Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Editorial

Levansucrase: Enzymatic Synthesis of Engineered Prebiotics

Author(s): Evangelia G. Chronopoulou*

Volume 24, Issue 2, 2023

Published on: 17 August, 2022

Page: [199 - 202] Pages: 4

DOI: 10.2174/1389201023666220421134103

conference banner
Next »
[1]
Ghosh, S.; Lahiri, D.; Nag, M.; Dey, A.; Sarkar, T.; Pathak, S.K.; Atan Edinur, H.; Pati, S.; Ray, R.R. Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. Polymers, 2021, 13(8), 1242.
[http://dx.doi.org/10.3390/polym13081242] [PMID: 33921239]
[2]
González-Garcinuño, Á.; Tabernero, A.; Sánchez-Álvarez, J.M.; Galán, M.A.; Martin Del Valle, E.M. Effect of bacteria type and sucrose concentration on levan yield and its molecular weight. Microb. Cell Fact., 2017, 16(1), 91.
[http://dx.doi.org/10.1186/s12934-017-0703-z] [PMID: 28535808]
[3]
Mu, D.; Zhou, Y.; Wu, X.; Montalban-Lopez, M.; Wang, L.; Li, X.; Zheng, Z. Secretion of Bacillus amyloliquefaciens levansucrase from Bacillus subtilis and its application in the enzymatic synthesis of levan. ACS Food Sci. Technol., 2021, 1(2), 249-259.
[http://dx.doi.org/10.1021/acsfoodscitech.0c00044]
[4]
González-Garcinuño, Á.; Tabernero, A.; Marcelo, G.; Martín Del Valle, E. A comprehensive study on levan nanoparticles formation: Kinetics and self-assembly modeling. Int. J. Biol. Macromol., 2020, 147, 1089-1098.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.076] [PMID: 31739059]
[5]
Ates, O. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotechnol., 2015, 3, 200.
[http://dx.doi.org/10.3389/fbioe.2015.00200] [PMID: 26734603]
[6]
Duymaz, B.T.; Erdiler, F.B.; Alan, T.; Aydogdu, M.O.; Inan, A.T.; Ekren, N.; Uzun, M.; Sahin, Y.M.; Bulus, E.; Oktar, F.N.; Selvi, S.S. ToksoyOner, E.; Kilic, O.; Bostan, M.S.; Eroglu, M.S.; Gunduz, O.; ToksoyOner, E.; Kilic, O.; Bostan, M.S.; Eroglu, M.S. 3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior. Eur. Polym. J., 2019, 119, 426-437.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.015]
[7]
Byun, B.Y.; Lee, S.J.; Mah, J.H. Antipathogenic activity and preservative effect of levan (β-2,6-fructan), a multifunctional polysaccharide. Int. J. Food Sci. Technol., 2014, 49(1), 238-245.
[http://dx.doi.org/10.1111/ijfs.12304]
[8]
Öner, E.T.; Hernández, L.; Combie, J. Review of levan polysaccharide: From a century of past experiences to future prospects. Biotechnol. Adv., 2016, 34(5), 827-844.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.002] [PMID: 27178733]
[9]
Raga-Carbajal, E.; López-Munguía, A.; Alvarez, L.; Olvera, C. Understanding the transfer reaction network behind the non-processive synthesis of low molecular weight levan catalyzed by Bacillus subtilis levansucrase. Sci. Rep., 2018, 8(1), 15035.
[http://dx.doi.org/10.1038/s41598-018-32872-7] [PMID: 30301900]
[10]
Young, I.D.; Latousakis, D.; Juge, N. The immunomodulatory properties of β-2,6 fructans: A comprehensive review. Nutrients, 2021, 13(4), 1309.
[http://dx.doi.org/10.3390/nu13041309] [PMID: 33921025]
[11]
Sezer, A.D.; Kazak, H.; Toksoy Oner, E.; Akbuga, J. Levan-based nanocarrier system for peptide and protein drug delivery: Optimization and influence of experimental parameters on the nanoparticle characteristics. Carbohydr. Polym., 2011, 84(1), 358-363.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.046]
[12]
Sezer, A.D.; Kazak Sarılmışer, H.; Rayaman, E.; Çevikbaş, A.; Öner, E.T.; Akbuğa, J. Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm. Dev. Technol., 2017, 22(5), 627-634.
[http://dx.doi.org/10.3109/10837450.2015.1116564] [PMID: 26607946]
[13]
Adamberg, K.; Tomson, K.; Talve, T.; Pudova, K.; Puurand, M.; Visnapuu, T.; Alamäe, T.; Adamberg, K.; Tomson, K.; Talve, T.; Pudova, K.; Puurand, M.; Visnapuu, T.; Alamäe, T.; Adamberg, S. Levan enhances associated growth of bacteroides, Escherichia, Streptococcus and Faecalibacterium in fecal microbiota. PLoS One, 2015, 10(12), e0144042.
[http://dx.doi.org/10.1371/journal.pone.0144042] [PMID: 26629816]
[14]
Cai, G.; Wu, D.; Li, X.; Lu, J. Levan from Bacillus amyloliquefaciens JN4 acts as a prebiotic for enhancing the intestinal adhesion capacity of Lactobacillus reuteri JN101. Int. J. Biol. Macromol., 2020, 146, 482-487.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.212] [PMID: 31883885]
[15]
González-Garcinuño, Á.; Ruiz, S.; Sánchez-Muñoz, Á.; Tabernero, A.; Martin del Valle, E. Biotechnological strategies to produce levan: Mass transfer and techno-economical evaluation. Chem. Eng. Process., 2019, 141, 107529.
[http://dx.doi.org/10.1016/j.cep.2019.107529]
[16]
Combie, J. Properties of levan and potential medical uses. In: ACS Symposium Series; Marchessault, R.H.; Ravenelle, F.; Zhu, X.X., Eds.; Washington, 2006; Vol. 934, pp. 263-269.
[http://dx.doi.org/10.1021/bk-2006-0934.ch013]
[17]
Schmid, J.; Sieber, V.; Rehm, B. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front. Microbiol., 2015, 6, 496.
[http://dx.doi.org/10.3389/fmicb.2015.00496] [PMID: 26074894]
[18]
Xu, W.; Ni, D.; Zhang, W.; Guang, C.; Zhang, T.; Mu, W. Recent advances in Levansucrase and Inulosucrase: Evolution, characteristics, and application. Crit. Rev. Food Sci. Nutr., 2019, 59(22), 3630-3647.
[http://dx.doi.org/10.1080/10408398.2018.1506421] [PMID: 30595032]
[19]
Alamäe, T.; Visnapuu, T.; Mardo, K.; Mae, A.; Zamfir, A. Levansucrases of Pseudomonas bacteria: Novel approaches for protein expression, assay of enzymes, fructooligosaccharides and heterooligofructans. Carbohydr. Chem., 2012, 38, 176-191.
[http://dx.doi.org/10.1039/9781849734769-00176]
[20]
Polsinelli, I.; Caliandro, R.; Demitri, N.; Benini, S. The structure of sucrose-soaked levansucrase crystals from Erwinia tasmaniensis reveals a binding pocket for levanbiose. Int. J. Mol. Sci., 2019, 21(1), 83.
[http://dx.doi.org/10.3390/ijms21010083] [PMID: 31877648]
[21]
Benigar, E.; Dogsa, I.; Stopar, D.; Jamnik, A.; Kralj Cigić, I.; Tomšič, M. Structure and dynamics of a polysaccharide matrix: Aqueous solutions of bacterial levan. Langmuir, 2014, 30(14), 4172-4182.
[http://dx.doi.org/10.1021/la500830j] [PMID: 24654746]
[22]
Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 605-616.
[http://dx.doi.org/10.1038/s41575-019-0173-3] [PMID: 31296969]
[23]
Scott, K.P.; Grimaldi, R.; Cunningham, M.; Sarbini, S.R.; Wijeyesekera, A.; Tang, M.L.K.; Lee, J.C.; Yau, Y.F.; Ansell, J.; Theis, S.; Yang, K.; Menon, R.; Arfsten, J.; Manurung, S.; Gourineni, V.; Gibson, G.R. Developments in understanding and applying prebiotics in research and practice-an ISAPP conference paper. J. Appl. Microbiol., 2020, 128(4), 934-949.
[http://dx.doi.org/10.1111/jam.14424] [PMID: 31446668]
[24]
Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol., 2018, 16(9), 540-550.
[http://dx.doi.org/10.1038/s41579-018-0041-0] [PMID: 29937540]
[25]
Liu, C.; Kolida, S.; Charalampopoulos, D.; Rastall, A. An evaluation of the prebiotic potential of microbial levans from Erwinia sp. 10119. J. Funct. Foods, 2020, 64, 103668.
[http://dx.doi.org/10.1016/j.jff.2019.103668]
[26]
Hamdy, A.A.; Elattal, N.A.; Amin, M.A.; Ali, A.E.; Mansour, N.M.; Awad, G.E.A.; Farrag, A.R.H.; Esawy, M.A. In vivo assessment of possible probiotic properties of Bacillus subtilis and prebiotic properties of levan. Biocatal. Agric. Biotechnol., 2018, 13, 190-197.
[http://dx.doi.org/10.1016/j.bcab.2017.12.001]
[27]
Okuyama, M.; Serizawa, R.; Tanuma, M.; Kikuchi, A.; Sadahiro, J.; Tagami, T.; Lang, W.; Kimura, A. Molecular insight into regioselectivity of transfructosylation catalyzed by GH68 levansucrase and β-fructofuranosidase. J. Biol. Chem., 2021, 296, 100398.
[http://dx.doi.org/10.1016/j.jbc.2021.100398] [PMID: 33571525]
[28]
Khangwal, I.; Shukla, P. Potential prebiotics and their transmission mechanisms: Recent approaches. J. Food Drug Anal., 2019, 27(3), 649-656.
[http://dx.doi.org/10.1016/j.jfda.2019.02.003] [PMID: 31324281]
[29]
Hill, A.; Chen, L.; Mariage, A.; Petit, J.L.; Berardinis, V.; Karboune, S. Discovery of new levansucrase enzymes with interesting properties and improved catalytic activity to produce levan and fructooligosaccharides. Catal. Sci. Technol., 2019, 9(11), 2931-2944.
[http://dx.doi.org/10.1039/C9CY00135B]
[30]
Demmelmair, H.; Jiménez, E.; Collado, M.C.; Salminen, S.; McGuire, M.K. Maternal and perinatal factors associated with the human milk microbiome. Curr. Dev. Nutr., 2020, 4, nzaa027.
[http://dx.doi.org/10.1093/cdn/nzaa027]
[31]
Moossavi, S.; Miliku, K.; Sepehri, S.; Khafipour, E.; Azad, M.B. The prebiotic and probiotic properties of human milk: Implications for infant immune development and pediatric asthma. Front Pediatr., 2018, 6, 197.
[http://dx.doi.org/10.3389/fped.2018.00197] [PMID: 30140664]
[32]
Lu, M.; Mosleh, I.; Abbaspourrad, A. Engineered microbial routes for human milk oligosaccharides synthesis. ACS Synth. Biol., 2021, 10(5), 923-938.
[http://dx.doi.org/10.1021/acssynbio.1c00063] [PMID: 33909411]
[33]
Jiménez, E.; de Andrés, J.; Manrique, M.; Pareja-Tobes, P.; Tobes, R.; Martínez-Blanch, J.F.; Codoñer, F.M.; Ramón, D.; Fernández, L.; Rodríguez, J.M. Metagenomic analysis of milk of healthy and mastitis-suffering women. J. Hum. Lact., 2015, 31(3), 406-415.
[http://dx.doi.org/10.1177/0890334415585078] [PMID: 25948578]
[34]
Boix-Amorós, A.; Martinez-Costa, C.; Querol, A.; Collado, M.C.; Mira, A. Multiple approaches detect the presence of fungi in human breast- milk samples from healthy mothers. Sci. Rep., 2017, 7, 13016.
[http://dx.doi.org/10.1038/s41598-017-13270-x] [PMID: 29026146]
[35]
Dinleyici, M.; Pérez-Brocal, V.; Arslanoglu, S.; Aydemir, O.; Sevuk Ozumut, S.; Tekin, N.; Vandenplas, Y.; Moya, A.; Dinleyici, E.C. Human milk virome analysis: Changing pattern regarding mode of delivery, birth weight, and lactational stage. Nutrients, 2021, 13(6), 1779.
[http://dx.doi.org/10.3390/nu13061779] [PMID: 34071061]
[36]
Klaewkla, M.; Pichyangkura, R.; Chunsrivirot, S. Computational design of oligosaccharide-producing levansucrase from Bacillus licheniformis rn-01 to increase its stability at high temperature. J. Phys. Chem. B, 2021, 125(22), 5766-5774.
[http://dx.doi.org/10.1021/acs.jpcb.1c02016] [PMID: 34047564]
[37]
Smith, P.J.; Ortiz-Soto, M.E.; Roth, C.; Barnes, W.J.; Seibel, J.; Urbanowicz, B.R.; Pfrengle, F. Enzymatic synthesis of artificial polysaccharides. ACS Sustain. Chem. Eng., 2020, 8(32), 11853-11871.
[http://dx.doi.org/10.1021/acssuschemeng.0c03622]
[38]
Hill, A.; Karboune, S.; Narwani, T.J.; de Brevern, A.G. Investigating the product profiles and structural relationships of new levansucrases with conventional and non-conventional substrates. Int. J. Mol. Sci., 2020, 21(15), 5402.
[http://dx.doi.org/10.3390/ijms21155402] [PMID: 32751348]
[39]
Raga-Carbajal, E.; Díaz-Vilchis, A.; Rojas-Trejo, S.P.; Rudiño-Piñera, E.; Olvera, C. The molecular basis of the nonprocessive elongation mechanism in levansucrases. J. Biol. Chem., 2021, 296, 100178.
[http://dx.doi.org/10.1074/jbc.RA120.015853] [PMID: 33303628]

© 2024 Bentham Science Publishers | Privacy Policy