Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Antitumor Evaluation of Glutathione Responsive Self-Immolative Disulphide Linked Camptothecin-Biotin Conjugate

Author(s): Amardeep Kaur, Shikha Dhiman, Hong Boon Lee and Manu Sharma*

Volume 22, Issue 18, 2022

Published on: 02 August, 2022

Page: [3182 - 3192] Pages: 11

DOI: 10.2174/1871520622666220425114553

Price: $65

conference banner
Abstract

Background: Camptothecin is a naturally occurring alkaloid obtained from the stem wood of the Chinese tree, Camptotheca acuminata. It exerts pharmacological effects due to its ability to selectively inhibit the type-I topoisomerase DNA nuclear enzyme. Several semisynthetic analogs of camptothecin have been synthesized to date possessing antitumor activity.

Objective: Camptothecin (CPT) is one of the most promising anticancer drugs but it produces various side effects because of its non-selectivity towards cancer cells. To overcome these adverse effects, we synthesized biotin conjugate of camptothecin, which was linked via a self-immolative disulfide linker (CPT-SS-Biotin).

Methods: Biotin conjugated camptothecin linked through a disulfide bond was synthesized following schemes, and the structural characterization was carried out. The stability and drug release studies were performed in the presence of glutathione (GSH) while in vitro studies were performed on 4T1 tumor cell lines. In vivo pharmacological investigation was done using an antitumor Wistar rat model.

Results: The stability and drug release studies were performed in the presence of glutathione (GSH), and CPT-SSBiotin was found to be physiologically stable moiety and can only be cleaved in the presence of GSH to release free CPT. The CPT-SS-Biotin showed higher toxicity in the biotin-overexpressing 4T1 tumor cell line with a lower IC50 value (8.44 μM) compared to camptothecin alone (IC50 > 30 μM). CPT-SS-Biotin also showed 10.6% higher cellular uptake by cells in comparison to free camptothecin. The CPT-SS-Biotin was delivered to cells by binding to the biotin receptors on the cell surface, followed by energy-dependent endocytosis and internalization to cause cellular toxicity.

Conclusion: In-vivo tumor suppression studies and in vitro cell line studies along with serological parameters and histopathological studies showed that conjugate produced a high therapeutic effect and remarkably reduced toxic effects in comparison to free CPT. The results suggested that biotinylation of camptothecin via disulfide linker can be a safe and efficacious method in cancer therapeutics.

Keywords: Camptothecin, biotin, disulphide linker, glutathione, antitumor, biotinylation.

« Previous
Graphical Abstract

[1]
Kratz, F.; Müller, I.A.; Ryppa, C.; Warnecke, A. Prodrug strategies in anticancer chemotherapy. ChemMedChem, 2008, 3(1), 20-53.
[http://dx.doi.org/10.1002/cmdc.200700159] [PMID: 17963208]
[2]
Russell-jone, G.; Mctavish, K.; Mcewan, J.; Rice, J.; Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumors. J. Inorg. Biochem., 2004, 28(10), 1625-1633.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.07.009]
[3]
Ojima, I. Guided molecular missiles for tumor-targeting chemotherapy--case studies using the second-generation taxoids as warheads. Acc. Chem. Res., 2008, 41(1), 108-119.
[http://dx.doi.org/10.1021/ar700093f] [PMID: 17663526]
[4]
Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S.S.; Ojima, I. Mechanism-based tumor-targeting drug delivery system. Val-idation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug. Chem., 2010, 21(5), 979-987.
[http://dx.doi.org/10.1021/bc9005656] [PMID: 20429547]
[5]
Gupta, Y.; Kohli, D.V.; Jain, S.K. Vitamin B12-mediated transport: A potential tool for tumor targeting of antineoplastic drugs and imaging agents. Crit. Rev. Ther. Drug Carrier Syst., 2008, 25(4), 347-379.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v25.i4.20] [PMID: 18540842]
[6]
Bareford, L.M.; Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev., 2007, 59(8), 748-758.
[http://dx.doi.org/10.1016/j.addr.2007.06.008] [PMID: 17659804]
[7]
Xia, W.; Low, P.S. Folate-targeted therapies for cancer. J. Med. Chem., 2010, 53(19), 6811-6824.
[http://dx.doi.org/10.1021/jm100509v] [PMID: 20666486]
[8]
Tripodo, G; Mandracchia, D; Collina, S; Rui, M; Rossi, D New perspectives in cancer therapy: The biotin-antitumor molecule conjugates. Medchem, 2014, S1:004, 1-8.
[9]
Russell-Jones, G.; McEwan, J. Amplification of biotin-mediated targeting; Access Pharmaceuticals Australia Pty. Ltd.: Australia, 2004, PCT WO2004/045647.
[10]
Leamon, C.P.; Reddy, J.A. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1127-1141.
[http://dx.doi.org/10.1016/j.addr.2004.01.008] [PMID: 15094211]
[11]
Lu, Y.; Low, P.S. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev., 2002, 54(5), 675-693.
[http://dx.doi.org/10.1016/S0169-409X(02)00042-X] [PMID: 12204598]
[12]
Reddy, J.A.; Westrick, E.; Vlahov, I.; Howard, S.J.; Santhapuram, H.K.; Leamon, C.P. Folate receptor specific anti-tumor activity of folate-mitomycin conjugates. Cancer Chemother. Pharmacol., 2006, 58(2), 229-236.
[http://dx.doi.org/10.1007/s00280-005-0151-z] [PMID: 16331500]
[13]
Leamon, C.P.; Reddy, J.A.; Vlahov, I.R.; Vetzel, M.; Parker, N.; Nicoson, J.S.; Xu, L.C.; Westrick, E. Synthesis and biological evaluation of EC72: A new folate-targeted chemotherapeutic. Bioconjug. Chem., 2005, 16(4), 803-811.
[http://dx.doi.org/10.1021/bc049709b] [PMID: 16029021]
[14]
Asadi, H.; Khoee, S. Dual responsive nanogels for intracellular doxorubicin delivery. Int. J. Pharm., 2016, 511(1), 424-435.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.037] [PMID: 27444549]
[15]
Mahesh, B.; Belagali, S.L. Synthesis of azo-bridged benzothiazole-phenyl ester derivatives via steglich esterification. Int. J. Cur. Engg. Tech., 2014, 4(4), 2711-2715.
[16]
Liu, Q.C.; Ou, C.W.; Ren, C.H.; Wang, L.; Yang, Z.; Chen, M. A releasable disulfide carbonate linker for molecular hydrogelation. New J. Chem., 2012, 36(8), 1556-1559.
[http://dx.doi.org/10.1039/c2nj40270j]
[17]
Sorial, A.M.; Nabila, A.E.M.; Halla, M.R.; Mahmoud, M.S. Anticancer activities of mushroom polysaccharides on chemically induced colorectal cancer in rats. J. App. Pharm. Sci, 2014, 4(07), 054-063.
[18]
Sharma, S.H.; Chellappan, D.R.; Chinnaswamy, P.; Nagarajan, S. Protective effect of p-coumaric acid against 1,2 dimethylhydrazine in-duced colonic preneoplastic lesions in experimental rats. Biomed. Pharmacother., 2017, 94, 577-588.
[http://dx.doi.org/10.1016/j.biopha.2017.07.146] [PMID: 28780474]
[19]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[20]
Li, J.; Shen, Z.; Ma, X.; Ren, W.; Xiang, L.; Gong, A.; Xia, T.; Guo, J.; Wu, A. Neuropeptide Y Y1 receptors mediate [corrected] targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy. ACS Appl. Mater. Interfaces, 2015, 7(9), 5574-5582.
[http://dx.doi.org/10.1021/acsami.5b00270] [PMID: 25695533]
[21]
Taheri, A.; Dinarvand, R.; Nouri, F.S.; Khorramizadeh, M.R.; Borougeni, A.T.; Mansoori, P.; Atyabi, F. Use of biotin targeted methotrex-ate-human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy. Int. J. Nanomedicine, 2011, 6, 1863-1874.
[PMID: 21931482]
[22]
Argilés, J.M.; Stemmler, B.; López-Soriano, F.J.; Busquets, S. Nonmuscle tissues contribution to cancer cachexia. Mediators Inflamm., 2015, 2015, 182872.
[http://dx.doi.org/10.1155/2015/182872] [PMID: 26523094]
[23]
Citronberg, J.; Kantor, E.D.; Potter, J.D.; White, E. A prospective study of the effect of bowel movement frequency, constipation, and laxative use on colorectal cancer risk. J. Gastroenterol., 2014, 109(10), 1640-1649.
[http://dx.doi.org/10.1038/ajg.2014.233] [PMID: 25223576]
[24]
Mignano, C.; Faghri, P.D.; Huedo-Medina, T.; Cherniack, M.C. Psychological health, behavior, and bodyweight (PBBW) model: An eval-uation of predictors of health behaviors and body mass index (BMI). J. Workplace Behav. Health, 2016, 31(1), 37-56.
[http://dx.doi.org/10.1080/15555240.2015.1100518]
[25]
Garcia, J.M.; Scherer, T.; Chen, J.A.; Guillory, B.; Nassif, A.; Papusha, V.; Smiechowska, J.; Asnicar, M.; Buettner, C.; Smith, R.G. Inhibi-tion of cisplatin-induced lipid catabolism and weight loss by ghrelin in male mice. Endocrinology, 2013, 154(9), 3118-3129.
[http://dx.doi.org/10.1210/en.2013-1179] [PMID: 23832960]
[26]
Lerner, L.; Hayes, T.G.; Tao, N.; Krieger, B.; Feng, B.; Wu, Z.; Nicoletti, R.; Chiu, M.I.; Gyuris, J.; Garcia, J.M. Plasma growth differentia-tion factor 15 is associated with weight loss and mortality in cancer patients. J. Cachexia Sarcopenia Muscle, 2015, 6(4), 317-324.
[http://dx.doi.org/10.1002/jcsm.12033] [PMID: 26672741]
[27]
Arikawa, A.Y.; Kaufman, B.C.; Raatz, S.K.; Kurzer, M.S. Effects of a parallel-arm randomized controlled weight loss pilot study on bio-logical and psychosocial parameters of overweight and obese breast cancer survivors. Pilot Feasibility Stud., 2017, 4(1), 17-29.
[http://dx.doi.org/10.1186/s40814-017-0160-9] [PMID: 28702218]
[28]
Bruggeman, A.R.; Kamal, A.H.; LeBlanc, T.W.; Ma, J.D.; Baracos, V.E.; Roeland, E. J. Cancer cachexia: Beyond weight loss. J. Oncol. Pract., 2016, 12(11), 1163-1171.
[http://dx.doi.org/10.1200/JOP.2016.016832] [PMID: 27858548]
[29]
Drozdzik, M.; Busch, D.; Lapczuk, J.; Müller, J.; Ostrowski, M.; Kurzawski, M.; Oswald, S. Protein abundance of clinically relevant drug-metabolizing enzymes in the human liver and intestine: A comparative analysis in paired tissue specimens. Clin. Pharmacol. Ther., 2018, 104(3), 515-524.
[http://dx.doi.org/10.1002/cpt.967] [PMID: 29205295]
[30]
Athersuch, T.J.; Antoine, D.J.; Boobis, A.R.; Coen, M.; Daly, A.K.; Possamai, L.; Nicholson, J.K.; Wilson, I.D. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: A perspective. Toxicol. Res. (Camb.), 2018, 7(3), 347-357.
[http://dx.doi.org/10.1039/c7tx00340d] [PMID: 30090586]
[31]
Schuba, J.; Sudekum, K.H.; Pfeffer, E.; Jayanegara, A. Excretion of faecal, urinary urea and urinary non-urea nitrogen by four ruminant species as influenced by dietary nitrogen intake: A meta-analysis. Livest. Sci., 2017, 198, 82-88.
[http://dx.doi.org/10.1016/j.livsci.2017.01.017]
[32]
Nishikawa, M.; Miyake, H.; Fujisawa, M. Identification of risk factors predicting febrile neutropenia in patients with metastatic germ cell tumors receiving cisplatin-based combination chemotherapy. Int. J. Urol., 2017, 24(6), 449-453.
[http://dx.doi.org/10.1111/iju.13352] [PMID: 28421640]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy