Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Mini-Review Article

Biological Activity of Synthetic Organoselenium Compounds: What do we Know about the Mechanism?

Author(s): Pablo Andrei Nogara*, Marco Bortoli, Laura Orian and João Batista T. Rocha*

Volume 16, Issue 1, 2022

Published on: 21 June, 2022

Page: [12 - 24] Pages: 13

DOI: 10.2174/2212796816666220422135204

Price: $65

Abstract

Low-molecular-mass selenium (LMM-Se) molecules, such as ebselen and diphenyldiselenide, have many biological and potential therapeutic activities; however, little is known about their mechanism of action. It has been stipulated that LMM-Se can modify the physiological chemistry of endogenous thiol (–SH) and selenol (–SeH) groups by different mechanisms. Generically, LMM-Se compounds are poor mimetics of glutathione peroxidase (GPx) enzyme, suggesting that their thiol-modifier effect is more reasonable to justify their biological action. Unfortunately, the LMM-Se interactions with their targets are relatively non-specific. Here, the action of LMM-Se as potential therapeutic agents will be discussed, as well as the bottleneck and myths about their potential use as therapeutic agents.

Keywords: Ebselen, diphenyldiselenide, thiol-modifier, antioxidant, selenium, mimetic.

Graphical Abstract

[1]
Fahey, R.C. Biologically important thiol-disulfide reactions and the role of Cyst(E)Ine in proteins: An evolutionary perspective. In:Advances in Experimental Medicine and Biology; Springer: Boston, 1977, 86A, pp. 1-30.
[2]
Jukes, T.H.; Holmquist, R.; Moise, H. Amino acid composition of proteins: Selection against the genetic code. Science, 1975, 189(4196), 50-51.
[http://dx.doi.org/10.1126/science.237322] [PMID: 237322]
[3]
Miseta, A.; Csutora, P. Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol., 2000, 17(8), 1232-1239.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a026406] [PMID: 10908643]
[4]
Marino, S.M.; Gladyshev, V.N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol., 2010, 404(5), 902-916.
[http://dx.doi.org/10.1016/j.jmb.2010.09.027] [PMID: 20950627]
[5]
Huber, R.E.J.; Criddle, R.S. Comparison and of the chemical selenocystine properties their sulfur of selenocysteine analogs. Arch. Biochem. Biophys., 1967, 122, 164-173.
[http://dx.doi.org/10.1016/0003-9861(67)90136-1] [PMID: 6076213]
[6]
Dickson, R.C.; Tappel, A.L. Reduction of selenocystine by cysteine or glutathione. Arch. Biochem. Biophys., 1969, 130(1), 547-550.
[http://dx.doi.org/10.1016/0003-9861(69)90068-X] [PMID: 5778666]
[7]
Barbosa, N.V.; Nogueira, C.W.; Nogara, P.A.; de Bem, A.F.; Aschner, M.; Rocha, J.B.T. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics, 2017, 9(12), 1703-1734.
[http://dx.doi.org/10.1039/C7MT00083A] [PMID: 29168872]
[8]
Ouyang, Y.; Peng, Y.; Li, J.; Holmgren, A.; Lu, J. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics, 2018, 10(2), 218-228.
[http://dx.doi.org/10.1039/C7MT00327G] [PMID: 29410996]
[9]
Brigelius-Flohé, R.; Flohé, L. Selenium and redox signaling. Arch. Biochem. Biophys., 2017, 617, 48-59.
[http://dx.doi.org/10.1016/j.abb.2016.08.003] [PMID: 27495740]
[10]
Dean, J.A. Lange’s Handbook of chemistry; , 1999, Vol. 15, .
[11]
Byun, B.J.; Kang, Y.K. Conformational preferences and pK(a) value of selenocysteine residue. Biopolymers, 2011, 95(5), 345-353.
[http://dx.doi.org/10.1002/bip.21581] [PMID: 21213257]
[12]
Cardey, B.; Enescu, M. Selenocysteine versus cysteine reactivity: A theoretical study of their oxidation by hydrogen peroxide. J. Phys. Chem. A, 2007, 111(4), 673-678.
[http://dx.doi.org/10.1021/jp0658445] [PMID: 17249758]
[13]
Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29(5), 347-357.
[http://dx.doi.org/10.1039/a908114c]
[14]
Jain, V.K. An Overview of Organoselenium Chemistry: From Fundamentals to Synthesis. In: Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Royal Society of Chemistry: Cambridge, 2017, pp. 1-33.
[http://dx.doi.org/10.1039/9781788011907-00001]
[15]
Wessjohann, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem., 2007, 388(10), 997-1006.
[http://dx.doi.org/10.1515/BC.2007.138] [PMID: 17937613]
[16]
Madabeni, A.; Nogara, P.A.; Bortoli, M.; Rocha, J.B.T.; Orian, L. Effect of methylmercury binding on the peroxide-reducing potential of cysteine and selenocysteine. Inorg. Chem., 2021, 60(7), 4646-4656.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03619] [PMID: 33587617]
[17]
Arnér, E.S.J. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? Exp. Cell Res., 2010, 316(8), 1296-1303.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.032] [PMID: 20206159]
[18]
Bianco, C.L.; Moore, C.D.; Fukuto, J.M.; Toscano, J.P. Selenols are resistant to irreversible modification by HNO. Free Radic. Biol. Med., 2016, 99, 71-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.07.008] [PMID: 27424037]
[19]
Bortoli, M.; Bruschi, M.; Swart, M.; Orian, L. Sequential oxidations of phenylchalcogenides by H2O2: Insights into the redox behavior of selenium via DFT analysis. New J. Chem., 2020, 44(17), 6724-6731.
[http://dx.doi.org/10.1039/C9NJ06449D]
[20]
Brigelius-Flohé, R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem., 2006, 387(10-11), 1329-1335.
[PMID: 17081103]
[21]
Devarie-Baez, N.O.; Silva Lopez, E.I.; Furdui, C.M. Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Free Radic. Res., 2016, 50(2), 172-194.
[http://dx.doi.org/10.3109/10715762.2015.1090571] [PMID: 26340608]
[22]
Papp, L.V.; Lu, J.; Holmgren, A.; Khanna, K.K. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal., 2007, 9(7), 775-806.
[http://dx.doi.org/10.1089/ars.2007.1528] [PMID: 17508906]
[23]
Zhang, Y.; Roh, Y.J.; Han, S.J.; Park, I.; Lee, H.M.; Ok, Y.S.; Lee, B.C.; Lee, S.R. Role of selenoproteins in redox regulation of signaling and the antioxidant system: A review. Antioxidants, 2020, 9(5), 383.
[http://dx.doi.org/10.3390/antiox9050383] [PMID: 32380763]
[24]
Patel, C.; Saad, H.; Shenkman, M.; Lederkremer, G.Z. Oxidoreductases in glycoprotein glycosylation, folding, and ERAD. Cells, 2020, 9(9), 2138.
[http://dx.doi.org/10.3390/cells9092138] [PMID: 32971745]
[25]
Arnér, E.S.J. Common modifications of selenocysteine in selenoproteins. Essays Biochem., 2020, 64(1), 45-53.
[http://dx.doi.org/10.1042/EBC20190051] [PMID: 31867620]
[26]
Trujillo, M.; Alvarez, B.; Radi, R. One- and two-electron oxidation of thiols: Mechanisms, kinetics and biological fates. Free Radic. Res., 2016, 50(2), 150-171.
[http://dx.doi.org/10.3109/10715762.2015.1089988] [PMID: 26329537]
[27]
Winterbourn, C.C.; Hampton, M.B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med., 2008, 45(5), 549-561.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.004] [PMID: 18544350]
[28]
Zeida, A.; Trujillo, M.; Ferrer-Sueta, G.; Denicola, A.; Estrin, D.A.; Radi, R. Catalysis of peroxide reduction by fast reacting protein thiols. Chem. Rev., 2019, 119(19), 10829-10855.
[http://dx.doi.org/10.1021/acs.chemrev.9b00371] [PMID: 31498605]
[29]
Bak, D.W.; Bechtel, T.J.; Falco, J.A.; Weerapana, E. Cysteine reactivity across the subcellular universe. Curr. Opin. Chem. Biol., 2019, 48, 96-105.
[http://dx.doi.org/10.1016/j.cbpa.2018.11.002] [PMID: 30508703]
[30]
Fomenko, D.E.; Marino, S.M.; Gladyshev, V.N. Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases. Mol. Cells, 2008, 26(3), 228-235.
[PMID: 18648218]
[31]
Go, Y.M.; Chandler, J.D.; Jones, D.P. The cysteine proteome. Free Radic. Biol. Med., 2015, 84, 227-245.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.022] [PMID: 25843657]
[32]
Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med., 2019, 140, 14-27.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.05.035] [PMID: 31201851]
[33]
Rocha, J.B.T.; Saraiva, R.A.; Garcia, S.C.; Gravina, F.S.; Nogueira, C.W. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol. Res. (Camb.), 2012, 1(2), 85-102.
[http://dx.doi.org/10.1039/c2tx20014g]
[34]
Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med., 2015, 80, 148-157.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.11.013] [PMID: 25433365]
[35]
Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev., 2014, 94(3), 739-777.
[http://dx.doi.org/10.1152/physrev.00039.2013] [PMID: 24987004]
[36]
Lu, J.; Holmgren, A. Selenoproteins. J. Biol. Chem., 2009, 284(2), 723-727.
[http://dx.doi.org/10.1074/jbc.R800045200] [PMID: 18757362]
[37]
Johansson, L.; Gafvelin, G.; Arnér, E.S.J. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta, 2005, 1726(1), 1-13.
[http://dx.doi.org/10.1016/j.bbagen.2005.05.010] [PMID: 15967579]
[38]
Huang, Y.; Jahreis, G.; Fischer, G.; Lücke, C. Atomic polarizability dominates the electronic properties of peptide bonds upon thioxo or selenoxo substitution. Chemistry, 2012, 18(32), 9841-9848.
[http://dx.doi.org/10.1002/chem.201200863] [PMID: 22782859]
[39]
Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2179.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243]
[40]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[41]
Singh, V.P.; Singh, H.B.; Butcher, R.J. Synthesis and glutathione peroxidase-like activities of isoselenazolines. Eur. J. Org. Chem., 2011, 3(28), 5485-5497.
[http://dx.doi.org/10.1002/ejoc.201100899]
[42]
Zade, S.S.; Panda, S.; Tripathi, S.K.; Singh, H.B.; Wolmershäuser, G. Convenient synthesis, characterization and GPx-like catalytic activity of novel ebselen derivatives. Eur. J. Org. Chem., 2004, 2004(18), 3857-3864.
[http://dx.doi.org/10.1002/ejoc.200400326]
[43]
Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol., 2021, 95(4), 1179-1226.
[http://dx.doi.org/10.1007/s00204-021-03003-5] [PMID: 33792762]
[44]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 1-25.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[45]
Nogueira, C.W.; Quinhones, E.B.; Jung, E.A.C.; Zeni, G.; Rocha, J.B.T. Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm. Res., 2003, 52(2), 56-63.
[http://dx.doi.org/10.1007/s000110300001] [PMID: 12665122]
[46]
Landgraf, A.D.; Alsegiani, A.S.; Alaqel, S.; Thanna, S.; Shah, Z.A.; Sucheck, S.J. Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration. ACS Chem. Neurosci., 2020, 11(19), 3008-3016.
[http://dx.doi.org/10.1021/acschemneuro.0c00328] [PMID: 32840996]
[47]
Yamaguchi, T.; Sano, K.; Takakura, K.; Saito, I.; Shinohara, Y.; Asano, T.; Yasuhara, H. Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Stroke, 1998, 29(1), 12-17.
[http://dx.doi.org/10.1161/01.STR.29.1.12] [PMID: 9445321]
[48]
Wang, L.; Yang, Z.; Fu, J.; Yin, H.; Xiong, K.; Tan, Q.; Jin, H.; Li, J.; Wang, T.; Tang, W.; Yin, J.; Cai, G.; Liu, M.; Kehr, S.; Becker, K.; Zeng, H. Ethaselen: A potent mammalian thioredoxin reductase 1 inhibitor and novel organoselenium anticancer agent. Free Radic. Biol. Med., 2012, 52(5), 898-908.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.034] [PMID: 22210352]
[49]
Posser, T.; Kaster, M.P.; Baraúna, S.C.; Rocha, J.B.T.; Rodrigues, A.L.S.; Leal, R.B. Antidepressant-like effect of the organoselenium compound ebselen in mice: Evidence for the involvement of the monoaminergic system. Eur. J. Pharmacol., 2009, 602(1), 85-91.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.055] [PMID: 19026628]
[50]
Savegnago, L.; Pinto, L.G.; Jesse, C.R.; Alves, D.; Rocha, J.B.T.; Nogueira, C.W.; Zeni, G. Antinociceptive properties of diphenyl diselenide : Evidences for the mechanism of action. 2007, 555, 129-138.
[51]
Ghisleni, G.; Kazlauckas, V.; Both, F.L.; Pagnussat, N.; Mioranzza, S.; Rocha, J.B.; Souza, D.O.; Porciúncula, L.O.; Porciúncula, L.O. Diphenyl diselenide exerts anxiolytic-like effect in Wistar rats: Putative roles of GABAA and 5HT receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(6), 1508-1515.
[http://dx.doi.org/10.1016/j.pnpbp.2008.05.008] [PMID: 18579279]
[52]
Chew, P.; Yuen, D.Y.C.; Stefanovic, N.; Pete, J.; Coughlan, M.T.; Jandeleit-Dahm, K.A.; Thomas, M.C.; Rosenfeldt, F.; Cooper, M.E.; de Haan, J.B. Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes, 2010, 59(12), 3198-3207.
[http://dx.doi.org/10.2337/db10-0195] [PMID: 20823099]
[53]
Tabuchi, Y.; Sugiyama, N.; Horiuchi, T.; Furusawa, M.; Furuhama, K. Ebselen, a seleno-organic compound, protects against ethanol-induced murine gastric mucosal injury in both in vivo and in vitro systems. Eur. J. Pharmacol., 1995, 272(2-3), 195-201.
[http://dx.doi.org/10.1016/0014-2999(95)90819-U] [PMID: 7713163]
[54]
Saad, S.Y.; Najjar, T.A.; Arafah, M.M. Cardioprotective effects of subcutaneous ebselen against daunorubicin-induced cardiomyopathy in rats. Basic Clin. Pharmacol. Toxicol., 2006, 99(6), 412-417.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_523.x] [PMID: 17169121]
[55]
Kunwar, A.; Priyadarsini, K.I.; Jain, V.K. 3,3′-diselenodipropionic acid (DSePA): A redox active multifunctional molecule of biological relevance. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(1), 129768.
[http://dx.doi.org/10.1016/j.bbagen.2020.129768] [PMID: 33148501]
[56]
Stefanello, S.T.; Rosa, E.J.F.; Amaral, G.P.; Carvalho, N.R.; Luz, C.A.; Bender, C.R.; Schwab, R.S.; Dornelles, L.; Soares, F.A.A. Effect of diselenide administration in thioacetamide-induced acute neurological and hepatic failure in mice. Toxicol. Res. (Camb.), 2015, 4(3), 707-717.
[http://dx.doi.org/10.1039/C4TX00166D]
[57]
Nogara, P.A.; Oliveira, C.S.; Rocha, J.B.T. Chemistry and pharmacology of synthetic organoselenium compounds. In: Organoselenium Chemistry; Ranu, B.C.; Banerjee, B., Eds.; De Gruyter: Berlin, 2020, pp. 305-346.
[http://dx.doi.org/10.1515/9783110625110-008]
[58]
Sharpley, A.L.; Williams, C.; Holder, A.A.; Godlewska, B.R.; Singh, N.; Shanyinde, M.; MacDonald, O.; Cowen, P.J. A phase 2a randomised, double-blind, placebo-controlled, parallel-group, add-on clinical trial of ebselen (SPI-1005) as a novel treatment for mania or hypomania. Psychopharmacology (Berl.), 2020, 237(12), 3773-3782.
[http://dx.doi.org/10.1007/s00213-020-05654-1] [PMID: 32909076]
[59]
Kil, J.; Lobarinas, E.; Spankovich, C.; Griffiths, S.K.; Antonelli, P.J.; Lynch, E.D.; Le Prell, C.G. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 2017, 390(10098), 969-979.
[http://dx.doi.org/10.1016/S0140-6736(17)31791-9] [PMID: 28716314]
[60]
Ogawa, A.; Yoshimoto, T.; Kikuchi, H.; Sano, K.; Saito, I.; Yamaguchi, T.; Yasuhara, H. for the ebselen study group, Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial. Cerebrovasc. Dis., 1999, 9(2), 112-118.
[http://dx.doi.org/10.1159/000015908] [PMID: 9973655]
[61]
Saito, I.; Asano, T.; Sano, K.; Takakura, K.; Abe, H.; Yoshimoto, T.; Kikuchi, H.; Ohta, T.; Ishibashi, S. Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery, 1998, 42(2), 269-277.
[http://dx.doi.org/10.1097/00006123-199802000-00038] [PMID: 9482177]
[62]
Beckman, J.A.; Goldfine, A.B.; Leopold, J.A.; Creager, M.A. Ebselen does not improve oxidative stress and vascular function in patients with diabetes: A randomized, crossover trial. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(6), H1431-H1436.
[http://dx.doi.org/10.1152/ajpheart.00504.2016] [PMID: 27765750]
[63]
Kil, J.; Harruff, E.E.; Longenecker, R.J. Development of ebselen for the treatment of sensorineural hearing loss and tinnitus. Hear. Res., 2022, 413, 108209.
[http://dx.doi.org/10.1016/j.heares.2021.108209] [PMID: 33678494]
[64]
Haritha, C.V.; Sharun, K.; Jose, B. Ebselen, a new candidate therapeutic against SARS-CoV-2. Int. J. Surg., 2020, 84, 53-56.
[http://dx.doi.org/10.1016/j.ijsu.2020.10.018] [PMID: 33120196]
[65]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[66]
Ma, C.; Hu, Y.; Townsend, J.A.; Lagarias, P.I.; Marty, M.T.; Kolocouris, A.; Wang, J. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1265-1277.
[http://dx.doi.org/10.1021/acsptsci.0c00130] [PMID: 33330841]
[67]
Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Burda-Grabowska, M.; Giurg, M.; Brul, S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep., 2021, 11(1), 3640.
[http://dx.doi.org/10.1038/s41598-021-83229-6] [PMID: 33574416]
[68]
Sies, H.; Parnham, M.J. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic. Biol. Med., 2020, 156, 107-112.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.032] [PMID: 32598985]
[69]
Nogara, P.A.; Omage, F.B.; Bolzan, G.R.; Delgado, C.P.; Aschner, M.; Orian, L.; Teixeira Rocha, J.B. In silico studies on the interaction between Mpro and PLpro From SARS-CoV-2 and ebselen, its metabolites and derivatives. Mol. Inform., 2021, 40(8), e2100028.
[http://dx.doi.org/10.1002/minf.202100028] [PMID: 34018687]
[70]
Ren, X.; Zou, L.; Lu, J.; Holmgren, A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic. Biol. Med., 2018, 127, 238-247.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.081] [PMID: 29807162]
[71]
Dong, C.; Zhou, J.; Wang, P.; Li, T.; Zhao, Y.; Ren, X.; Lu, J.; Wang, J.; Holmgren, A.; Zou, L. Topical therapeutic efficacy of ebselen against multidrug-resistant Staphylococcus aureus LT-1 targeting thioredoxin reductase. Front. Microbiol., 2020, 10, 3016.
[http://dx.doi.org/10.3389/fmicb.2019.03016] [PMID: 32010088]
[72]
Linzner, N.; Loi, V.V.; Fritsch, V.N.; Antelmann, H. Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol. Chem., 2020, 402(3), 333-361.
[http://dx.doi.org/10.1515/hsz-2020-0272] [PMID: 33544504]
[73]
Gustafsson, T.N.; Osman, H.; Werngren, J.; Hoffner, S.; Engman, L.; Holmgren, A. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim. Biophys. Acta, 2016, 1860(6), 1265-1271.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.013] [PMID: 26971857]
[74]
Jaromin, A.; Zarnowski, R.; Piętka-Ottlik, M.; Andes, D.R.; Gubernator, J. Topical delivery of ebselen encapsulated in biopolymeric nanocapsules: Drug repurposing enhanced antifungal activity. Nanomedicine (Lond.), 2018, 13(10), 1139-1155.
[http://dx.doi.org/10.2217/nnm-2017-0337] [PMID: 29873597]
[75]
Singh, N.; Halliday, A.C.; Thomas, J.M.; Kuznetsova, O.V.; Baldwin, R.; Woon, E.C.Y.; Aley, P.K.; Antoniadou, I.; Sharp, T.; Vasudevan, S.R.; Churchill, G.C. A safe lithium mimetic for bipolar disorder. Nat. Commun., 2013, 4(1), 1332-1337.
[http://dx.doi.org/10.1038/ncomms2320] [PMID: 23299882]
[76]
Ruberte, A.C.; Plano, D.; Encío, I.; Aydillo, C.; Sharma, A.K.; Sanmartín, C. Novel selenadiazole derivatives as selective antitumor and radical scavenging agents. Eur. J. Med. Chem., 2018, 157, 14-27.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.063] [PMID: 30071406]
[77]
Shi, C.; Yu, L.; Yang, F.; Yan, J.; Zeng, H. A novel organoselenium compound induces cell cycle arrest and apoptosis in prostate cancer cell lines. Biochem. Biophys. Res. Commun., 2003, 309(3), 578-583.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.032] [PMID: 12963029]
[78]
Wu, W.; Yang, Z.; Xiao, X.; An, T.; Li, B.; Ouyang, J.; Li, H.; Wang, C.; Zhang, Y.; Zhang, H.; He, Y.; Zhang, C. A thioredoxin reductase inhibitor ethaselen induces growth inhibition and apoptosis in gastric cancer. J. Cancer, 2020, 11(10), 3013-3019.
[http://dx.doi.org/10.7150/jca.40744] [PMID: 32226516]
[79]
Nogueira, C.W.; Rocha, J.B.T. Diphenyl diselenide a janus-faced molecule. J. Braz. Chem. Soc., 2010, 21(11), 2055-2071.
[http://dx.doi.org/10.1590/S0103-50532010001100006]
[80]
Barbosa, N.B.V.; Rocha, J.B.T.; Zeni, G.; Emanuelli, T.; Beque, M.C.; Braga, A.L. Effect of organic forms of selenium on δ-aminolevulinate dehydratase from liver, kidney, and brain of adult rats. Toxicol. Appl. Pharmacol., 1998, 149(2), 243-253.
[http://dx.doi.org/10.1006/taap.1998.8373] [PMID: 9571994]
[81]
Weisberger, A.S.; Suhrland, L.G. Studies on analogues of L-cysteine and L-cystine. III. The effect of selenium cystine on leukemia. Blood, 1956, 11(1), 19-30.
[http://dx.doi.org/10.1182/blood.V11.1.19.19] [PMID: 13276482]
[82]
Sausen de Freitas, A.; de Souza Prestes, A.; Wagner, C.; Haigert Sudati, J.; Alves, D.; Oliveira Porciúncula, L.; Kade, I.J.; Teixeira Rocha, J.B. Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: A possible novel pathway for their antioxidant activity. Molecules, 2010, 15(11), 7699-7714.
[http://dx.doi.org/10.3390/molecules15117699] [PMID: 21030914]
[83]
Zhao, R.; Masayasu, H.; Holmgren, A. Ebselen: A substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc. Natl. Acad. Sci. USA, 2002, 99(13), 8579-8584.
[http://dx.doi.org/10.1073/pnas.122061399] [PMID: 12070343]
[84]
Sakurai, T.; Kanayama, M.; Shibata, T.; Itoh, K.; Kobayashi, A.; Yamamoto, M.; Uchida, K. Ebselen, a seleno-organic antioxidant, as an electrophile. Chem. Res. Toxicol., 2006, 19(9), 1196-1204.
[http://dx.doi.org/10.1021/tx0601105] [PMID: 16978024]
[85]
Ullrich, V.; Weber, P.; Meisch, F.; von Appen, F. Ebselen-binding equilibria between plasma and target proteins. Biochem. Pharmacol., 1996, 52(1), 15-19.
[http://dx.doi.org/10.1016/0006-2952(96)00109-8] [PMID: 8678900]
[86]
Prigol, M.; Nogueira, C.W.; Zeni, G.; Bronze, M.R.; Constantino, L. In vitro metabolism of diphenyl diselenide in rat liver fractions. Conjugation with GSH and binding to thiol groups. Chem. Biol. Interact., 2012, 200(2-3), 65-72.
[http://dx.doi.org/10.1016/j.cbi.2012.09.007] [PMID: 23022272]
[87]
Sies, H. Metabolism and Disposition of Ebselen. In: Selenium in Biology and Medicine; Springer: Berlin, 1989, pp. 153-162.
[http://dx.doi.org/10.1007/978-3-642-74421-1_30]
[88]
Orian, L.; Toppo, S. Organochalcogen peroxidase mimetics as potential drugs: A long story of a promise still unfulfilled. Free Radic. Biol. Med., 2014, 66, 65-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.006] [PMID: 23499840]
[89]
Nogara, P.A.; Oliveira, C.S.; Schmitz, G.L.; Piquini, P.C.; Farina, M.; Aschner, M.; Rocha, J.B.T. Methylmercury’s chemistry: From the environment to the mammalian brain. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(12), 129284.
[http://dx.doi.org/10.1016/j.bbagen.2019.01.006] [PMID: 30659885]
[90]
Gochfeld, M.; Burger, J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. Environ. Sci. Pollut. Res. Int., 2021, 28(15), 18407-18420.
[http://dx.doi.org/10.1007/s11356-021-12361-7] [PMID: 33507504]
[91]
Ralston, N.V. Effects of soft electrophiles on selenium physiology. Free Radic. Biol. Med., 2018, 127, 134-144.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.07.016] [PMID: 30053507]
[92]
Madabeni, A.; Dalla Tiezza, M.; Omage, F.B.; Nogara, P.A.; Bortoli, M.; Rocha, J.B.T.; Orian, L. Chalcogen-mercury bond formation and disruption in model Rabenstein’s reactions: A computational analysis. J. Comput. Chem., 2020, 41(23), 2045-2054.
[http://dx.doi.org/10.1002/jcc.26371] [PMID: 32656797]
[93]
Meinerz, D.F.; Branco, V.; Aschner, M.; Carvalho, C.; Rocha, J.B.T. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: A comparison with ebselen. J. Appl. Toxicol., 2017, 37(9), 1073-1081.
[http://dx.doi.org/10.1002/jat.3458] [PMID: 28383113]
[94]
Glaser, V.; Moritz, B.; Schmitz, A.; Dafré, A.L.; Nazari, E.M.; Rauh Müller, Y.M.; Feksa, L.; Straliottoa, M.R.; de Bem, A.F.; Farina, M.; da Rocha, J.B.; Latini, A. Protective effects of diphenyl diselenide in a mouse model of brain toxicity. Chem. Biol. Interact., 2013, 206(1), 18-26.
[http://dx.doi.org/10.1016/j.cbi.2013.08.002] [PMID: 23954720]
[95]
Nogara, P.A.; Madabeni, A.; Bortoli, M.; Teixeira Rocha, J.B.; Orian, L. Methylmercury can facilitate the formation of dehydroalanine in selenoenzymes: Insight from DFT molecular modeling. Chem. Res. Toxicol., 2021, 34(6), 1655-1663.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00073] [PMID: 34077192]
[96]
Fenn, G.D.; Waller-Evans, H.; Atack, J.R.; Bax, B.D. Crystallization and structure of ebselen bound to Cys141 of human inositol monophosphatase. Acta Crystallogr. F Struct. Biol. Commun., 2020, 76(Pt 10), 469-476.
[http://dx.doi.org/10.1107/S2053230X20011310] [PMID: 33006574]
[97]
Capper, M.J.; Wright, G.S.A.; Barbieri, L.; Luchinat, E.; Mercatelli, E.; McAlary, L.; Yerbury, J.J.; O’Neill, P.M.; Antonyuk, S.V.; Banci, L.; Hasnain, S.S. The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat. Commun., 2018, 9(1), 1693.
[http://dx.doi.org/10.1038/s41467-018-04114-x] [PMID: 29703933]
[98]
Osipiuk, J.; Tesar, C.; Endres, M.; Maltseva, N.; Joachimiak, A. The crystal structure of Papain-Like Protease of SARS CoV-2, C111S mutant, in complex with ebselen; RSCB PDB, 2020, p. 10.
[99]
de Munnik, M.; Lohans, C.T.; Lang, P.A.; Langley, G.W.; Malla, T.R.; Tumber, A.; Schofield, C.J.; Brem, J. Targeting the Mycobacterium tuberculosis transpeptidase LdtMt2 with cysteine-reactive inhibitors including ebselen. Chem. Commun. (Camb.), 2019, 55(69), 10214-10217.
[http://dx.doi.org/10.1039/C9CC04145A] [PMID: 31380528]
[100]
Goins, C.M.; Dajnowicz, S.; Thanna, S.; Sucheck, S.J.; Parks, J.M.; Ronning, D.R. Exploring covalent allosteric inhibition of antigen 85C from Mycobacterium tuberculosis by ebselen derivatives. ACS Infect. Dis., 2017, 3(5), 378-387.
[http://dx.doi.org/10.1021/acsinfecdis.7b00003] [PMID: 28285521]
[101]
Amporndanai, K.; Rogers, M.; Watanabe, S.; Yamanaka, K.; O’Neill, P.M.; Hasnain, S.S. Novel selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. EBioMedicine, 2020, 59, 102980.
[http://dx.doi.org/10.1016/j.ebiom.2020.102980] [PMID: 32862101]
[102]
Vinogradova, E.V.; Zhang, X.; Remillard, D.; Lazar, D.C.; Suciu, R.M.; Wang, Y.; Bianco, G.; Yamashita, Y.; Crowley, V.M.; Schafroth, M.A.; Yokoyama, M.; Konrad, D.B.; Lum, K.M.; Simon, G.M.; Kemper, E.K.; Lazear, M.R.; Yin, S.; Blewett, M.M.; Dix, M.M.; Nguyen, N.; Shokhirev, M.N.; Chin, E.N.; Lairson, L.L.; Melillo, B.; Schreiber, S.L.; Forli, S.; Teijaro, J.R.; Cravatt, B.F. An activity-guided map of electrophile-cysteine interactions in primary human T cells. Cell, 2020, 182(4), 1009-1026.e29.
[http://dx.doi.org/10.1016/j.cell.2020.07.001] [PMID: 32730809]
[103]
Vinogradova, E.V.; Cravatt, B.F. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells. STAR Protoc., 2021, 2(2), 100458.
[http://dx.doi.org/10.1016/j.xpro.2021.100458] [PMID: 33899026]
[104]
Litwin, K.; Crowley, V.M.; Suciu, R.M.; Boger, D.L.; Cravatt, B.F. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities. Tetrahedron Lett., 2021, 67, 152861.
[http://dx.doi.org/10.1016/j.tetlet.2021.152861] [PMID: 33776155]
[105]
Kuljanin, M.; Mitchell, D.C.; Schweppe, D.K.; Gikandi, A.S.; Nusinow, D.P.; Bulloch, N.J.; Vinogradova, E.V.; Wilson, D.L.; Kool, E.T.; Mancias, J.D.; Cravatt, B.F.; Gygi, S.P. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol., 2021, 39(5), 630-641.
[http://dx.doi.org/10.1038/s41587-020-00778-3] [PMID: 33398154]
[106]
McConnell, E.W.; Smythers, A.L.; Hicks, L.M. Maleimide-based chemical proteomics for quantitative analysis of cysteine reactivity. J. Am. Soc. Mass Spectrom., 2020, 31(8), 1697-1705.
[http://dx.doi.org/10.1021/jasms.0c00116] [PMID: 32573231]
[107]
Bechtel, T.J.; Li, C.; Kisty, E.A.; Maurais, A.J.; Weerapana, E. Profiling cysteine reactivity and oxidation in the endoplasmic reticulum. ACS Chem. Biol., 2020, 15(2), 543-553.
[http://dx.doi.org/10.1021/acschembio.9b01014] [PMID: 31899610]
[108]
Chen, X.; Lee, J.; Wu, H.; Tsang, A.W.; Furdui, C.M. Mass Spectrometry in Advancement of Redox Precision Medicine. In: Advances in experimental medicine and biology; Woods, A.; Darie, C., Eds.; Springer, 2019, Vol. 1140, pp. 327-358.
[109]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[110]
Sudati, J.H.; Nogara, P.A.; Saraiva, R.A.; Wagner, C.; Alberto, E.E.; Braga, A.L.; Fachinetto, R.; Piquini, P.C.; Rocha, J.B.T. Diselenoamino acid derivatives as GPx mimics and as substrates of TrxR: In vitro and in silico studies. Org. Biomol. Chem., 2018, 16(20), 3777-3787.
[http://dx.doi.org/10.1039/C8OB00451J] [PMID: 29737350]
[111]
Sands, K.N.; Back, T.G. Key steps and intermediates in the catalytic mechanism for the reduction of peroxides by the antioxidant ebselen. Tetrahedron, 2018, 74(38), 4959-4967.
[http://dx.doi.org/10.1016/j.tet.2018.05.027]
[112]
Wilson, S.R.; Zucker, P.A.; Huang, R.R.C.; Spector, A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc., 1989, 111(15), 5936-5939.
[http://dx.doi.org/10.1021/ja00197a065]
[113]
Zhao, R.; Holmgren, A. A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase. J. Biol. Chem., 2002, 277(42), 39456-39462.
[http://dx.doi.org/10.1074/jbc.M206452200] [PMID: 12177067]
[114]
Flemer, S., Jr Selenol protecting groups in organic chemistry: Special emphasis on selenocysteine Se-protection in solid phase peptide synthesis. Molecules, 2011, 16(4), 3232-3251.
[http://dx.doi.org/10.3390/molecules16043232] [PMID: 21512438]
[115]
Lenardão, E.J.; Sancineto, L.; Santi, C. New frontiers in organoselenium compounds 2018.
[http://dx.doi.org/10.1007/978-3-319-92405-2]
[116]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[117]
Prabhu, P.; Singh, B.G.; Noguchi, M.; Phadnis, P.P.; Jain, V.K.; Iwaoka, M.; Priyadarsini, K.I. Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org. Biomol. Chem., 2014, 12(15), 2404-2412.
[http://dx.doi.org/10.1039/C3OB42336K] [PMID: 24595821]
[118]
Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem., 1983, 133(1), 51-69.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07429.x] [PMID: 6852035]
[119]
Cho, C.S.; Lee, S.; Lee, G.T.; Woo, H.A.; Choi, E.J.; Rhee, S.G. Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells. Antioxid. Redox Signal., 2010, 12(11), 1235-1246.
[http://dx.doi.org/10.1089/ars.2009.2701] [PMID: 20070187]
[120]
Fritz-Wolf, K.; Kehr, S.; Stumpf, M.; Rahlfs, S.; Becker, K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat. Commun., 2011, 2(1), 383.
[http://dx.doi.org/10.1038/ncomms1382] [PMID: 21750537]
[121]
Bortoli, M.; Wolters, L.P.; Orian, L.; Bickelhaupt, F.M. Addition-elimination or nucleophilic substitution? Understanding the energy profiles for the reaction of chalcogenolates with dichalcogenides. J. Chem. Theory Comput., 2016, 12(6), 2752-2761.
[http://dx.doi.org/10.1021/acs.jctc.6b00253] [PMID: 27096625]
[122]
Orian, L.; Mauri, P.; Roveri, A.; Toppo, S.; Benazzi, L.; Bosello-Travain, V.; De Palma, A.; Maiorino, M.; Miotto, G.; Zaccarin, M.; Polimeno, A.; Flohé, L.; Ursini, F. Selenocysteine oxidation in glutathione peroxidase catalysis: An MS-supported quantum mechanics study. Free Radic. Biol. Med., 2015, 87, 1-14.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.011] [PMID: 26163004]
[123]
Bortoli, M.; Torsello, M.; Bickelhaupt, F.M.; Orian, L. Role of the chalcogen (S, Se, Te) in the oxidation mechanism of the glutathione peroxidase active site. ChemPhysChem, 2017, 18(21), 2990-2998.
[http://dx.doi.org/10.1002/cphc.201700743] [PMID: 28837255]
[124]
Dalla Tiezza, M.; Bickelhaupt, F.M.; Flohé, L.; Maiorino, M.; Ursini, F.; Orian, L. A dual attack on the peroxide bond. The common principle of peroxidatic cysteine or selenocysteine residues. Redox Biol., 2020, 34, 101540.
[http://dx.doi.org/10.1016/j.redox.2020.101540] [PMID: 32428845]
[125]
Morgenstern, R.; Cotgreave, I.A.; Engman, L. Determination of the relative contributions of the diselenide and selenol forms of ebselen in the mechanism of its glutathione peroxidase-like activity. Chem. Biol. Interact., 1992, 84(1), 77-84.
[http://dx.doi.org/10.1016/0009-2797(92)90122-2] [PMID: 1394617]
[126]
Forstrom, J.W.; Stults, F.H.; Tappel, A.L. Rat liver cytosolic glutathione peroxidase: Reactivity with linoleic acid hydroperoxide and cumene hydroperoxide. Arch. Biochem. Biophys., 1979, 193(1), 51-55.
[http://dx.doi.org/10.1016/0003-9861(79)90007-9] [PMID: 453858]
[127]
Antunes, F.; Salvador, A.; Pinto, R.E. PHGPx and phospholipase A2/GPx: Comparative importance on the reduction of hydroperoxides in rat liver mitochondria. Free Radic. Biol. Med., 1995, 19(5), 669-677.
[http://dx.doi.org/10.1016/0891-5849(95)00040-5] [PMID: 8529927]
[128]
de Bem, A.F.; Fiuza, B.; Calcerrada, P.; Brito, P.M.; Peluffo, G.; Dinis, T.C.P.; Trujillo, M.; Rocha, J.B.T.; Radi, R.; Almeida, L.M. Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: A comparison with ebselen. Nitric Oxide, 2013, 31, 20-30.
[http://dx.doi.org/10.1016/j.niox.2013.03.003] [PMID: 23518198]
[129]
Singh, R.; Whitesides, G.M. Selenols catalyze the interchange reactions of dithiols and disulfides in water. J. Org. Chem., 1991, 56(24), 6931-6933.
[http://dx.doi.org/10.1021/jo00024a041]
[130]
Galant, L.S.; Rafique, J.; Braga, A.L.; Braga, F.C.; Saba, S.; Radi, R.; da Rocha, J.B.T.; Santi, C.; Monsalve, M.; Farina, M.; de Bem, A.F. The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem. Res., 2021, 46(1), 120-130.
[http://dx.doi.org/10.1007/s11064-020-03026-x] [PMID: 32285377]
[131]
Larabee, J.L.; Hocker, J.R.; Hanas, J.S. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite. J. Inorg. Biochem., 2009, 103(3), 419-426.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.12.007] [PMID: 19167089]
[132]
Blessing, H.; Kraus, S.; Heindl, P.; Bal, W.; Hartwig, A. Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur. J. Biochem., 2004, 271(15), 3190-3199.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04251.x] [PMID: 15265038]
[133]
Lutz, P.B.; Bayse, C.A. Chalcogen bonding interactions between reducible sulfur and selenium compounds and models of zinc finger proteins. J. Inorg. Biochem., 2016, 157, 94-103.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.01.013] [PMID: 26877152]
[134]
Müller, S.G.; Jardim, N.S.; Quines, C.B.; Nogueira, C.W. Diphenyl diselenide regulates Nrf2/Keap-1 signaling pathway and counteracts hepatic oxidative stress induced by bisphenol A in male mice. Environ. Res., 2018, 164, 280-287.
[http://dx.doi.org/10.1016/j.envres.2018.03.006] [PMID: 29554619]
[135]
Tamasi, V.; Jeffries, J.M.; Arteel, G.E.; Falkner, K.C. Ebselen augments its peroxidase activity by inducing nrf-2-dependent transcription. Arch. Biochem. Biophys., 2004, 431(2), 161-168.
[http://dx.doi.org/10.1016/j.abb.2004.07.030] [PMID: 15488464]
[136]
Satoh, T.; Ishige, K.; Sagara, Y. Protective effects on neuronal cells of mouse afforded by ebselen against oxidative stress at multiple steps. Neurosci. Lett., 2004, 371(1), 1-5.
[http://dx.doi.org/10.1016/j.neulet.2004.04.055] [PMID: 15500956]
[137]
Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013, 1(1), 45-49.
[http://dx.doi.org/10.1016/j.redox.2012.10.001] [PMID: 24024136]
[138]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[139]
Kobayashi, M.; Li, L.; Iwamoto, N.; Nakajima-Takagi, Y.; Kaneko, H.; Nakayama, Y.; Eguchi, M.; Wada, Y.; Kumagai, Y.; Yamamoto, M. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol., 2009, 29(2), 493-502.
[http://dx.doi.org/10.1128/MCB.01080-08] [PMID: 19001094]
[140]
Takaya, K.; Suzuki, T.; Motohashi, H.; Onodera, K.; Satomi, S.; Kensler, T.W.; Yamamoto, M. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic. Biol. Med., 2012, 53(4), 817-827.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.023] [PMID: 22732183]
[141]
Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci., 2014, 39(3), 112-120.
[http://dx.doi.org/10.1016/j.tibs.2013.12.007] [PMID: 24485058]
[142]
Fischer, H.; Terlinden, R.; Löhr, J.P.; Römer, A. A novel biologically active selenoorganic compound. VIII. Biotransformation of ebselen. Xenobiotica, 1988, 18(12), 1347-1359.
[http://dx.doi.org/10.3109/00498258809042259] [PMID: 3271007]
[143]
Müller, A.; Gabriel, H.; Sies, H.; Terlinden, R.; Fischer, H.; Römer, A. A novel biologically active selenooorganic compound--VII. Biotransformation of ebselen in perfused rat liver. Biochem. Pharmacol., 1988, 37(6), 1103-1109.
[http://dx.doi.org/10.1016/0006-2952(88)90517-5] [PMID: 3355585]
[144]
Parnham, M.; Sies, H. Ebselen: Prospective therapy for cerebral ischaemia. Expert Opin. Investig. Drugs, 2000, 9(3), 607-619.
[http://dx.doi.org/10.1517/13543784.9.3.607] [PMID: 11060699]
[145]
Schewe, T. Molecular actions of ebselen - an antiinflammatory antioxidant. Gen. Pharmacol., 1995, 26(6), 1153-1169.
[http://dx.doi.org/10.1016/0306-3623(95)00003-J] [PMID: 7590103]
[146]
Wagner, G.; Schuch, G.; Akerboom, T.P.M.; Sies, H. Transport of ebselen in plasma and its transfer to binding sites in the hepatocyte. Biochem. Pharmacol., 1994, 48(6), 1137-1144.
[http://dx.doi.org/10.1016/0006-2952(94)90150-3] [PMID: 7945407]
[147]
Ziegler, D.M.; Graf, P.; Poulsen, L.L.; Stahl, W.; Sies, H. NADPH-dependent oxidation of reduced ebselen, 2-selenylbenzanilide, and of 2-(methylseleno)benzanilide catalyzed by pig liver flavin-containing monooxygenase. Chem. Res. Toxicol., 1992, 5(2), 163-166.
[http://dx.doi.org/10.1021/tx00026a004] [PMID: 1643246]
[148]
Parnham, M.J.; Sies, H. The early research and development of ebselen. Biochem. Pharmacol., 2013, 86(9), 1248-1253.
[http://dx.doi.org/10.1016/j.bcp.2013.08.028] [PMID: 24012716]
[149]
Antony, S.; Bayse, C.A. Modeling the mechanism of the glutathione peroxidase mimic ebselen. Inorg. Chem., 2011, 50(23), 12075-12084.
[http://dx.doi.org/10.1021/ic201603v] [PMID: 22059718]
[150]
Tripathi, A.; Daolio, A.; Pizzi, A.; Guo, Z.; Turner, D.R.; Baggioli, A.; Famulari, A.; Deacon, G.B.; Resnati, G.; Singh, H.B. Chalcogen bonds in selenocysteine seleninic acid, a functional GPx constituent, and in other seleninic or sulfinic acid derivatives. Chem. Asian J., 2021, 16(16), 2351-2360.
[http://dx.doi.org/10.1002/asia.202100545] [PMID: 34214252]
[151]
Kumar, S.; Singh, H.B.; Wolmershäuser, G. Protection against peroxynitrite-mediated nitration reaction by intramolecularly coordinated diorganoselenides. Organometallics, 2006, 25(2), 382-393.
[http://dx.doi.org/10.1021/om050353c]
[152]
Singh, F.V.; Wirth, T. Selenium reagents as catalysts. Catal. Sci. Technol., 2019, 9(5), 1073-1091.
[http://dx.doi.org/10.1039/C8CY02274G]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy