Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes

Author(s): Shirin Azizidoost and Maryam Farzaneh*

Volume 18, Issue 1, 2023

Published on: 06 July, 2022

Page: [27 - 34] Pages: 8

DOI: 10.2174/1574888X17666220422094150

Price: $65

Abstract

Cardiovascular disease (CVD) is defined as a class of disorders affecting the heart and blood vessels. Cardiomyocytes and endothelial cells play important roles in cardiac regeneration and heart repair. However, the proliferating capacity of cardiomyocytes is limited. To overcome this issue, mesenchymal stem cells (MSCs) have emerged as an alternative strategy for CVD therapy. MSCs can proliferate and differentiate (or trans-differentiate) into cardiomyocytes. Several in vitro and in vivo differentiation protocols have been used to obtain MSCs-derived cardiomyocytes. It was recently investigated that microRNAs (miRNAs) by targeting several signaling pathways, including STAT3, Wnt/β-catenin, Notch, and TBX5, play a crucial role in regulating cardiomyocytes' differentiation of MSCs. In this review, we focused on the role of miRNAs in the differentiation of MSCs into cardiomyocytes.

Keywords: Cardiovascular disease, mesenchymal stem cells, MicroRNAs, cardiomyocytes, endothelial cells, proliferating capacity.

[1]
Alpert JS, Thygesen K. A call for universal definitions in cardiovascular disease. Circulation 2006; 114(8): 757-8.
[2]
Go A S, Mozaffarian D, Roger V L, et al. Heart disease and stroke statistics-2013 update: A report from the American Heart Association. circulation 2013; 127: 6-245.
[3]
Armstrong PW, Gershlick AH, Goldstein P, et al. STREAM Investigative Team. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N Engl J Med 2013; 368(15): 1379-87.
[http://dx.doi.org/10.1056/NEJMoa1301092] [PMID: 23473396]
[4]
Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: Mechanisms and significance. Annu Rev Physiol 2010; 72(1): 19-44.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163111] [PMID: 20148665]
[5]
Germani A, Di Rocco G, Limana F, Martelli F, Capogrossi MC. Molecular mechanisms of cardiomyocyte regeneration and therapeutic outlook. Trends Mol Med 2007; 13(3): 125-33.
[http://dx.doi.org/10.1016/j.molmed.2007.01.002] [PMID: 17257896]
[6]
Gong R, Jiang Z, Zagidullin N, Liu T, Cai B. Regulation of cardiomyocyte fate plasticity: A key strategy for cardiac regeneration. Signal Transduct Target Ther 2021; 6(1): 31.
[http://dx.doi.org/10.1038/s41392-020-00413-2] [PMID: 33500391]
[7]
Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med 2008; 3(1)
[http://dx.doi.org/10.2217/17460751.3.1.1]
[8]
Madigan M, Atoui R. Therapeutic use of stem cells for myocardial infarction. Bioengineering (Basel) 2018; 5(2): 28.
[http://dx.doi.org/10.3390/bioengineering5020028] [PMID: 29642402]
[9]
Guo R, Morimatsu M, Feng T, et al. Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction. Stem Cell Res Ther 2020; 11(1): 19.
[http://dx.doi.org/10.1186/s13287-019-1536-y] [PMID: 31915074]
[10]
Yadav SK, Mishra PK. Isolation, characterization, and differentiation of cardiac stem cells from the adult mouse heart. J Vis Exp 2019; (143): e58448.
[http://dx.doi.org/10.3791/58448] [PMID: 30663680]
[11]
Dowell JD, Rubart M, Pasumarthi KB, Soonpaa MH, Field LJ. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 2003; 58(2): 336-50.
[http://dx.doi.org/10.1016/S0008-6363(03)00254-2] [PMID: 12757868]
[12]
Murry CE, Field LJ, Menasché P. Cell-based cardiac repair: Reflections at the 10-year point. Circulation 2005; 112(20): 3174-83.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.546218] [PMID: 16286608]
[13]
Wang H, Hao J, Hong CC. Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling. ACS Chem Biol 2011; 6(2): 192-7.
[http://dx.doi.org/10.1021/cb100323z] [PMID: 21077691]
[14]
Marson A, Levine SS, Cole MF, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008; 134(3): 521-33.
[http://dx.doi.org/10.1016/j.cell.2008.07.020] [PMID: 18692474]
[15]
Mazzola M, Di Pasquale E. Toward cardiac regeneration: Combination of pluripotent stem cell-based therapies and bioengineering strategies. Front Bioeng Biotechnol 2020; 8: 455.
[http://dx.doi.org/10.3389/fbioe.2020.00455] [PMID: 32528940]
[16]
Guo X, Bai Y, Zhang L, et al. Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: New regulators and its implications. Stem Cell Res Ther 2018; 9(1): 44.
[http://dx.doi.org/10.1186/s13287-018-0773-9] [PMID: 29482607]
[17]
Raziyeva K, Smagulova A, Kim Y, Smagul S, Nurkesh A, Saparov A. Preconditioned and genetically modified stem cells for myocardial infarction treatment. Int J Mol Sci 2020; 21(19): 7301.
[http://dx.doi.org/10.3390/ijms21197301] [PMID: 33023264]
[18]
Cai B, Li J, Wang J, et al. microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling. Stem Cells 2012; 30(8): 1746-55.
[http://dx.doi.org/10.1002/stem.1154] [PMID: 22696253]
[19]
Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2005; 2(1): 8.
[http://dx.doi.org/10.1186/1476-9255-2-8] [PMID: 16045800]
[20]
Szaraz P, Gratch YS, Iqbal F, Librach CL. In vitro differentiation of human mesenchymal stem cells into functional cardiomyocyte-like cells. J Vis Exp 2017; (126): 55757.
[http://dx.doi.org/10.3791/55757] [PMID: 28829419]
[21]
Ibarra-Ibarra BR, Franco M, Paez A, López EV, Massó F. Improved efficiency of cardiomyocyte-like cell differentiation from rat adipose tissue-derived mesenchymal stem cells with a directed differentiation protocol. Stem Cells Int 2019; 2019: Article ID: 8940365.
[http://dx.doi.org/10.1155/2019/8940365]
[22]
Shen X, Pan B, Zhou H, et al. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. J Biomed Sci 2017; 24(1): 29.
[http://dx.doi.org/10.1186/s12929-017-0337-9] [PMID: 28490365]
[23]
Arora S, Srinivasan A, Leung CM, Toh YC. Bio-mimicking shear stress environments for enhancing mesenchymal stem cell differentiation. Curr Stem Cell Res Ther 2020; 15(5): 414-27.
[http://dx.doi.org/10.2174/1574888X15666200408113630] [PMID: 32268869]
[24]
Markmee R, Aungsuchawan S, Tancharoen W, Narakornsak S, Pothacharoen P. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine. Heliyon 2020; 6(9): e04844.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04844] [PMID: 32995593]
[25]
Li N, Long B, Han W, Yuan S, Wang K. microRNAs: Important regulators of stem cells. Stem Cell Res Ther 2017; 8(1): 110.
[http://dx.doi.org/10.1186/s13287-017-0551-0] [PMID: 28494789]
[26]
SOLTANI L. Evaluation of the role of mico-RNAs in cardiomyocytes differentiation of mesenchymal stem cells. RJMS 2021; 27(12): 63-77.
[27]
Yang W, Xue S, Zheng H, Dan J, Zhao L, Wang C. Study on the mechanism of mirna-21 affecting the differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells by targeting ajuba/isl1 axis. 2021.
[28]
Francis N, Moore M, Asan SG, Rutter GA, Burns C. Changes in microRNA expression during differentiation of embryonic and induced pluripotent stem cells to definitive endoderm. Gene Expr Patterns 2015; 19(1-2): 70-82.
[http://dx.doi.org/10.1016/j.gep.2015.08.001] [PMID: 26277621]
[29]
Siasos G, Bletsa E, Stampouloglou PK, et al. MicroRNAs in cardiovascular disease. Hellenic J Cardiol 2020; 61(3): 165-73.
[http://dx.doi.org/10.1016/j.hjc.2020.03.003] [PMID: 32305497]
[30]
Sart S, Yuan X, Jeske R, Li Y. Engineering exosomal microRNAs in human pluripotent stem cells. Molecular Players in iPSC Technology 2022; 1-27.
[http://dx.doi.org/10.1016/B978-0-323-90059-1.00014-2]
[31]
Chen C, Yan Q, Yan Y, et al. MicroRNA-1 Regulates the differentiation of adipose-derived stem cells into cardiomyocyte-like cells. Stem Cells Int 2018; 2018: 7494530.
[http://dx.doi.org/10.1155/2018/7494530] [PMID: 30079092]
[32]
Scalise M, Marino F, Salerno L, et al. In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4(1): 1146.
[http://dx.doi.org/10.1038/s42003-021-02677-y] [PMID: 34593953]
[33]
Maleki B, Alani B, Tamehri Zadeh SS, et al. MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol Res Pract 2022; 229: 153701.
[http://dx.doi.org/10.1016/j.prp.2021.153701] [PMID: 34872024]
[34]
Nasser MI, Masood M, Adlat S, et al. Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed Pharmacother 2021; 143: 112118.
[http://dx.doi.org/10.1016/j.biopha.2021.112118] [PMID: 34481378]
[35]
Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 2007; 128(6): 1105-18.
[http://dx.doi.org/10.1016/j.cell.2007.01.038] [PMID: 17382880]
[36]
Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460(7256): 705-10.
[http://dx.doi.org/10.1038/nature08195] [PMID: 19578358]
[37]
Du P, Dai F, Chang Y, et al. Role of miR-199b-5p in regulating angiogenesis in mouse myocardial microvascular endothelial cells through HSF1/VEGF pathway. Environ Toxicol Pharmacol 2016; 47: 142-8.
[http://dx.doi.org/10.1016/j.etap.2016.09.007] [PMID: 27689811]
[38]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[39]
Lao TD, Le TAH. MicroRNAs: Biogenesis, functions and potential biomarkers for early screening, prognosis and therapeutic molecular monitoring of nasopharyngeal carcinoma. Processes (Basel) 2020; 8(8): 966.
[http://dx.doi.org/10.3390/pr8080966]
[40]
Cheraghzadeh M, Kheirollah A, Hanaee-Ahvaz H, Galehdari H. Study of Mir-29a expression in human adipose-derived mesenchymal stem cells treated by platelet-rich plasma. International Pharmacy Acta 2018; 1: 57-8.
[41]
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10(12): 1957-66.
[http://dx.doi.org/10.1261/rna.7135204] [PMID: 15525708]
[42]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[43]
Lao TD, Truong PK, Le TAH. miRNA-141 as the biomarker for human cancers. Asian Journal of Pharmaceutical Research and Health Care 2018; 10(2): 42-9.
[http://dx.doi.org/10.18311/ajprhc/2019/24431]
[44]
Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425(6956): 415-9.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[45]
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432(7014): 231-5.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[46]
Ergin K, Çetinkaya R. Regulation of microRNAsmiRNomics. Springer 2022; pp. 1-32.
[http://dx.doi.org/10.1007/978-1-0716-1170-8_1]
[47]
Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA biogenesis: Biological impact in the development of cancer. Cancer Biol Ther 2014; 15(11): 1444-55.
[http://dx.doi.org/10.4161/15384047.2014.955442] [PMID: 25482951]
[48]
Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005; 123(4): 631-40.
[http://dx.doi.org/10.1016/j.cell.2005.10.022] [PMID: 16271387]
[49]
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011-6.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[50]
Kwak PB, Tomari Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol 2012; 19(2): 145-51.
[http://dx.doi.org/10.1038/nsmb.2232] [PMID: 22233755]
[51]
Dexheimer PJ, Cochella L. MicroRNAs: From mechanism to organism. Front Cell Dev Biol 2020; 8: 409.
[http://dx.doi.org/10.3389/fcell.2020.00409] [PMID: 32582699]
[52]
Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev 2011; 21(4): 511-7.
[http://dx.doi.org/10.1016/j.gde.2011.04.003] [PMID: 21530229]
[53]
Thompson BJ, Cohen SM. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 2006; 126(4): 767-74.
[http://dx.doi.org/10.1016/j.cell.2006.07.013] [PMID: 16923395]
[54]
Wang L, Zhang H, Rodriguez S, et al. Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NF-κB-dependent manner. Cell Stem Cell 2014; 15(1): 51-65.
[http://dx.doi.org/10.1016/j.stem.2014.04.021] [PMID: 24996169]
[55]
Yang C, Luo M, Chen Y, You M, Chen Q. MicroRNAs as important regulators mediate the multiple differentiation of mesenchymal stromal cells. Front Cell Dev Biol 2021; 9: 619842.
[http://dx.doi.org/10.3389/fcell.2021.619842] [PMID: 34164391]
[56]
Kato M, Slack FJ. microRNAs: Small molecules with big roles - C. elegans to human cancer. Biol Cell 2008; 100(2): 71-81.
[http://dx.doi.org/10.1042/BC20070078] [PMID: 18199046]
[57]
Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: MicroRNAs as hormones. Mol Oncol 2017; 11(12): 1673-86.
[http://dx.doi.org/10.1002/1878-0261.12144] [PMID: 29024380]
[58]
Lemcke H, Steinhoff G, David R. Gap junctional shuttling of miRNA--A novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal 2015; 27(12): 2506-14.
[http://dx.doi.org/10.1016/j.cellsig.2015.09.012] [PMID: 26391653]
[59]
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234(5): 5451-65.
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[60]
Poddar S, Kesharwani D, Datta M. Interplay between the miRNome and the epigenetic machinery: Implications in health and disease. J Cell Physiol 2017; 232(11): 2938-45.
[http://dx.doi.org/10.1002/jcp.25819] [PMID: 28112397]
[61]
Zhang W, Duan N, Zhang Q, et al. DNA methylation mediated down-regulation of miR-370 regulates cell growth through activation of the Wnt/β-catenin signaling pathway in human osteosarcoma cells. Int J Biol Sci 2017; 13(5): 561-73.
[http://dx.doi.org/10.7150/ijbs.19032] [PMID: 28539830]
[62]
Ghaffari SH, Bashash D, Dizaji MZ, Ghavamzadeh A, Alimoghaddam K. Alteration in miRNA gene expression pattern in acute promyelocytic leukemia cell induced by arsenic trioxide: A possible mechanism to explain arsenic multi-target action. Tumour Biol 2012; 33(1): 157-72.
[http://dx.doi.org/10.1007/s13277-011-0259-1] [PMID: 22072212]
[63]
Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and human diseases. J Cell Physiol 2018; 233(3): 2007-18.
[http://dx.doi.org/10.1002/jcp.25854] [PMID: 28181241]
[64]
Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res 2016; 44(8): 3865-77.
[http://dx.doi.org/10.1093/nar/gkw116] [PMID: 26921406]
[65]
Jamali L, Tofigh R, Tutunchi S, et al. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol 2018; 233(11): 8538-50.
[http://dx.doi.org/10.1002/jcp.26850] [PMID: 29923196]
[66]
Kanellopoulou C, Muljo SA, Kung AL, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005; 19(4): 489-501.
[http://dx.doi.org/10.1101/gad.1248505] [PMID: 15713842]
[67]
Yu Z, Li Y, Fan H, Liu Z, Pestell RG. miRNAs regulate stem cell self-renewal and differentiation. Front Genet 2012; 3: 191.
[http://dx.doi.org/10.3389/fgene.2012.00191] [PMID: 23056008]
[68]
Ouyang Z, Wei K. miRNA in cardiac development and regeneration. Cell Regen (Lond) 2021; 10(1): 14.
[http://dx.doi.org/10.1186/s13619-021-00077-5] [PMID: 34060005]
[69]
Sadek H, Olson EN. Toward the goal of human heart regeneration. Cell Stem Cell 2020; 26(1): 7-16.
[http://dx.doi.org/10.1016/j.stem.2019.12.004] [PMID: 31901252]
[70]
Guo Y, Pu WT. Cardiomyocyte maturation: New phase in development. Circ Res 2020; 126(8): 1086-106.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315862] [PMID: 32271675]
[71]
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25(11): 2739-49.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[72]
Sudo K, Kanno M, Miharada K, et al. Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 2007; 25(7): 1610-7.
[http://dx.doi.org/10.1634/stemcells.2006-0504] [PMID: 17395773]
[73]
Rebelatto CK, Aguiar AM, Moretão MP, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med (Maywood) 2008; 233(7): 901-13.
[http://dx.doi.org/10.3181/0712-RM-356] [PMID: 18445775]
[74]
Horwitz EM, Le Blanc K, Dominici M, et al. International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy 2005; 7(5): 393-5.
[http://dx.doi.org/10.1080/14653240500319234] [PMID: 16236628]
[75]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[76]
Huang C-C, Kang M, Narayanan R, et al. Evaluating the endocytosis and lineage-specification properties of mesenchymal stem cell derived extracellular vesicles for targeted therapeutic applications. Front Pharmacol 2020; 11: 163.
[http://dx.doi.org/10.3389/fphar.2020.00163] [PMID: 32194405]
[77]
Poggi A, Zocchi MR. Immunomodulatory properties of mesenchymal stromal cells: Still unresolved “Yin and Yang”. Curr Stem Cell Res Ther 2019; 14(4): 344-50.
[http://dx.doi.org/10.2174/1574888X14666181205115452] [PMID: 30516112]
[78]
Nogueira-Pedro A, Makiyama EN, Segreto HRC, Fock RA. The role of low-dose radiation in association with TNF-α on immunomodulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 2021; 17(3): 968-80.
[http://dx.doi.org/10.1007/s12015-020-10084-9] [PMID: 33206285]
[79]
Muralikumar M, Manoj Jain S, Ganesan H, Duttaroy AK, Pathak S, Banerjee A. Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging. Biotechnol Rep (Amst) 2021; 31: e00658.
[http://dx.doi.org/10.1016/j.btre.2021.e00658] [PMID: 34377681]
[80]
Badawy A, Sobh MA, Ahdy M, Abdelhafez MS. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health 2017; 9: 441-7.
[http://dx.doi.org/10.2147/IJWH.S134074] [PMID: 28670143]
[81]
Perin EC, Silva GV, Assad JA, et al. Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 2008; 44(3): 486-95.
[http://dx.doi.org/10.1016/j.yjmcc.2007.09.012] [PMID: 18061611]
[82]
Sabry D, El-Deek SEM, Maher M, et al. Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: Impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem 2019; 454(1-2): 177-89.
[http://dx.doi.org/10.1007/s11010-018-3462-1] [PMID: 30357530]
[83]
Wang S, Wu G, Han Y, et al. miR-124 regulates STAT3-mediated cell proliferation, migration and apoptosis in bladder cancer. Oncol Lett 2018; 16(5): 5875-81.
[http://dx.doi.org/10.3892/ol.2018.9341] [PMID: 30344738]
[84]
Li Y, Zhang Z, Liu X, et al. miR-124 functions as a tumor suppressor in the endometrial carcinoma cell line HEC-1B partly by suppressing STAT3. Mol Cell Biochem 2014; 388(1-2): 219-31.
[http://dx.doi.org/10.1007/s11010-013-1913-2] [PMID: 24287565]
[85]
Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 2007; 8(1): 166.
[http://dx.doi.org/10.1186/1471-2164-8-166] [PMID: 17565689]
[86]
Sluijter JP, van Mil A, van Vliet P, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 2010; 30(4): 859-68.
[http://dx.doi.org/10.1161/ATVBAHA.109.197434] [PMID: 20081117]
[87]
Wilson KD, Hu S, Venkatasubrahmanyam S, et al. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: Role for miR-499. Circ Cardiovasc Genet 2010; 3(5): 426-35.
[http://dx.doi.org/10.1161/CIRCGENETICS.109.934281] [PMID: 20733065]
[88]
Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE. Endogenous Wnt/β-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One 2010; 5(6): e11134.
[http://dx.doi.org/10.1371/journal.pone.0011134] [PMID: 20559569]
[89]
Zhang LL, Liu JJ, Liu F, et al. MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2012; 420(4): 875-81.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.092] [PMID: 22465011]
[90]
Takaya T, Nishi H, Horie T, Ono K, Hasegawa K. Roles of microRNAs and myocardial cell differentiation. Prog Mol Biol Transl Sci 2012; 111: 139-52.
[http://dx.doi.org/10.1016/B978-0-12-398459-3.00006-X] [PMID: 22917229]
[91]
Kwon C, Han Z, Olson EN, Srivastava D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA 2005; 102(52): 18986-91.
[http://dx.doi.org/10.1073/pnas.0509535102] [PMID: 16357195]
[92]
Kurpinski K, Lam H, Chu J, et al. Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 2010; 28(4): 734-42.
[http://dx.doi.org/10.1002/stem.319] [PMID: 20146266]
[93]
Zhao X-L, Yang B, Ma LN, Dong YH. MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells. Artif Cells Nanomed Biotechnol 2016; 44(7): 1665-70.
[http://dx.doi.org/10.3109/21691401.2015.1080168] [PMID: 26376009]
[94]
Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2008; 2(3): 219-29.
[http://dx.doi.org/10.1016/j.stem.2008.01.016] [PMID: 18371447]
[95]
Koyanagi M, Bushoven P, Iwasaki M, Urbich C, Zeiher AM, Dimmeler S. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res 2007; 101(11): 1139-45.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.151381] [PMID: 17967789]
[96]
Nemir M, Croquelois A, Pedrazzini T, Radtke F. Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ Res 2006; 98(12): 1471-8.
[http://dx.doi.org/10.1161/01.RES.0000226497.52052.2a] [PMID: 16690879]
[97]
Lowell S, Benchoua A, Heavey B, Smith AG. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 2006; 4(5): e121.
[http://dx.doi.org/10.1371/journal.pbio.0040121] [PMID: 16594731]
[98]
Alfaro MP, Vincent A, Saraswati S, et al. sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem 2010; 285(46): 35645-53.
[http://dx.doi.org/10.1074/jbc.M110.135335] [PMID: 20826809]
[99]
Koyanagi M, Haendeler J, Badorff C, et al. Non-canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells. J Biol Chem 2005; 280(17): 16838-42.
[http://dx.doi.org/10.1074/jbc.M500323200] [PMID: 15701629]
[100]
Belema Bedada F, Technau A, Ebelt H, Schulze M, Braun T. Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Mol Cell Biol 2005; 25(21): 9509-19.
[http://dx.doi.org/10.1128/MCB.25.21.9509-9519.2005] [PMID: 16227601]
[101]
Huang F, Tang L, Fang Z-f, Hu X-q, Pan J-y, Zhou S-h. miR-1- mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1. BioMed res int 2013; 2013
[102]
Li J, Li RJ, Lv GY, Liu HQ. The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury. Eur Rev Med Pharmacol Sci 2015; 19(11): 2036-47.
[PMID: 26125267]
[103]
Tire Y, Sarkilar G, Esen H, Onoglu R, Uzun ST. The effect of intrathecal sufentanil preconditioning against myocardial ischemia-reperfusion injury. Bratisl Lek Listy 2018; 119(4): 240-4.
[http://dx.doi.org/10.4149/BLL_2018_045] [PMID: 29663822]
[104]
Jennings RB. Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res 2013; 113(4): 428-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300987] [PMID: 23908330]
[105]
Li J, Aung LHH, Long B, Qin D, An S, Li P. miR-23a binds to p53 and enhances its association with miR-128 promoter. Sci Rep 2015; 5(1): 16422.
[http://dx.doi.org/10.1038/srep16422] [PMID: 26553132]
[106]
Petz A, Grandoch M, Gorski DJ, et al. Cardiac hyaluronan synthesis is critically involved in the cardiac macrophage response and promotes healing after ischemia reperfusion injury. Circ Res 2019; 124(10): 1433-47.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313285] [PMID: 30916618]
[107]
Lu M, Xu Y, Wang M, et al. MicroRNA-23 inhibition protects the ischemia/reperfusion injury via inducing the differentiation of bone marrow mesenchymal stem cells into cardiomyocytes. Int J Clin Exp Pathol 2019; 12(3): 1060-9.
[PMID: 31933920]
[108]
Ho M-Y, Wang C-Y. Role of irisin in myocardial infarction, heart failure, and cardiac hypertrophy. Cells 2021; 10(8): 2103.
[http://dx.doi.org/10.3390/cells10082103] [PMID: 34440871]
[109]
Kartha CC. Cardiomyocytes in Heart FailureCardiomyocytes in Health and Disease. Springer 2021; pp. 245-55.
[http://dx.doi.org/10.1007/978-3-030-85536-9_15]
[110]
Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 2009; 106(33): 14022-7.
[http://dx.doi.org/10.1073/pnas.0903201106] [PMID: 19666564]
[111]
Zhu T, Qiao L, Wang Q, et al. T-box family of transcription factor-TBX5, insights in development and disease. Am J Transl Res 2017; 9(2): 442-53.
[PMID: 28337273]
[112]
Alzein M, Lozano-Velasco E, Hernández-Torres F, et al. Differential spatio-temporal regulation of T-box gene expression by microRNAs during cardiac development. J Cardiovasc Dev Dis 2021; 8(5): 56.
[http://dx.doi.org/10.3390/jcdd8050056] [PMID: 34068962]
[113]
Sun HH, Sun PF, Liu WY. MiR-98-5p regulates myocardial differentiation of mesenchymal stem cells by targeting TBX5. Eur Rev Med Pharmacol Sci 2018; 22(22): 7841-8.
[PMID: 30536329]
[114]
Wu L, Hu C, Huang M, Jiang M, Lu L, Tang J. Heat shock transcription factor 1 attenuates TNFα-induced cardiomyocyte death through suppression of NFκB pathway. Gene 2013; 527(1): 89-94.
[http://dx.doi.org/10.1016/j.gene.2013.05.024] [PMID: 23769970]
[115]
Dai F, Du P, Chang Y, et al. Downregulation of MiR-199b-5p inducing differentiation of bone-marrow mesenchymal stem cells (BMSCs) toward cardiomyocyte-like cells via HSF1/HSP70 pathway. Med Sci Monit 2018; 24: 2700-10.
[http://dx.doi.org/10.12659/MSM.907441] [PMID: 29715263]
[116]
Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129(2): 303-17.
[http://dx.doi.org/10.1016/j.cell.2007.03.030] [PMID: 17397913]
[117]
Martin J, Afouda BA, Hoppler S. Wnt/β-catenin signalling regulates cardiomyogenesis via GATA transcription factors. J Anat 2010; 216(1): 92-107.
[http://dx.doi.org/10.1111/j.1469-7580.2009.01171.x] [PMID: 20402826]
[118]
Wang Y, Chen J, Cowan DB, Wang D-Z. Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potentialSeminars in Cell & Developmental Biology. Elsevier 2021; pp. 150-62.
[http://dx.doi.org/10.1016/j.semcdb.2021.07.007]
[119]
Testa G, Di Benedetto G, Passaro F. Advanced technologies to target cardiac cell fate plasticity for heart regeneration. Int J Mol Sci 2021; 22(17): 9517.
[http://dx.doi.org/10.3390/ijms22179517] [PMID: 34502423]
[120]
Alam P, Maliken BD, Jones SM, et al. Cardiac remodeling and repair: Recent approaches, advancements, and future perspective. Int J Mol Sci 2021; 22(23): 13104.
[http://dx.doi.org/10.3390/ijms222313104] [PMID: 34884909]
[121]
Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet 2019; 10: 478.
[http://dx.doi.org/10.3389/fgene.2019.00478] [PMID: 31156715]
[122]
Kalayinia S, Arjmand F, Maleki M, Malakootian M, Singh CP. MicroRNAs: Roles in cardiovascular development and disease. Cardiovasc Pathol 2021; 50: 107296.
[http://dx.doi.org/10.1016/j.carpath.2020.107296] [PMID: 33022373]
[123]
Thompson ER, Sewpaul A, Figuereido R, et al. MicroRNA antagonist therapy during normothermic machine perfusion of donor kidneys. Am J Transplant 2022; 22(4): 1088-100.
[PMID: 34932895]
[124]
Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 2011; 18(12): 1111-20.
[http://dx.doi.org/10.1038/gt.2011.100] [PMID: 21753793]
[125]
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15(3): 338-52.
[http://dx.doi.org/10.1080/15476286.2018.1445959] [PMID: 29570036]
[126]
Pang JKS, Phua QH, Soh B-S. Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Res Ther 2019; 10(1): 336.
[http://dx.doi.org/10.1186/s13287-019-1451-2] [PMID: 31752983]
[127]
Ionescu RF, Cretoiu SM. MicroRNAs as monitoring markers for right-sided heart failure and congestive hepatopathy. J Med Life 2021; 14(2): 142-7.
[http://dx.doi.org/10.25122/jml-2021-0071] [PMID: 34104236]
[128]
Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol 2020; 15(3): 261-78.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[129]
Gozdowska R, Makowska A. Gąsecka A, Chabior A, Marchel M, Circulating Micro RNA. Circulating microRNA in heart failure-practical guidebook to clinical application. Cardiology 2022; 30(1): 16-23.
[PMID: 32897886]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy