Review Article

Circulating MicroRNAs as a New Class of Biomarkers of Physiological Reactions of the Organism to the Intake of Dietary Supplements and Drugs

Author(s): Pavel V. Postnikov, Yulia A. Efimova and Irina V. Pronina*

Volume 11, Issue 1, 2022

Published on: 23 May, 2022

Page: [25 - 35] Pages: 11

DOI: 10.2174/2211536611666220422123437

Price: $65

Abstract

Background: The analysis of individual microRNAs (miRNAs) as a diagnostic and prognostic tool for the effective treatment of various diseases has aroused particular interest in the scientific community. The determination of circulating miRNAs makes it possible to assess biological changes associated with nutritional processes, the intake of dietary supplements and drugs, etc. The profile of circulating miRNAs reflects the individual adaptation of the organism to the effect of specific environmental conditions.

Objective: The objective of this study is to systematize the data and show the importance of circulating miRNAs as new potential biomarkers of the organism's response to the intake of various dietary supplements, drugs, and consider the possibility of their use in doping control.

Methods: A systematic analysis of scientific publications (ncbi.nlm.nih.gov) on the miRNA expression profile in response to the intake of dietary supplements and drugs most often used by athletes, and supposed their role as potential markers in modern doping control was carried out.

Results: The profile of circulating miRNAs is highly dependent on the intake of a particular drug, and, therefore, may be used as a marker of the effects of biologically active supplements and drugs including the substances from the Prohibited List of the World Anti-Doping Agency (WADA).

Conclusion: Monitoring of circulating miRNAs can serve as a high-precision marker for detecting doping abuse in elite sports. However, it is necessary to conduct additional studies on the effect of complex drugs on the profile of circulating miRNAs and individual circulating miRNAs on a particular biological process.

Keywords: microRNA biomarkers, biologically active supplements, medical supplies, drugs, doping, dietary supplements.

Graphical Abstract

[1]
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56(11): 1733-41.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[2]
Zenz T, Mohr J, Eldering E, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009; 113(16): 3801-8.
[http://dx.doi.org/10.1182/blood-2008-08-172254] [PMID: 18941118]
[3]
Mahesh G, Biswas R. MicroRNA-155: A master regulator of inflammation. J Interferon Cytokine Res 2019; 39(6): 321-30.
[http://dx.doi.org/10.1089/jir.2018.0155] [PMID: 30998423]
[4]
Kamity R, Sharma S, Hanna N. MicroRNA-mediated control of inflammation and tolerance in pregnancy. Front Immunol 2019; 10: 718.
[http://dx.doi.org/10.3389/fimmu.2019.00718] [PMID: 31024550]
[5]
Baggish AL, Hale A, Weiner RB, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol 2011; 589(16): 3983-94.
[http://dx.doi.org/10.1113/jphysiol.2011.213363] [PMID: 21690193]
[6]
Pfaff N, Moritz T, Thum T, Cantz T. miRNAs involved in the generation, maintenance, and differentiation of pluripotent cells. J Mol Med (Berl) 2012; 90(7): 747-52.
[http://dx.doi.org/10.1007/s00109-012-0922-z] [PMID: 22684238]
[7]
Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 2005; 33(4): 1290-7.
[http://dx.doi.org/10.1093/nar/gki200] [PMID: 15741182]
[8]
Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39(1): 133-44.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010] [PMID: 20603081]
[9]
Ponzetto F, Giraud S, Leuenberger N, et al. Methods for doping detection. Front Horm Res 2016; 47: 153-67.
[http://dx.doi.org/10.1159/000445177] [PMID: 27348309]
[10]
Sessa F, Salerno M, Di Mizio G, et al. Anabolic androgenic steroids: Searching new molecular biomarkers. Front Pharmacol 2018; 9: 1321.
[http://dx.doi.org/10.3389/fphar.2018.01321] [PMID: 30524281]
[11]
Salamin O, Jaggi L, Baume N, Robinson N, Saugy M, Leuenberger N. Circulating microRNA-122 as potential biomarker for detection of testosterone abuse. PLoS One 2016; 11(5): e0155248.
[http://dx.doi.org/10.1371/journal.pone.0155248] [PMID: 27171140]
[12]
Keane J, Tajouri L, Gray B. The effect of growth hormone administration on the regulation of mitochondrial apoptosis in-vivo. Int J Mol Sci 2015; 16(12): 12753-72.
[http://dx.doi.org/10.3390/ijms160612753] [PMID: 26057745]
[13]
Kelly BN, Haverstick DM, Lee JK, et al. Circulating microRNA as a biomarker of human growth hormone administration to patients. Drug Test Anal 2014; 6(3): 234-8.
[http://dx.doi.org/10.1002/dta.1469] [PMID: 23495241]
[14]
Lehtihet M, Bhuiyan H, Dalby A, Ericsson M, Ekström L. Longitudinally monitoring of P‐III‐NP, IGF‐I, and GH‐2000 score increases the probability of detecting two weeks’ administration of low‐dose recombinant growth hormone compared to GH‐2000 decision limit and GH isoform test and micro RNA markers. Drug Test Anal 2019; 11(3): 411-21.
[http://dx.doi.org/10.1002/dta.2506] [PMID: 30223291]
[15]
Leuenberger N, Schumacher YO, Pradervand S, Sander T, Saugy M, Pottgiesser T. Circulating microRNAs as biomarkers for detection of autologous blood transfusion. PLoS One 2013; 8(6): e66309.
[http://dx.doi.org/10.1371/journal.pone.0066309] [PMID: 23840438]
[16]
Leuenberger N, Jan N, Pradervand S, Robinson N, Saugy M. Circulating microRNAs as long-term biomarkers for the detection of erythro-poiesis-stimulating agent abuse. Drug Test Anal 2011; 3(11-12): 771-6.
[http://dx.doi.org/10.1002/dta.370] [PMID: 22113880]
[17]
Yu SL, Chen HY, Chang GC, et al. MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 2008; 13(1): 48-57.
[http://dx.doi.org/10.1016/j.ccr.2007.12.008] [PMID: 18167339]
[18]
Salerno M, Cascio O, Bertozzi G, et al. Anabolic androgenic steroids and carcinogenicity focusing on Leydig cell: A literature review. Oncotarget 2018; 9(27): 19415-26.
[http://dx.doi.org/10.18632/oncotarget.24767] [PMID: 29721213]
[19]
Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 2009; 32(4): 199-206.
[http://dx.doi.org/10.1016/j.tins.2008.12.003] [PMID: 19268374]
[20]
Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science 2005; 308(5721): 557-60.
[http://dx.doi.org/10.1126/science.1108784] [PMID: 15845854]
[21]
Eisenberg I, Eran A, Nishino I, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA 2007; 104(43): 17016-21.
[http://dx.doi.org/10.1073/pnas.0708115104] [PMID: 17942673]
[22]
Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin B. MicroRNA signatures as future biomarkers for diagnosis of dia-betes states. Cells 2019; 8(12): 1533.
[http://dx.doi.org/10.3390/cells8121533] [PMID: 31795194]
[23]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[24]
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294(5543): 853-8.
[http://dx.doi.org/10.1126/science.1064921] [PMID: 11679670]
[25]
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev 2002; 16(13): 1616-26.
[http://dx.doi.org/10.1101/gad.1004402] [PMID: 12101121]
[26]
Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411(2): 325-43.
[http://dx.doi.org/10.1016/j.virol.2011.01.002] [PMID: 21277611]
[27]
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34(90001): D140-4.
[http://dx.doi.org/10.1093/nar/gkj112] [PMID: 16381832]
[28]
Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006; 22(3): 165-73.
[http://dx.doi.org/10.1016/j.tig.2006.01.003] [PMID: 16446010]
[29]
Ghorai A, Ghosh U. miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcrip-tion or post-transcriptional processing of coding genes. Front Genet 2014; 5: 100.
[http://dx.doi.org/10.3389/fgene.2014.00100] [PMID: 24808907]
[30]
Lujambio A, Calin GA, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008; 105(36): 13556-61.
[http://dx.doi.org/10.1073/pnas.0803055105] [PMID: 18768788]
[31]
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[32]
Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet 2003; 35(3): 215-7.
[http://dx.doi.org/10.1038/ng1253] [PMID: 14528307]
[33]
Suh MR, Lee Y, Kim JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004; 270(2): 488-98.
[http://dx.doi.org/10.1016/j.ydbio.2004.02.019] [PMID: 15183728]
[34]
Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ. Characterization of dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 2005; 102(34): 12135-40.
[http://dx.doi.org/10.1073/pnas.0505479102] [PMID: 16099834]
[35]
Kura B, Parikh M, Slezak J, Pierce GN. The influence of diet on MicroRNAs that impact cardiovascular disease. Molecules 2019; 24(8): 1509.
[http://dx.doi.org/10.3390/molecules24081509] [PMID: 30999630]
[36]
Parikh M, Kura B, O’Hara KA, et al. Cardioprotective effects of dietary flaxseed post-infarction are associated with changes in MicroRNA expression. Biomolecules 2020; 10(9): 1297.
[http://dx.doi.org/10.3390/biom10091297] [PMID: 32911872]
[37]
Brisswalter J, Louis J. Vitamin supplementation benefits in master athletes. Sports Med 2014; 44(3): 311-8.
[http://dx.doi.org/10.1007/s40279-013-0126-x] [PMID: 24323888]
[38]
Di Luigi L. Supplements and the endocrine system in athletes. Clin Sports Med 2008; 27(1): 131-51. ix.
[http://dx.doi.org/10.1016/j.csm.2007.09.003] [PMID: 18206572]
[39]
Fisher JN, Terao M, Fratelli M, et al. MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget 2015; 6(15): 13176-200.
[http://dx.doi.org/10.18632/oncotarget.3759] [PMID: 25961594]
[40]
Khan S, Wall D, Curran C, Newell J, Kerin MJ, Dwyer RM. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 2015; 15(1): 345.
[http://dx.doi.org/10.1186/s12885-015-1374-y] [PMID: 25934412]
[41]
Warth SC, Hoefig KP, Hiekel A, et al. Induced miR‐99a expression represses Mtor cooperatively with miR‐150 to promote regulatory T‐cell differentiation. EMBO J 2015; 34(9): 1195-213.
[http://dx.doi.org/10.15252/embj.201489589] [PMID: 25712478]
[42]
Wang Z, Fan X, Zhang R, et al. Integrative analysis of mRNA and miRNA array data reveals the suppression of retinoic acid pathway in regulatory T cells of Graves’ disease. J Clin Endocrinol Metab 2014; 99(12): E2620-7.
[http://dx.doi.org/10.1210/jc.2014-1883] [PMID: 25233152]
[43]
Beckett EL, Yates Z, Veysey M, Duesing K, Lucock M. The role of vitamins and minerals in modulating the expression of microRNA. Nutr Res Rev 2014; 27(1): 94-106.
[http://dx.doi.org/10.1017/S0954422414000043] [PMID: 24814762]
[44]
Wang XS, Gong JN, Yu J, et al. MicroRNA-29a and microRNA-142-3p are regulators of myeloid differentiation and acute myeloid leuke-mia. Blood 2012; 119(21): 4992-5004.
[http://dx.doi.org/10.1182/blood-2011-10-385716] [PMID: 22493297]
[45]
Hung PS, Chen FC, Kuang SH, Kao SY, Lin SC, Chang KW. miR-146a induces differentiation of periodontal ligament cells. J Dent Res 2010; 89(3): 252-7.
[http://dx.doi.org/10.1177/0022034509357411] [PMID: 20110513]
[46]
Rimbach G, Moehring J, Huebbe P, Lodge JK. Gene-regulatory activity of α-tocopherol. Molecules 2010; 15(3): 1746-61.
[http://dx.doi.org/10.3390/molecules15031746] [PMID: 20336011]
[47]
Khan AA, Agarwal H, Reddy SS, et al. MicroRNA 27a is a key modulator of cholesterol biosynthesis. Mol Cell Biol 2020; 40(9): e00470-19.
[http://dx.doi.org/10.1128/MCB.00470-19] [PMID: 32071155]
[48]
Gwee Sian Khee S, Mohd Yusof YA, Makpol S. Expression of senescence-associated microRNAs and target genes in cellular aging and modulation by tocotrienol-rich fraction. Oxid Med Cell Longev 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/725929] [PMID: 25132913]
[49]
Fiorino S, Bacchi-Reggiani L, Sabbatani S, et al. Possible role of tocopherols in the modulation of host microRNA with potential antiviral activity in patients with hepatitis B virus-related persistent infection: A systematic review. Br J Nutr 2014; 112(11): 1751-68.
[http://dx.doi.org/10.1017/S0007114514002839] [PMID: 25325563]
[50]
Nabokina SM, Ramos MB, Said HM. Mechanism(S) involved in the colon-specific expression of the thiamine pyrophosphate (Tpp) trans-porter. PLoS One 2016; 11(2): e0149255.
[http://dx.doi.org/10.1371/journal.pone.0149255] [PMID: 26901654]
[51]
Li C. e C, Zhou Y, Yu W. Candidate genes and potential mechanisms for chemoradiotherapy sensitivity in locally advanced rectal cancer. Oncol Lett 2019; 17(5): 4494-504.
[http://dx.doi.org/10.3892/ol.2019.10087] [PMID: 30944639]
[52]
Ramamoorthy K, Anandam KY, Yasujima T, Srinivasan P, Said HM. Posttranscriptional regulation of thiamin transporter-1 expression by microRNA-200a-3p in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 319(3): G323-32.
[http://dx.doi.org/10.1152/ajpgi.00178.2020] [PMID: 32683950]
[53]
Kim S, Rhee J, Yoo HJ, et al. Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer. Cancer Lett 2015; 357(2): 488-97.
[http://dx.doi.org/10.1016/j.canlet.2014.11.058] [PMID: 25484137]
[54]
Beckett EL, Martin C, Choi JH, et al. Folate status, folate-related genes and serum miR-21 expression: Implications for miR-21 as a bi-omarker. BBA Clin 2015; 4: 45-51.
[http://dx.doi.org/10.1016/j.bbacli.2015.06.006] [PMID: 26674922]
[55]
Yadav DK, Shrestha S, Lillycrop KA, et al. Vitamin B 12 supplementation influences methylation of genes associated with Type 2 diabetes and its intermediate traits. Epigenomics 2018; 10(1): 71-90.
[http://dx.doi.org/10.2217/epi-2017-0102] [PMID: 29135286]
[56]
Mahajan A, Sapehia D, Thakur S, Mohanraj PS, Bagga R, Kaur J. Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep 2019; 9(1): 17602.
[http://dx.doi.org/10.1038/s41598-019-54070-9] [PMID: 31772242]
[57]
He CS, Aw Yong XH, Walsh NP, Gleeson M. Is there an optimal vitamin D status for immunity in athletes and military personnel? Exerc Immunol Rev 2016; 22: 42-64.
[PMID: 26853300]
[58]
Lanteri P, Lombardi G, Colombini A, Banfi G. Vitamin D in exercise: Physiologic and analytical concerns. Clin Chim Acta 2013; 415: 45-53.
[http://dx.doi.org/10.1016/j.cca.2012.09.004] [PMID: 22975529]
[59]
Giangreco AA, Nonn L. The sum of many small changes: MicroRNAs are specifically and potentially globally altered by vitamin D3 me-tabolites. J Steroid Biochem Mol Biol 2013; 136: 86-93.
[http://dx.doi.org/10.1016/j.jsbmb.2013.01.001] [PMID: 23333596]
[60]
Jorde R, Svartberg J, Joakimsen RM, Coucheron DH. Plasma profile of microRNA after supplementation with high doses of vitamin D3 for 12 months. BMC Res Notes 2012; 5(1): 245.
[http://dx.doi.org/10.1186/1756-0500-5-245] [PMID: 22594500]
[61]
Lombardi G, Lippi G, Banfi G. Iron requirements and iron status of athletesSports Nutrition. NJ, USA: Wiley-Blackwell, John Wiley & Sons 2013; pp. 229-41.
[http://dx.doi.org/10.1002/9781118692318.ch19]
[62]
Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta Mol Basis Dis 2015; 1852(7): 1347-59.
[http://dx.doi.org/10.1016/j.bbadis.2015.03.011] [PMID: 25843914]
[63]
Weitz SH, Gong M, Barr I, Weiss S, Guo F. Processing of microRNA primary transcripts requires heme in mammalian cells. Proc Natl Acad Sci USA 2014; 111(5): 1861-6.
[http://dx.doi.org/10.1073/pnas.1309915111] [PMID: 24449907]
[64]
Pogue AI, Percy ME, Cui JG, et al. Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human as-troglial (HAG) primary cell cultures. J Inorg Biochem 2011; 105(11): 1434-7.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.012] [PMID: 22099153]
[65]
Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 2012; 26(2-3): 66-9.
[http://dx.doi.org/10.1016/j.jtemb.2012.04.004] [PMID: 22664333]
[66]
Ryu MS, Langkamp-Henken B, Chang SM, Shankar MN, Cousins RJ. Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis. Proc Natl Acad Sci USA 2011; 108(52): 20970-5.
[http://dx.doi.org/10.1073/pnas.1117207108] [PMID: 22171008]
[67]
Huang Y, Jia Z, Xu Y, Qin M, Feng S. Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of mi-croRNA-155 and PI3K/Akt signaling pathways. Genet Mol Biol 2020; 43(3): e20190153.
[http://dx.doi.org/10.1590/1678-4685-gmb-2019-0153] [PMID: 32511663]
[68]
Kocic H, Damiani G, Stamenkovic B, et al. Dietary compounds as potential modulators of microRNA expression in psoriasis. Ther Adv Chronic Dis 2019; 10: 2040622319864805.
[http://dx.doi.org/10.1177/2040622319864805] [PMID: 31431821]
[69]
Beck R, Chandi M, Kanke M, Stýblo M, Sethupathy P. Arsenic is more potent than cadmium or manganese in disrupting the INS-1 beta cell microRNA landscape. Arch Toxicol 2019; 93(11): 3099-109.
[http://dx.doi.org/10.1007/s00204-019-02574-8] [PMID: 31555879]
[70]
Becker N, Lockwood CM. Pre-analytical variables in miRNA analysis. Clin Biochem 2013; 46(10-11): 861-8.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.02.015] [PMID: 23466658]
[71]
Chen J, Xu X. Diet, epigenetic, and cancer prevention. Adv Genet 2010; 71: 237-55.
[http://dx.doi.org/10.1016/B978-0-12-380864-6.00008-0] [PMID: 20933131]
[72]
Gollucke A, Peres R, Jr O, Ribeiro D. Polyphenols: a nutraceutical approach against diseases. Recent Pat Food Nutr Agric 2014; 5(3): 214-9.
[http://dx.doi.org/10.2174/2212798405666131129153239] [PMID: 24294942]
[73]
Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human MicroRNA modulation. Molecules 2019; 25(1): 63.
[http://dx.doi.org/10.3390/molecules25010063] [PMID: 31878082]
[74]
Rasheed Z, Rasheed N, Al-Shaya O. Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1β-stimulated hu-man osteoarthritis chondrocytes: Potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5. Eur J Nutr 2018; 57(3): 917-28.
[http://dx.doi.org/10.1007/s00394-016-1375-x] [PMID: 28110479]
[75]
Shin S, Kim K, Lee MJ, et al. Epigallocatechin gallate-mediated alteration of the MicroRNA expression profile in 5α-dihydrotestosterone-treated human dermal papilla cells. Ann Dermatol 2016; 28(3): 327-34.
[http://dx.doi.org/10.5021/ad.2016.28.3.327] [PMID: 27274631]
[76]
Tili E, Michaille JJ. Resveratrol, microRNAs, inflammation, and cancer. J Nucleic Acids 2011; 2011: 102431.
[http://dx.doi.org/10.4061/2011/102431] [PMID: 21845215]
[77]
Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 2017; 146: 47-94.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.013] [PMID: 28253991]
[78]
Tili E, Michaille JJ, Adair B, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 2010; 31(9): 1561-6.
[http://dx.doi.org/10.1093/carcin/bgq143] [PMID: 20622002]
[79]
Sakai A, Suzuki H. microRNA and Pain. Adv Exp Med Biol 2015; 888: 17-39.
[http://dx.doi.org/10.1007/978-3-319-22671-2_3] [PMID: 26663177]
[80]
Lötsch J, Doehring A, Mogil JS, Arndt T, Geisslinger G, Ultsch A. Functional genomics of pain in analgesic drug development and therapy. Pharmacol Ther 2013; 139(1): 60-70.
[http://dx.doi.org/10.1016/j.pharmthera.2013.04.004] [PMID: 23567662]
[81]
World anti-doping agency prohibited list 2021. 2021. Available from: https://www.wada-ama.org/sites/default/files/resources/files/2021list_en.pdf (Accessed September 09, 2021).
[82]
Jeon BS, Lee S, Hwang SR, et al. Identification of urinary microRNA biomarkers for in vivo gentamicin-induced nephrotoxicity models. J Vet Sci 2020; 21(6): e81.
[http://dx.doi.org/10.4142/jvs.2020.21.e81] [PMID: 33263228]
[83]
Becker E, Bengs S, Aluri S, et al. Doxycycline, metronidazole and isotretinoin: Do they modify microRNA/mRNA expression profiles and function in murine T-cells? Sci Rep 2016; 6(1): 37082.
[http://dx.doi.org/10.1038/srep37082] [PMID: 27853192]
[84]
Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet 2014; 29(4): 333-40.
[http://dx.doi.org/10.2133/dmpk.DMPK-13-RG-114] [PMID: 24552687]
[85]
Vliegenthart ADB, Shaffer JM, Clarke JI, et al. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci Rep 2015; 5(1): 15501.
[http://dx.doi.org/10.1038/srep15501] [PMID: 26489516]
[86]
Yang X, Salminen WF, Shi Q, et al. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol Appl Pharmacol 2015; 284(2): 180-7.
[http://dx.doi.org/10.1016/j.taap.2015.02.013] [PMID: 25708609]
[87]
Wong A, Nejad C, Gantier M, Choy KW, Doery J, Graudins A. MicroRNA from a 12-h versus 20-h acetylcysteine infusion for paracetamol overdose. Hum Exp Toxicol 2019; 38(6): 646-54.
[http://dx.doi.org/10.1177/0960327119833740] [PMID: 30838890]
[88]
Vliegenthart ADB, Antoine DJ, Dear JW. Target biomarker profile for the clinical management of paracetamol overdose. Br J Clin Pharmacol 2015; 80(3): 351-62.
[http://dx.doi.org/10.1111/bcp.12699] [PMID: 26076366]
[89]
Yu C, Zhang X, Sun X, et al. Ketoprofen and MicroRNA-124 Co-loaded poly (lactic-co-glycolic acid) microspheres inhibit progression of Adjuvant-induced arthritis in rats. Int J Pharm 2018; 552(1-2): 148-53.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.063] [PMID: 30268854]
[90]
Zhao M, Yao J, Meng X, et al. Polyketal nanoparticles co-loaded with miR-124 and Ketoprofen for Treatment of Rheumatoid Arthritis. J Pharm Sci 2021; 110(5): 2233-40.
[http://dx.doi.org/10.1016/j.xphs.2021.01.024] [PMID: 33516754]
[91]
Dong Z, Jiang H, Jian X, Zhang W. Change of miRNA expression profiles in patients with knee osteoarthritis before and after celecoxib treatment. J Clin Lab Anal 2019; 33(1): e22648.
[http://dx.doi.org/10.1002/jcla.22648] [PMID: 30105874]
[92]
Kim D, Nguyen QT, Lee J, et al. Anti-inflammatory roles of glucocorticoids are mediated by Foxp3+ regulatory T Cells via a miR-342-dependent mechanism. Immunity 2020; 53(3): 581-596.e5.
[http://dx.doi.org/10.1016/j.immuni.2020.07.002] [PMID: 32707034]
[93]
Li J, Panganiban R, Kho AT, et al. Circulating microRNAs and treatment response in childhood asthma. Am J Respir Crit Care Med 2020; 202(1): 65-72.
[http://dx.doi.org/10.1164/rccm.201907-1454OC] [PMID: 32272022]
[94]
Kang H, Chen H, Huang P, et al. Glucocorticoids impair bone formation of bone marrow stromal stem cells by reciprocally regulating mi-croRNA-34a-5p. Osteoporos Int 2016; 27(4): 1493-505.
[http://dx.doi.org/10.1007/s00198-015-3381-x] [PMID: 26556739]
[95]
Athlete biological passport operating guidelines. Available from: https://www.wada-ama.org/sites/default/files/resources/files/guidelines_abp_v8_final.pdf (Accessed October 13, 2021).
[96]
Lombardi G, Lanteri P, Colombini A, Lippi G, Banfi G. Stability of haematological parameters and its relevance on the athlete’s biological passport model. Sports Med 2011; 41(12): 1033-42.
[http://dx.doi.org/10.2165/11591460-000000000-00000] [PMID: 22060177]
[97]
Robinson N, Giraud S, Schumacher YO, Saugy M. Influence of transport and time on blood variables commonly measured for the athlete biological passport. Drug Test Anal 2016; 8(2): 199-207.
[http://dx.doi.org/10.1002/dta.1804] [PMID: 25924812]
[98]
Ashenden M, Sharpe K, Plowman J, et al. Stability of athlete blood passport parameters during air freight. Int J Lab Hematol 2014; 36(5): 505-13.
[http://dx.doi.org/10.1111/ijlh.12178] [PMID: 24373122]
[99]
Schumacher YO, Klodt F, Nonis D, et al. The impact of long-haul air travel on variables of the athlete’s biological passport. Int J Lab Hematol 2012; 34(6): 641-7.
[http://dx.doi.org/10.1111/j.1751-553X.2012.01450.x] [PMID: 22805050]
[100]
Lippi G, Lima-Oliveira G, Salvagno GL, et al. Influence of a light meal on routine haematological tests. Blood Transfus 2010; 8(2): 94-9.
[http://dx.doi.org/10.2450/2009.0142-09] [PMID: 20383302]
[101]
Leuenberger N, Baume N, Robinson N, Saugy M. Pre-analytical and analytical aspects of EDTA-plasma iron measurement. Drug Test Anal 2016; 8(10): 1077-9.
[http://dx.doi.org/10.1002/dta.1934] [PMID: 27187526]
[102]
Leuenberger N, Saugy M. Circulating microRNAs: the future of biomarkers in antidoping field. Adv Exp Med Biol 2015; 888: 401-8.
[http://dx.doi.org/10.1007/978-3-319-22671-2_20] [PMID: 26663194]
[103]
Loup B, André F, Avignon J, et al. miRNAs detection in equine plasma by quantitative polymerase chain reaction for doping control: As-sessment of blood sampling and study of eca-miR-144 as potential erythropoiesis stimulating agent biomarker. Drug Test Anal 2022; 14(5): 953-62.
[http://dx.doi.org/10.1002/dta.3047] [PMID: 33860991]
[104]
Marchand A, Roulland I, Semence F, Schröder K, Domergue V, Audran M. Detection of hypoxia-regulated MicroRNAs in blood as poten-tial biomarkers of HIF stabilizer molidustat. MicroRNA 2019; 8(3): 189-97.
[http://dx.doi.org/10.2174/2211536608666190117170317] [PMID: 30657053]
[105]
Ebert B, Jelkmann W. Intolerability of cobalt salt as erythropoietic agent. Drug Test Anal 2014; 6(3): 185-9.
[http://dx.doi.org/10.1002/dta.1528] [PMID: 24039233]
[106]
Pronina IV, Mochalova ES, Efimova YA, Postnikov PV. Biological functions of cobalt and its toxicology and detection in anti-doping con-trol. Fine Chemical Technologies 2021; 16(4): 318-36.
[http://dx.doi.org/10.32362/2410-6593-2021-16-4-318-336]
[107]
Knoop A, Planitz P, Wüst B, Thevis M. Analysis of cobalt for human sports drug testing purposes using ICP- and LC-ICP-MS. Drug Test Anal 2020; 12(11-12): 1666-72.
[http://dx.doi.org/10.1002/dta.2962] [PMID: 33142033]
[108]
Sobolevsky T, Ahrens B. Measurement of urinary cobalt as its complex with 2-(5-chloro-2-pyridylazo)-5-diethylaminophenol by liquid chromatography-tandem mass spectrometry for the purpose of anti-doping control. Drug Test Anal 2021; 13(6): 1145-57.
[http://dx.doi.org/10.1002/dta.3004] [PMID: 33484083]
[109]
Kwak J, Choi SJ, Oh W, Yang YS, Jeon HB, Jeon ES. Cobalt chloride enhances the anti-inflammatory potency of human umbilical cord blood-derived mesenchymal stem cells through the ERK-HIF-1 α -MicroRNA-146a-mediated signaling pathway. Stem Cells Int 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/4978763] [PMID: 30254683]
[110]
Jeon ES, Shin JH, Hwang SJ, Moon GJ, Bang OY, Kim HH. Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a. Biochem Biophys Res Commun 2014; 444(4): 581-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.114] [PMID: 24491559]
[111]
Gasparello J, Lamberti N, Papi C, et al. Altered erythroid-related miRNA levels as a possible novel biomarker for detection of autologous blood transfusion misuse in sport. Transfusion 2019; 59(8): 2709-21.
[http://dx.doi.org/10.1111/trf.15383] [PMID: 31148196]
[112]
Mussack V, Wittmann G, Pfaffl MW. On the trail of blood doping- microRNA fingerprints to monitor autologous blood transfusions in vivo. Am J Hematol 2021; 96(3): 338-53.
[http://dx.doi.org/10.1002/ajh.26078] [PMID: 33326140]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy