Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Fast Complete Ternary Addition with Novel 3:1 T-Multiplexer

Author(s): Aloke Saha*, Rahul Pal, Tripti Kumari, Rakesh K. Singh, Somashree Chakraborty and Jayanta Ghosh

Volume 14, Issue 4, 2022

Published on: 25 May, 2022

Page: [304 - 313] Pages: 10

DOI: 10.2174/1876402914666220425124154

Price: $65

conference banner
Abstract

Background: Complete Ternary Adder is the prime building block for Ternary Carry Save Adder (TCSA) and acts as a critical deciding factor to optimize the overall speed-power performance for many complex ternary computing like ternary multiplications.

Objective: This work proposes a new idea for high-speed complete Ternary Adder design with reduced Power-Delay-Product (PDP) using PTL (Pass Transistor Logic) based novel 3:1 Ternary Multiplexer (T-MUX) for efficient ternary computing.

Methods: In the proposed approach, a novel 3:1 T-MUX with conventional E-MOS (Enhancementtype Metal Oxide Semiconductor) transistor is designed first. The Novel Select Unit (SU) and Control Unit (CU) are the prime building blocks of the proposed T-MUX circuit, which are discussed in detail. The 3:1 T-MUX is exploited next to achieve the proposed high-speed, low-PDP Ternary Half and Full Adder operation. The complete adder circuit is designed and optimized based on BSIM4 device parameters using 32nm standard CMOS technology with 1.0V supply rail at 27°C temperature. Trit values “0”, “1” and “2” are represented with 0V, 0.5V and 1.0V respectively. Extensive T-Spice simulation with all possible test patterns using PWL (Piece Wise Linear) input source validates the proposed circuit. The evaluated speed-power result of the proposed TFA is then compared with the most recent competitive study to set a benchmark.

Results: The proposed complete TFA offers 68.9% and 82.5% reduction in propagation delay along with 27.7% and 31.6% Power-Delay-Product (PDP) reduction compared to the most recent competitive complete TFA Design-1 and Design-2, respectively.

Discussion: As per the study, the proposed idea can be a good selection to produce fast ternary addition along with reduced Power-Delay-Product (PDP).

Conclusion: The proposed complete TFA can be utilized effectively as Ternary Carry Save Adder (TCSA) for fast, low-PDP ternary multiplication as well as for other computation-intensive applications.

Keywords: Complete ternary addition, enhancement-type MOSFET, pass transistor logic, ternary multiplexing, t-spice simulation, T-MUX.

Graphical Abstract

[1]
Kandpal, J.; Tomar, A.; Agarwal, M.; Sharma, K.K. High-speed hybrid-logic full adder using high-performance 10-T XOR-XNOR cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2020, 28(6), 1413-1422.
[2]
Hasan, M.; Hossein, M.J.; Hossain, M.; Zaman, H.U.; Islam, S. Design of a scalable low-power 1-bit hybrid full adder for fast computa-tion. IEEE Trans. Circuits Syst. II Express Briefs, 2020, 67(8), 1464-1468.
[http://dx.doi.org/10.1109/TCSII.2019.2940558]
[3]
Saha, A.; Pal, R.; Ghosh, J. Novel self-pipelining approach for speed-power efficient reliable binary multiplication. Micro Nanosyst., 2020, 12(3), 149-158.
[http://dx.doi.org/10.2174/1876402911666190916155445]
[4]
Saha, A.; Pal, R.; Naik, A.G.; Pal, D. Novel CMOS multi-bit counter for speed-power optimization multiplier design. Int. J. Electron. Commun., 2018, 95, 189-198.
[5]
Pashaeifar, M.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. Approximate reverse carry propagate adder for energy-efficient DSP applica-tions. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2018, 26(11), 2530-2541.
[6]
Saha, A.; Kumar, S.; Das, D.; Chakraborty, M. LP-HS logic evaluation on TSMC 0.18μm CMOS technology. Int. J. High Speed Electron. Syst., 2017, 26(4), 1740024.
[7]
Saha, A.; Pal, D. DPL-based novel time equalized CMOS ternary-to-binary converter. IJE, 2020, 107(3), 431-443.
[8]
Saha, A.; Singh, R.K.; Gupta, P.; Pal, D. DPL-based novel CMOS 1-trit ternary full-adder. Int. J. Electron., 2020, 108(2), 218-236.
[9]
Saha, A.; Pal, D. DPL-based novel binary-to-ternaryconverter on CMOS technology. Int. J. Electron. Commun., 2018, 92, 69-73.
[10]
Vudadha, C.; Surya, A.; Agrawal, S.; Srinivas, M.B. Synthesis of ternary logic circuits using 2:1 multiplexers. IEEE Trans. Circuits Syst. I Regul. Pap., 2018, 65(12), 4313-4325.
[http://dx.doi.org/10.1109/TCSI.2018.2838258]
[11]
Saha, A.; Singh, N.D.; Pal, D. Efficient ternary comparator on CMOS technology. Microelectronics J., 2021, 109, 105005.
[12]
Hurst, S.L. Multiple-valued logic: Its status and its future. IEEE Trans. Comput., 1984, 33(12), 1160-1179.
[13]
Wu, X.W.; Prosser, F.P. CMOS ternary logic circuits. IEE Proceedings G. Electron. Circuits Syst., 1990, 137(1), 21-27.
[14]
Aljaam, J.M.; Jaber, R.A.; Al-Maadeed, S.A. Novel ternary adder and multiplier designs without using decoders or encoders. IEEE Access, 2021, 9, 56726-56735.
[http://dx.doi.org/10.1109/ACCESS.2021.3072567]
[15]
Salehabad, I.M.; Navi, K.; Hosseinzadeh, M. Two novel inverter based ternary full adder cells using CNFETs for energy-efficient applica-tions. Int. J. Electron., 2020, 107(1), 82-98.
[16]
Vidhyadharan, S.; Dan, S.S. An efficient ultra-low-power and superior performance design of ternary half adder using CNFET and gate-overlap TFET devices. IEEE Trans. Nanotechnol., 2021, 20, 365-376.
[http://dx.doi.org/10.1109/TNANO.2020.3049087]
[17]
Heo, S.; Kim, S.; Kim, K.; Lee, H.; Kim, S.Y.; Kim, Y.J.; Kim, S.M.; Lee, H.I.; Lee, S.; Kim, K.R.; Kang, S.; Lee, B.H. Ternary full adder using multi-threshold voltage graphene barristors. IEEE Electron Device Lett., 2018, 39(12), 1948-1951.
[http://dx.doi.org/10.1109/LED.2018.2874055]
[18]
Sahoo, S.K.; Akhilesh, G.; Sahoo, R.; Muglikar, M. High-performance ternary adder using CNTFET. IEEE Trans. Nanotechnol., 2017, 16(3), 368-374.
[http://dx.doi.org/10.1109/TNANO.2017.2649548]
[19]
Jafarzadehpour, F.; Keshavarzian, P. Low power consumption ternary full adder based on CNTFET. IET Circuits Dev. Syst., 2016, 10(5), 365-374.
[http://dx.doi.org/10.1049/iet-cds.2015.0264]
[20]
Asibelagh, A.G.; Mirzaee, R.F. Partial ternary full adder versus complete ternary full adder. International Conference on Electrical, Com-munication, and Computer Engineering (ICECCE), 2020, pp. 1-6.
[http://dx.doi.org/10.1109/ICECCE49384.2020.9179343]
[21]
Shahrom, E.; Hosseini, S.A. A new low power multiplexer based ternary multiplier using CNTFETs. AEU Int. J. Electron. Commun., 2018, 93, 191-207.
[http://dx.doi.org/10.1016/j.aeue.2018.06.011]
[22]
Basiri, M.A.; Mahammad-Sk, N. High speed multiplexer design using tree based decomposition algorithm. Microelectronics J., 2016, 51, 99-111.
[http://dx.doi.org/10.1016/j.mejo.2016.02.009]
[23]
Jahangir, M.Z.; Mounika, J. Design and simulation of an innovative CMOS ternary 3 to 1 multiplexer and the design of ternary half adder using ternary 3 to 1 multiplexer. Microelectronics J., 2019, 90, 82-87.
[http://dx.doi.org/10.1016/j.mejo.2019.05.007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy