Pharm., 2008, 352(1-2), 287-293.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.033] [PMID: 18063327]
[33]
Rashidi, H.; Ellis, M.J.; Cartmell, S.H.; Chaudhuri, J.B. Simvastatin release from poly (lactide-co-glycolide) membrane scaffolds. Polymers (Basel), 2010, 2(4), 709-718.
[http://dx.doi.org/10.3390/polym2040709]
[34]
Assaf, K.; Duek, E.A.R.; Oliveira, N.M. Efficacy of a combination of simvastatin and poly (DL-lactic-co-glycolic acid) in stimulating the regeneration of bone defects. Mater. Res., 2013, 16(1), 215-220.
[http://dx.doi.org/10.1590/S1516-14392012005000159]
[35]
Sherikar, O.; Mehta, P. Comprehensive assessment of degradation behavior of aspirin and atorvastatin singly and in combination by using a validated RP-HPLC method. Sci. Pharm., 2013, 81(1), 195-210.
[http://dx.doi.org/10.3797/scipharm.1210-19] [PMID: 23641338]
[36]
Lea, A.P.; McTavish, D. Atorvastatin. A review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drugs, 1997, 53(5), 828-847.
[http://dx.doi.org/10.2165/00003495-199753050-00011] [PMID: 9129869]
[37]
Endo, A.; Kuroda, M.; Tsujita, Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. (Tokyo), 1976, 29(12), 1346-1348.
[http://dx.doi.org/10.7164/antibiotics.29.1346] [PMID: 1010803]
[38]
Endo, A. The origin of the statins. Int. Congr. Ser., 2004, 1262, 3-8.
[39]
Ferreira, T.S.; Lanzetti, M.; Barroso, M.V.; Rueff-Barroso, C.R.; Benjamim, C.F.; de Brito-Gitirana, L.; Porto, L.C.; Valença, S.S. Oxidative stress and inflammation are differentially affected by atorvastatin, pravastatin, rosuvastatin, and simvastatin on lungs from mice exposed to cigarette smoke. Inflammation, 2014, 37(5), 1355-1365.
[http://dx.doi.org/10.1007/s10753-014-9860-y] [PMID: 24609836]
[40]
Tulbah, A.S. The potential of atorvastatin for chronic lung diseases therapy. Saudi Pharm. J., 2020, 28(11), 1353-1363.
[http://dx.doi.org/10.1016/j.jsps.2020.08.025] [PMID: 33250642]
[41]
Ali, A.; Levantini, E.; Fhu, C.W.; Teo, J.T.; Clohessy, J.G.; Goggi, J.L.; Wu, C.S.; Chen, L.; Chin, T.M.; Tenen, D.G. CAV1 - GLUT3 signaling is important for cellular energy and can be targeted by atorvastatin in non-small cell lung cancer. Theranostics, 2019, 9(21), 6157-6174.
[http://dx.doi.org/10.7150/thno.35805] [PMID: 31534543]
[42]
Chen, J.; Bi, H.; Hou, J.; Zhang, X.; Zhang, C.; Yue, L. Atorvastatin overcomes gefitinib resistance in KRAS mutant human non-small cell lung carcinoma cells. Cell Death Dis., 2013, 4(9), e814-e.
[http://dx.doi.org/10.1038/cddis.2013.312]
[43]
Otahal, A.; Aydemir, D.; Tomasich, E.; Minichsdorfer, C. Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in Non-Small Cell Lung Cancer Cell (NSCLC) lines. Sci. Rep., 2020, 10(1), 959.
[http://dx.doi.org/10.1038/s41598-020-57707-2] [PMID: 31969600]
[44]
Lennernäs, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet., 2003, 42(13), 1141-1160.
[http://dx.doi.org/10.2165/00003088-200342130-00005] [PMID: 14531725]
[45]
Lee, W-H.; Loo, C-Y.; Young, P.M.; Rohanizadeh, R.; Traini, D. Curcumin nanoparticles attenuate production of pro-inflammatory markers in lipopolysaccharide-induced macrophages. Pharm. Res., 2016, 33(2), 315-327.
[http://dx.doi.org/10.1007/s11095-015-1789-9] [PMID: 26350106]
[46]
Dixit, M.; Kini, A.G.; Kulkarni, P.K. Preparation and characterization of microparticles of piroxicam by spray drying and spray chilling methods. Res. Pharm. Sci., 2010, 5(2), 89-97.
[PMID: 21589797]
[47]
Stanisz, B.; Kania, L. Validation of HPLC method for determination of atorvastatin in tablets and for monitoring stability in solid phase. Acta Pol. Pharm., 2006, 63(6), 471-476.
[PMID: 17438862]
[48]
Boocock, D.J.; Patel, K.R.; Faust, G.E.; Normolle, D.P.; Marczylo, T.H.; Crowell, J.A.; Brenner, D.E.; Booth, T.D.; Gescher, A.; Steward, W.P. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 848(2), 182-187.
[http://dx.doi.org/10.1016/j.jchromb.2006.10.017] [PMID: 17097357]
[49]
Abdelrahim, M.E. Aerodynamic characteristics of nebulized terbutaline sulphate using the Andersen Cascade Impactor compared to the Next Generation Impactor. Pharm. Dev. Technol., 2011, 16(2), 137-145.
[http://dx.doi.org/10.3109/10837450903511194] [PMID: 20100034]
[50]
Pharmacopeia, U. USP 39 NF 34., 2015. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
[51]
Pharmacopoeia, B. British pharmacopoeia., 2016. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
[52]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenberger, Y.U.; Reichardt, P.; Bierkandt, F.; Siewert, K.; Gadicherla, A.; Laux, P.; Luch, A. Evaluating particle emissions and toxicity of 3d pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem. Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[53]
Haghi, M.; Young, P.M.; Traini, D.; Jaiswal, R.; Gong, J.; Bebawy, M. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev. Ind. Pharm., 2010, 36(10), 1207-1214.
[http://dx.doi.org/10.3109/03639041003695113] [PMID: 20374185]
[54]
Marin, L.; Traini, D.; Bebawy, M.; Colombo, P.; Buttini, F.; Haghi, M. Multiple dosing of simvastatin inhibits airway mucus production of epithelial cells: Implications in the treatment of chronic obstructive airway pathologies. Eur. J. Pharm. Biopharm., 2013, 84(3), 566-72.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.021]
[55]
Ong, H.X.; Traini, D.; Bebawy, M.; Young, P.M. Epithelial profiling of antibiotic controlled release respiratory formulations. Pharm. Res., 2011, 28(9), 2327-2338.
[http://dx.doi.org/10.1007/s11095-011-0462-1] [PMID: 21614637]
[56]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[57]
Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A.; Nofal, S.M.; Khalifa, A.E.; Mosli, H.A.; Abdel-Naim, A.B. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett., 2018, 291, 77-85.
[http://dx.doi.org/10.1016/j.toxlet.2018.04.008] [PMID: 29654831]
[58]
Sharma, A.; Marceau, C.; Hamaguchi, R.; Burridge, P.W.; Rajarajan, K.; Churko, J.M.; Wu, H.; Sallam, K.I.; Matsa, E.; Sturzu, A.C.; Che, Y.; Ebert, A.; Diecke, S.; Liang, P.; Red-Horse, K.; Carette, J.E.; Wu, S.M.; Wu, J.C. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ. Res., 2014, 115(6), 556-566.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303810] [PMID: 25015077]
[59]
Tulbah, A.S.; Ong, H.X.; Morgan, L.; Colombo, P.; Young, P.M.; Traini, D. Dry powder formulation of simvastatin. Expert Opin. Drug Deliv., 2015, 12(6), 857-868.
[http://dx.doi.org/10.1517/17425247.2015.963054] [PMID: 25244365]
[60]
Tulbah, A.S.; Ong, H.X.; Lee, W-H.; Colombo, P.; Young, P.M.; Traini, D. Biological effects of simvastatin formulated as pMDI on pulmonary epithelial cells. Pharm. Res., 2016, 33(1), 92-101.
[http://dx.doi.org/10.1007/s11095-015-1766-3] [PMID: 26238046]
[61]
Ong, H.X.; Traini, D.; Ballerin, G.; Morgan, L.; Buddle, L.; Scalia, S.; Young, P.M. Combined inhaled salbutamol and mannitol therapy for mucus hyper-secretion in pulmonary diseases. AAPS J., 2014, 16(2), 269-280.
[http://dx.doi.org/10.1208/s12248-014-9560-4] [PMID: 24431080]
[62]
Fong, C.W. Statins in therapy: Understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies. Eur. J. Med. Chem., 2014, 85, 661-674.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.037] [PMID: 25128668]
[63]
Elmowafy, M.; Ibrahim, H.M.; Ahmed, M.A.; Shalaby, K.; Salama, A.; Hefesha, H. Atorvastatin-loaded nanostructured lipid carriers (NLCs): Strategy to overcome oral delivery drawbacks. Drug Deliv., 2017, 24(1), 932-941.
[http://dx.doi.org/10.1080/10717544.2017.1337823] [PMID: 28617150]
[64]
Shahraeini, S.S.; Akbari, J.; Saeedi, M.; Morteza-Semnani, K.; Abootorabi, S.; Dehghanpoor, M.; Rostamkalaei, S.S.; Nokhodchi, A. Atorvastatin solid lipid nanoparticles as a promising approach for dermal delivery and an anti-inflammatory agent. AAPS PharmSciTech, 2020, 21(7), 263.
[http://dx.doi.org/10.1208/s12249-020-01807-9] [PMID: 32978691]
[65]
Dai, J.; Kim, J.C. Photo and thermal properties of cinnamoyl Pluronic F‐127. Polym. Int., 2014, 63(3), 501-506.
[http://dx.doi.org/10.1002/pi.4533]
[66]
Guirguis, O.W.; Moselhey, M.T. Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat. Sci., 2011, 4(1), 17030.
[67]
Yadav, M.; Schiavone, N.; Guzman-Aranguez, A.; Giansanti, F.; Papucci, L.; Perez de Lara, M.J.; Singh, M.; Kaur, I.P. Atorvastatin-loaded solid lipid nanoparticles as eye drops: proposed treatment option for age-related macular degeneration (AMD). Drug Deliv. Transl. Res., 2020, 10(4), 919-944.
[http://dx.doi.org/10.1007/s13346-020-00733-4] [PMID: 32270439]
[68]
Karolewicz, B.; Gajda, M.; Pluta, J.; Górniak, A. The effect of Pluronic F127 on the physicochemical properties and dissolution profile of lovastatin solid dispersions. J. Therm. Anal. Calorim., 2016, 123(3), 2283-2290.
[http://dx.doi.org/10.1007/s10973-015-4935-z]
[69]
Narasagoudr, S.S.; Hegde, V.G.; Vanjeri, V.N.; Chougale, R.B.; Masti, S.P. Ethyl vanillin incorporated chitosan/poly(vinyl alcohol) active films for food packaging applications. Carbohydr. Polym., 2020, 236, 116049.
[http://dx.doi.org/10.1016/j.carbpol.2020.116049] [PMID: 32172863]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy