Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Impacts of COVID-19 in Breast Cancer: From Molecular Mechanism to the Treatment Approach

Author(s): Maria Carolina Stipp, Claudia Rita Corso and Alexandra Acco*

Volume 24, Issue 2, 2023

Published on: 13 July, 2022

Page: [238 - 252] Pages: 15

DOI: 10.2174/1389201023666220421133311

Price: $65

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 272 million people, resulting in 5.3 million deaths worldwide from COVID-19. Breast tumors are considered the world’s most commonly diagnosed cancer. Both breast cancer and COVID-19 share common pathogenic features, represented by inflammatory mediators and the potential of SARS-CoV-2 replication in metastatic cancer cells. This may intensify viral load in patients, thereby triggering severe COVID-19 complications. Thus, cancer patients have a high risk of developing severe COVID-19 with SARS-CoV-2 infection and a higher rate of complications and death than non-cancer patients. The present review discusses common mechanisms between COVID-19 and breast cancer and the particular susceptibility to COVID-19 in breast cancer patients. We describe the effects of chemotherapeutic agents that are used against this cancer, which should be considered from the perspective of susceptibility to SARS-CoV-2 infection and risk of developing severe events. We also present potential drug interactions between chemotherapies that are used to treat breast cancer and drugs that are applied for COVID-19. The drugs that are identified as having the most interactions are doxorubicin and azithromycin. Both drugs can interact with each other and with other drugs, which likely requires additional drug monitoring and changes in drug dosage and timing of administration. Further clinical and observational studies involving breast cancer patients who acquire COVID-19 are needed to define the best therapeutic approach when considering the course of both diseases.

Keywords: SARS-CoV-2, mammary tumor, chemotherapy, drug interaction, cytokine storm, COVID-19.

Graphical Abstract

[1]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.S.P.; Tsoi, H.W.; Lo, S.K.F.; Chan, K.H.; Poon, V.K.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.; Chen, H.; Hui, C.K.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[2]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[3]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[4]
WHO. COVID-19 Weekly epidemiological update, 14 December 2021. World Heal Organ 2021, 2021. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---14-december-2021 accessed Dec. 16, 2021.
[5]
CSSE J. Johns Hopkins University (JHU). Center for Science and Engineering.. Center for Science and Engineering., Available from: https://coronavirus.jhu.edu/map.html Accessed on Dec. 16, 2021
[6]
Meselson, M. Droplets and aerosols in the transmission of SARS-CoV-2. N. Engl. J. Med., 2020, 382(21), 2063.
[http://dx.doi.org/10.1056/NEJMc2009324] [PMID: 32294374]
[7]
Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect., 2020, 104(3), 246-251.
[http://dx.doi.org/10.1016/j.jhin.2020.01.022] [PMID: 32035997]
[8]
Barbosa da Luz, B.; de Oliveira, N.M.T.; França Dos Santos, I.W.; Paza, L.Z.; Braga, L.L.V.M.; Platner, F.D.S.; Werner, M.F.P.; Fernandes, E.S.; Maria-Ferreira, D. An overview of the gut side of the SARS-CoV-2 infection. Intest. Res., 2021, 19(4), 379-385.
[http://dx.doi.org/10.5217/ir.2020.00087] [PMID: 33142370]
[9]
Li, R.; Pei, S.; Chen, B.; Song, Y.; Zhang, T.; Yang, W.; Shaman, J. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 2020, 368(6490), 489-493.
[http://dx.doi.org/10.1126/science.abb3221] [PMID: 32179701]
[10]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[11]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[12]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA -. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[13]
Lu, X.; Zhang, L.; Du, H.; Zhang, J.; Li, Y.Y.; Qu, J.; Zhang, W.; Wang, Y.; Bao, S.; Li, Y.; Wu, C.; Liu, H.; Liu, D.; Shao, J.; Peng, X.; Yang, Y.; Liu, Z.; Xiang, Y.; Zhang, F.; Silva, R.M.; Pinkerton, K.E.; Shen, K.; Xiao, H.; Xu, S.; Wong, G.W.K. SARS-CoV-2 infection in children. N. Engl. J. Med., 2020, 382(17), 1663-1665.
[http://dx.doi.org/10.1056/NEJMc2005073] [PMID: 32187458]
[14]
Giacomelli, A.; Pezzati, L.; Conti, F.; Bernacchia, D.; Siano, M.; Oreni, L.; Rusconi, S.; Gervasoni, C.; Ridolfo, A.L.; Rizzardini, G.; Antinori, S.; Galli, M. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: A cross-sectional study. Clin. Infect. Dis., 2020, 71(15), 889-890.
[http://dx.doi.org/10.1093/cid/ciaa330] [PMID: 32215618]
[15]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K.Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[16]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[17]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[18]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[19]
Zhao, X.; Chen, D.; Szabla, R.; Zheng, M.; Li, G.; Du, P.; Zheng, S.; Li, X.; Song, C.; Li, R.; Guo, J.T.; Junop, M.; Zeng, H.; Lin, H. Broad and differential animal angiotensin-converting enzyme 2 receptor usage by SARS-CoV-2. J. Virol., 2020, 94(18), e00940-20.
[http://dx.doi.org/10.1128/JVI.00940-20] [PMID: 32661139]
[20]
Chandrashekar, A.; Liu, J.; Martinot, A.J.; McMahan, K.; Mercado, N.B.; Peter, L.; Tostanoski, L.H.; Yu, J.; Maliga, Z.; Nekorchuk, M.; Busman-Sahay, K.; Terry, M.; Wrijil, L.M.; Ducat, S.; Martinez, D.R.; Atyeo, C.; Fischinger, S.; Burke, J.S.; Slein, M.D.; Pessaint, L.; Van Ry, A.; Greenhouse, J.; Taylor, T.; Blade, K.; Cook, A.; Finneyfrock, B.; Brown, R.; Teow, E.; Velasco, J.; Zahn, R.; Wegmann, F.; Abbink, P.; Bondzie, E.A.; Dagotto, G.; Gebre, M.S.; He, X.; Jacob-Dolan, C.; Kordana, N.; Li, Z.; Lifton, M.A.; Mahrokhian, S.H.; Maxfield, L.F.; Nityanandam, R.; Nkolola, J.P.; Schmidt, A.G.; Miller, A.D.; Baric, R.S.; Alter, G.; Sorger, P.K.; Estes, J.D.; Andersen, H.; Lewis, M.G.; Barouch, D.H. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020, 369(6505), 812-817.
[http://dx.doi.org/10.1126/science.abc4776] [PMID: 32434946]
[21]
Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; Zhao, Y.; Liu, P.; Liang, L.; Cui, P.; Wang, J.; Zhang, X.; Guan, Y.; Tan, W.; Wu, G.; Chen, H.; Bu, Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 2020, 368(6494), 1016-1020.
[http://dx.doi.org/10.1126/science.abb7015] [PMID: 32269068]
[22]
Asselta, R.; Paraboschi, E.M.; Mantovani, A.; Duga, S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY), 2020, 12(11), 10087-10098.
[http://dx.doi.org/10.18632/aging.103415] [PMID: 32501810]
[23]
Radzikowska, U.; Ding, M.; Tan, G.; Zhakparov, D.; Peng, Y.; Wawrzyniak, P.; Wang, M.; Li, S.; Morita, H.; Altunbulakli, C.; Reiger, M.; Neumann, A.U.; Lunjani, N.; Traidl-Hoffmann, C.; Nadeau, K.C.; O’Mahony, L.; Akdis, C.; Sokolowska, M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy, 2020, 75(11), 2829-2845.
[http://dx.doi.org/10.1111/all.14429] [PMID: 32496587]
[24]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA -. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[25]
Taylor, L. Covid-19: Brazil’s spiralling crisis is increasingly affecting young people. BMJ, 2021, 373(879), n879.
[http://dx.doi.org/10.1136/bmj.n879] [PMID: 33795228]
[26]
Freitas, A.R.; Beckedorff, O.A.; Cavalcanti, L.P.G.; Siqueira, A.M.; Castro, D.B.; Costa, C.F.; Lemos, D.R.Q.; Barros, E.N.C The emergence of novel SARS-CoV-2 variant P.1 in Amazonas (Brazil) was temporally associated with a change in the age and gender profile of COVID-19 mortality. Lancet Reg Health Am., 2021, 1
[http://dx.doi.org/10.1590/SciELOPreprints.2030]
[27]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[28]
Tian, J.; Yuan, X.; Xiao, J.; Zhong, Q.; Yang, C.; Liu, B.; Cai, Y.; Lu, Z.; Wang, J.; Wang, Y.; Liu, S.; Cheng, B.; Wang, J.; Zhang, M.; Wang, L.; Niu, S.; Yao, Z.; Deng, X.; Zhou, F.; Wei, W.; Li, Q.; Chen, X.; Chen, W.; Yang, Q.; Wu, S.; Fan, J.; Shu, B.; Hu, Z.; Wang, S.; Yang, X.P.; Liu, W.; Miao, X.; Wang, Z. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: A multicentre, retrospective, cohort study. Lancet Oncol., 2020, 21(7), 893-903.
[http://dx.doi.org/10.1016/S1470-2045(20)30309-0] [PMID: 32479790]
[29]
Carbone, M.; Lednicky, J.; Xiao, S.Y.; Venditti, M.; Bucci, E. Coronavirus 2019 infectious disease epidemic: Where we are, what can be done and hope for. J. Thorac. Oncol., 2021, 16(4), 546-571.
[http://dx.doi.org/10.1016/j.jtho.2020.12.014] [PMID: 33422679]
[30]
Amariles, P.; Granados, J.; Ceballos, M.; Montoya, C.J. COVID-19 in Colombia endpoints. Are we different, like Europe? Res. Social Adm. Pharm., 2021, 17(1), 2036-2039.
[http://dx.doi.org/10.1016/j.sapharm.2020.03.013] [PMID: 32265115]
[31]
SIG. CDC... Centers for disease control and prevention. SARSCoV- 2 variant classifications and definitions., 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/ variant-classifications Accessed on Dec. 1, 2021.
[32]
Mulinari Turin de Oliveira, N.; Fernandes da Silva Figueiredo, I.; Cristine Malaquias da Silva, L.; Sauruk da Silva, K.; Regis Bueno, L.; Barbosa da Luz, B.; Rita Corso, C.; de Paula Werner, M.F.; Soares Fernandes, E.; Maria-Ferreira, D. Tissue proteases and immune responses: Influencing factors of covid-19 severity and mortality. Pathogens, 2020, 9(10), 817.
[http://dx.doi.org/10.3390/pathogens9100817] [PMID: 33036180]
[33]
Marchingo, J.M.; Sinclair, L.V.; Howden, A.J.; Cantrell, D.A. Quantitative analysis of how Myc controls T cell proteomes and metabolic pathways during T cell activation. eLife, 2020, 9, e53725.
[http://dx.doi.org/10.7554/eLife.53725] [PMID: 32022686]
[34]
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[35]
Gong, J.; Dong, H.; Xia, Q.; Huang, Z.; Wang, D.K.; Zhao, Y.; Liu, W.H.; Tu, S.H. zhang, M.M. Wang, Q.; Lu, F.E. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. BMC Infect. Dis., 2020, 20(1), 963.
[http://dx.doi.org/10.1186/s12879-020-05681-5] [PMID: 33349241]
[36]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[37]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[38]
Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; Rosales, R.; Colón, D.; Martins, R.; Castro, I.A.; Almeida, G.M.; Lopes, M.I.F.; Benatti, M.N.; Bonjorno, L.P.; Giannini, M.C.; Luppino-Assad, R.; Almeida, S.L.; Vilar, F.; Santana, R.; Bollela, V.R.; Auxiliadora-Martins, M.; Borges, M.; Miranda, C.H.; Pazin-Filho, A.; da Silva, L.L.P.; Cunha, L.D.; Zamboni, D.S.; Dal-Pizzol, F.; Leiria, L.O.; Siyuan, L.; Batah, S.; Fabro, A.; Mauad, T.; Dolhnikoff, M.; Duarte-Neto, A.; Saldiva, P.; Cunha, T.M.; Alves-Filho, J.C.; Arruda, E.; Louzada-Junior, P.; Oliveira, R.D.; Cunha, F.Q. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med., 2020, 217(12), e20201129.
[http://dx.doi.org/10.1084/jem.20201129] [PMID: 32926098]
[39]
Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.; Weber, A.; Barnes, B.J.; Egeblad, M.; Woods, R.J.; Kanthi, Y.; Knight, J.S. Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, 5(11), 138999.
[http://dx.doi.org/10.1172/jci.insight.138999] [PMID: 32329756]
[40]
McFadyen, J.D.; Stevens, H.; Peter, K. The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications. Circ. Res., 2020, 127(4), 571-587.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317447] [PMID: 32586214]
[41]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[42]
Casey, S.C.; Amedei, A.; Aquilano, K.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.E.; Boosani, C.S.; Chen, S.; Ciriolo, M.R.; Crawford, S.; Fujii, H.; Georgakilas, A.G.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Honoki, K.; Keith, W.N.; Kerkar, S.P.; Mohammed, S.I.; Niccolai, E.; Nowsheen, S.; Vasantha Rupasinghe, H.P.; Samadi, A.; Singh, N.; Talib, W.H.; Venkateswaran, V.; Whelan, R.L.; Yang, X.; Felsher, D.W. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin. Cancer Biol., 2015, 35(Suppl.), S199-S223.
[http://dx.doi.org/10.1016/j.semcancer.2015.02.007] [PMID: 25865775]
[43]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[44]
Dai, M.Y.; Liu, D.; Liu, M.; Zhou, F.X.; Li, G.L.; Chen, Z. Patients with cancer appear more vulnerable to SARS-CoV-2: A multi-center study during the COVID-19 outbreak. SSRN Electron J, 2020, 10(6), 783-791.
[http://dx.doi.org/10.1158/1538-7445.AM2020-CT406]
[45]
Wang, B.; Huang, Y. Which type of cancer patients are more susceptible to the SARS-COX-2: Evidence from a meta-analysis and bioinformatics analysis. Crit. Rev. Oncol. Hematol., 2020, 153, 103032.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103032] [PMID: 32599375]
[46]
Song, J.; Han, J.; Liu, F.; Chen, X.; Qian, S.; Wang, Y.; Jia, Z.; Duan, X.; Zhang, X.; Zhu, J. Systematic analysis of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignant tumors: Pan-cancer analysis. Front. Mol. Biosci., 2020, 7, 569414.
[http://dx.doi.org/10.3389/fmolb.2020.569414] [PMID: 33195415]
[47]
Vabret, N.; Britton, G.J.; Gruber, C.; Hegde, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M.D.; Pia, L.; Risson, E.; Saffern, M.; Salomé, B.; Esai Selvan, M.; Spindler, M.P.; Tan, J.; van der Heide, V.; Gregory, J.K.; Alexandropoulos, K.; Bhardwaj, N.; Brown, B.D.; Greenbaum, B.; Gümüş, Z.H.; Homann, D.; Horowitz, A.; Kamphorst, A.O.; Curotto de Lafaille, M.A.; Mehandru, S.; Merad, M.; Samstein, R.M. Immunology of COVID-19: Current state of the science. Immunity, 2020, 52(6), 910-941.
[http://dx.doi.org/10.1016/j.immuni.2020.05.002] [PMID: 32505227]
[48]
Derosa, L.; Melenotte, C.; Griscelli, F.; Gachot, B.; Marabelle, A.; Kroemer, G.; Zitvogel, L. The immuno-oncological challenge of COVID-19. Nat. Can., 2020, 1(10), 946-964.
[http://dx.doi.org/10.1038/s43018-020-00122-3] [PMID: 35121872]
[49]
Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol., 2018, 18(2), 134-147.
[http://dx.doi.org/10.1038/nri.2017.105] [PMID: 28990587]
[50]
Francescangeli, F.; De Angelis, M.L.; Zeuner, A. COVID-19: A potential driver of immune-mediated breast cancer recurrence? Breast Cancer Res., 2020, 22(1), 117.
[http://dx.doi.org/10.1186/s13058-020-01360-0] [PMID: 33126915]
[51]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[52]
Brown, J.M.; Wasson, M.D.; Marcato, P. Triple-negative breast cancer and the COVID-19 pandemic: Clinical management perspectives and potential consequences of infection. Cancers (Basel), 2021, 13(2), 296.
[http://dx.doi.org/10.3390/cancers13020296] [PMID: 33467411]
[53]
Zhang, B.; Xie, R.; Hubert, S.M.; Yu, Y.; Zhang, Y.; Lei, X.; Deng, W.; Chen, J.; Li, Y. Collapse characteristics and outcomes of 35 breast cancer patients infected with COVID-19. Front. Oncol., 2020, 10(570130), 570130.
[http://dx.doi.org/10.3389/fonc.2020.570130] [PMID: 33194660]
[54]
Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S.Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 2020, 15(5), 700-704.
[http://dx.doi.org/10.1016/j.jtho.2020.02.010] [PMID: 32114094]
[55]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[56]
GLOBOCAN. Global cancer observatory. WHO, Available from: https://gco.iarc.fr/today/home Accessed on May 2, 2021
[57]
WHO. Breast cancer now most common form of cancer: WHO taking action. World Heal Organ, Available from: https://www.who.int/news/item/03-02-2021-breast-cancer-now-most-common-form-of-cancer-who-taking-action Accessed March 27, 2021.
[58]
Tanos, T.; Rojo, L.; Echeverria, P.; Brisken, C. ER and PR signaling nodes during mammary gland development. Breast Cancer Res., 2012, 14(4), 210.
[http://dx.doi.org/10.1186/bcr3166] [PMID: 22809143]
[59]
Parmar, H.S.; Nayak, A.; Gavel, P.K.; Jha, H.C.; Bhagwat, S.; Sharma, R. Cross talk between COVID-19 and breast cancer. Curr. Cancer Drug Targets, 2021, 21(7), 575-600.
[http://dx.doi.org/10.2174/1568009621666210216102236] [PMID: 33593260]
[60]
Chia, K.; O’Brien, M.; Brown, M.; Lim, E. Targeting the androgen receptor in breast cancer. Curr. Oncol. Rep., 2015, 17(2), 4.
[http://dx.doi.org/10.1007/s11912-014-0427-8] [PMID: 25665553]
[61]
Lucas, J.M.; Heinlein, C.; Kim, T.; Hernandez, S.A.; Malik, M.S.; True, L.D.; Morrissey, C.; Corey, E.; Montgomery, B.; Mostaghel, E.; Clegg, N.; Coleman, I.; Brown, C.M.; Schneider, E.L.; Craik, C.; Simon, J.A.; Bedalov, A.; Nelson, P.S. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov., 2014, 4(11), 1310-1325.
[http://dx.doi.org/10.1158/2159-8290.CD-13-1010] [PMID: 25122198]
[62]
Wambier, C.G.; Goren, A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J. Am. Acad. Dermatol., 2020, 83(1), 308-309.
[http://dx.doi.org/10.1016/j.jaad.2020.04.032] [PMID: 32283245]
[63]
Bravaccini, S.; Fonzi, E.; Tebaldi, M.; Angeli, D.; Martinelli, G.; Nicolini, F.; Parrella, P.; Mazza, M. Estrogen and androgen receptor inhibitors: Unexpected allies in the fight against COVID-19. Cell Transplant., 2021, 30, 963689721991477.
[http://dx.doi.org/10.1177/0963689721991477] [PMID: 33522308]
[64]
Hoang, T.; Nguyen, T.Q.; Tran, T.T.A. Genetic susceptibility of ACE2 and TMPRSS2 in six common cancers and possible impacts on COVID-19. Cancer Res. Treat., 2021, 53(3), 650-656.
[http://dx.doi.org/10.4143/crt.2020.950] [PMID: 33421977]
[65]
Kloc, M.; Ghobrial, R.M.; Kubiak, J.Z. The role of genetic sex and mitochondria in response to COVID-19 infection. Int. Arch. Allergy Immunol., 2020, 181(8), 629-634.
[http://dx.doi.org/10.1159/000508560] [PMID: 32564017]
[66]
Klein, S.L.; Dhakal, S.; Ursin, R.L.; Deshpande, S.; Sandberg, K.; Mauvais-Jarvis, F. Biological sex impacts COVID-19 outcomes. PLoS Pathog., 2020, 16(6), e1008570.
[http://dx.doi.org/10.1371/journal.ppat.1008570] [PMID: 32569293]
[67]
Ding, T.; Zhang, J.; Wang, T.; Cui, P.; Chen, Z.; Jiang, J.; Zhou, S.; Dai, J.; Wang, B.; Yuan, S.; Ma, W.; Ma, L.; Rong, Y.; Chang, J.; Miao, X.; Ma, X.; Wang, S. Potential influence of menstrual status and sex hormones on female SARS-CoV-2 infection: A cross-sectional study from multicentre in Wuhan, China. Clin. Infect. Dis., 2020, 72(9), e240-e248.
[http://dx.doi.org/10.1093/cid/ciaa1022] [PMID: 32697835]
[68]
Vatansev, H.; Kadiyoran, C.; Cumhur Cure, M.; Cure, E. COVID-19 infection can cause chemotherapy resistance development in patients with breast cancer and tamoxifen may cause susceptibility to COVID-19 infection. Med. Hypotheses, 2020, 143, 110091.
[http://dx.doi.org/10.1016/j.mehy.2020.110091] [PMID: 32663742]
[69]
Bukowska, A.; Spiller, L.; Wolke, C.; Lendeckel, U.; Weinert, S.; Hoffmann, J.; Bornfleth, P.; Kutschka, I.; Gardemann, A.; Isermann, B.; Goette, A. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp. Biol. Med. (Maywood), 2017, 242(14), 1412-1423.
[http://dx.doi.org/10.1177/1535370217718808] [PMID: 28661206]
[70]
Brosnihan, K.B.; Hodgin, J.B.; Smithies, O.; Maeda, N.; Gallagher, P. Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-α knock-out mice. Exp. Physiol., 2008, 93(5), 658-664.
[http://dx.doi.org/10.1113/expphysiol.2007.041806] [PMID: 18192335]
[71]
Bujak-Gizycka, B.; Madej, J.; Bystrowska, B.; Toton-Zuranska, J.; Kus, K.; Kolton-Wroz, M.; Jawien, J.; Olszanecki, R. Angiotensin 1-7 formation in breast tissue is attenuated in breast cancer - a study on the metabolism of angiotensinogen in breast cancer cell lines. J. Physiol. Pharmacol., 2019, 70(4)
[http://dx.doi.org/10.26402/jpp.2019.4.02] [PMID: 31642813]
[72]
Bhari, V.K.; Kumar, D.; Kumar, S.; Mishra, R. SARS-CoV-2 cell receptor gene ACE2 -mediated immunomodulation in breast cancer subtypes. Biochem. Biophys. Rep., 2020, 24, 100844.
[http://dx.doi.org/10.1016/j.bbrep.2020.100844] [PMID: 33178900]
[73]
Nair, M.G.; Prabhu, J.S.; Ts, S. High expression of ACE2 in HER2 subtype of breast cancer is a marker of poor prognosis. Cancer Treat. Res. Commun., 2021, 27, 100321.
[http://dx.doi.org/10.1016/j.ctarc.2021.100321] [PMID: 33517235]
[74]
Klinge, C.M. Estrogenic control of mitochondrial function. Redox Biol., 2020, 31, 101435.
[http://dx.doi.org/10.1016/j.redox.2020.101435] [PMID: 32001259]
[75]
Card, J.W.; Zeldin, D.C. Hormonal influences on lung function and response to environmental agents: Lessons from animal models of respiratory disease. Proc. Am. Thorac. Soc., 2009, 6(7), 588-595.
[http://dx.doi.org/10.1513/pats.200904-020RM] [PMID: 19934354]
[76]
Vuagnat, P.; Frelaut, M.; Ramtohul, T.; Basse, C.; Diakite, S.; Noret, A.; Bellesoeur, A.; Servois, V.; Hequet, D.; Laas, E.; Kirova, Y.; Cabel, L.; Pierga, J.Y.; Bozec, L.; Paoletti, X.; Cottu, P.; Bidard, F.C. COVID-19 in breast cancer patients: A cohort at the Institut Curie hospitals in the Paris area. Breast Cancer Res., 2020, 22(1), 55.
[http://dx.doi.org/10.1186/s13058-020-01293-8] [PMID: 32460829]
[77]
Kalinsky, K.; Accordino, M.K.; Hosi, K.; Hawley, J.E.; Trivedi, M.S.; Crew, K.D.; Hershman, D.L. Characteristics and outcomes of patients with breast cancer diagnosed with SARS-Cov-2 infection at an academic center in New York City. Breast Cancer Res. Treat., 2020, 182(1), 239-242.
[http://dx.doi.org/10.1007/s10549-020-05667-6] [PMID: 32405915]
[78]
Kuderer, N.M.; Choueiri, T.K.; Shah, D.P.; Shyr, Y.; Rubinstein, S.M.; Rivera, D.R.; Shete, S.; Hsu, C.Y.; Desai, A.; de Lima Lopes, G., Jr; Grivas, P.; Painter, C.A.; Peters, S.; Thompson, M.A.; Bakouny, Z.; Batist, G.; Bekaii-Saab, T.; Bilen, M.A.; Bouganim, N.; Larroya, M.B.; Castellano, D.; Del Prete, S.A.; Doroshow, D.B.; Egan, P.C.; Elkrief, A.; Farmakiotis, D.; Flora, D.; Galsky, M.D.; Glover, M.J.; Griffiths, E.A.; Gulati, A.P.; Gupta, S.; Hafez, N.; Halfdanarson, T.R.; Hawley, J.E.; Hsu, E.; Kasi, A.; Khaki, A.R.; Lemmon, C.A.; Lewis, C.; Logan, B.; Masters, T.; McKay, R.R.; Mesa, R.A.; Morgans, A.K.; Mulcahy, M.F.; Panagiotou, O.A.; Peddi, P.; Pennell, N.A.; Reynolds, K.; Rosen, L.R.; Rosovsky, R.; Salazar, M.; Schmidt, A.; Shah, S.A.; Shaya, J.A.; Steinharter, J.; Stockerl-Goldstein, K.E.; Subbiah, S.; Vinh, D.C.; Wehbe, F.H.; Weissmann, L.B.; Wu, J.T.; Wulff-Burchfield, E.; Xie, Z.; Yeh, A.; Yu, P.P.; Zhou, A.Y.; Zubiri, L.; Mishra, S.; Lyman, G.H.; Rini, B.I.; Warner, J.L. Clinical impact of COVID-19 on patients with cancer (CCC19): A cohort study. Lancet, 2020, 395(10241), 1907-1918.
[http://dx.doi.org/10.1016/S0140-6736(20)31187-9] [PMID: 32473681]
[79]
Registry Study Describes COVID-19 Mortality and hospitalization in patients with breast cancer. Oncologist, 2021, 26(Suppl. 2), S17-S18.
[http://dx.doi.org/10.1002/onco.13664] [PMID: 33399255]
[80]
Chortkoff, B.; Stenehjem, D. Chemotherapy, immunosuppression, and anesthesia. In: Pharmacol Physiol Anesth Found Clin Appl; , 2019; pp. 753-768.
[http://dx.doi.org/10.1016/B978-0-323-48110-6.00038-7]
[81]
Corso, C.R.; Mulinari Turin de Oliveira, N.; Maria-Ferreira, D. Susceptibility to SARS-CoV-2 infection in patients undergoing chemotherapy and radiation therapy. J. Infect. Public Health, 2021, 14(6), 766-771.
[http://dx.doi.org/10.1016/j.jiph.2021.03.008] [PMID: 34022735]
[82]
Jee, J.; Foote, M.B.; Lumish, M.; Stonestrom, A.J.; Wills, B.; Narendra, V.; Avutu, V.; Murciano-Goroff, Y.R.; Chan, J.E.; Derkach, A.; Philip, J.; Belenkaya, R.; Kerpelev, M.; Maloy, M.; Watson, A.; Fong, C.; Janjigian, Y.; Diaz, L.A., Jr; Bolton, K.L.; Pessin, M.S. Chemotherapy and COVID-19 outcomes in patients with cancer. J. Clin. Oncol., 2020, 38(30), 3538-3546.
[http://dx.doi.org/10.1200/JCO.20.01307] [PMID: 32795225]
[83]
Neto, M.C.; Hamerschlak, N.; Feitosa, A.A.R.; Guendelmann, R.A.K.; Santos, V.A. Hospital Albert Einstein. Guia de protocolos e medicamentos para tratamento em oncologia e hematologia;; São Paulo, 2013, p. 516.
[84]
McDonnell, D.P.; Wardell, S.E.; Norris, J.D. Oral selective estrogen receptor downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J. Med. Chem., 2015, 58(12), 4883-4887.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00760] [PMID: 26039356]
[85]
Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24.
[http://dx.doi.org/10.1016/j.pharmthera.2017.12.012] [PMID: 29289555]
[86]
Martí, C.; Sánchez-Méndez, J.I. Neoadjuvant endocrine therapy for luminal breast cancer treatment: A first-choice alternative in times of crisis such as the COVID-19 pandemic. Ecancermedicalscience, 2020, 14, 1027.
[http://dx.doi.org/10.3332/ecancer.2020.1027] [PMID: 32368252]
[87]
Drăgănescu, M.; Carmocan, C. Hormone therapy in breast cancer. Chirurgia (Bucur.), 2017, 112(4), 413-417.
[http://dx.doi.org/10.21614/chirurgia.112.4.413] [PMID: 28862117]
[88]
Goren, A.; Wambier, C.G.; Herrera, S.; McCoy, J.; Vaño-Galván, S.; Gioia, F.; Comeche, B.; Ron, R.; Serrano-Villar, S.; Ramos, P.M.; Cadegiani, F.A.; Kovacevic, M.; Tosti, A.; Shapiro, J.; Sinclair, R. Anti-androgens may protect against severe COVID-19 outcomes: Results from a prospective cohort study of 77 hospitalized men. J. Eur. Acad. Dermatol. Venereol., 2021, 35(1), e13-e15.
[http://dx.doi.org/10.1111/jdv.16953] [PMID: 32977363]
[89]
Samuel, R.M.; Majd, H.; Richter, M.N.; Ghazizadeh, Z.; Zekavat, S.M.; Navickas, A.; Ramirez, J.T.; Asgharian, H.; Simoneau, C.R.; Bonser, L.R.; Koh, K.D.; Garcia-Knight, M.; Tassetto, M.; Sunshine, S.; Farahvashi, S.; Kalantari, A.; Liu, W.; Andino, R.; Zhao, H.; Natarajan, P.; Erle, D.J.; Ott, M.; Goodarzi, H.; Fattahi, F. Androgen signaling regulates SARS-CoV-2 receptor levels and is associated with severe COVID-19 symptoms in men. Cell Stem Cell, 2020, 27(6), 876-889.e12.
[http://dx.doi.org/10.1016/j.stem.2020.11.009] [PMID: 33232663]
[90]
Montopoli, M.; Zorzi, M.; Cocetta, V.; Prayer-Galetti, T.; Guzzinati, S.; Bovo, E.; Rugge, M.; Calcinotto, A. Clinical outcome of SARS-CoV-2 infection in breast and ovarian cancer patients who underwent antiestrogenic therapy. Ann. Oncol., 2021, 32(5), 676-677.
[http://dx.doi.org/10.1016/j.annonc.2021.01.069] [PMID: 33524477]
[91]
Behjati, S.; Frank, M.H. The effects of tamoxifen on immunity. Curr. Med. Chem., 2009, 16(24), 3076-3080.
[http://dx.doi.org/10.2174/092986709788803042] [PMID: 19689284]
[92]
Lesterhuis, W.J.; Punt, C.J.A.; Hato, S.V.; Eleveld-Trancikova, D.; Jansen, B.J.H.; Nierkens, S.; Schreibelt, G.; de Boer, A.; Van Herpen, C.M.; Kaanders, J.H.; van Krieken, J.H.; Adema, G.J.; Figdor, C.G.; de Vries, I.J. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Invest., 2011, 121(8), 3100-3108.
[http://dx.doi.org/10.1172/JCI43656] [PMID: 21765211]
[93]
Ideguchi, H.; Kojima, K.; Hirosako, S.; Ichiyasu, H.; Fujii, K.; Kohrogi, H. Cisplatin-induced eosinophilic pneumonia. Case Rep. Pulmonol., 2014, 2014, 209732.
[http://dx.doi.org/10.1155/2014/209732] [PMID: 25478274]
[94]
Marques, C.D.L.; Kakehasi, A.M.; Pinheiro, M.M.; Mota, L.M.H.; Albuquerque, C.P.; Silva, C.R.; Santos, G.P.J.; Reis-Neto, E.T.; Matos, P.; Devide, G.; Dantas, A.; Giorgi, R.D.; Marinho, A.O.; Valadares, L.D.A.; Melo, A.K.G.; Ribeiro, F.M.; Ferreira, G.A.; Santos, F.P.S.; Ribeiro, S.L.E.; Andrade, N.P.B.; Yazbek, M.A.; Souza, V.A.; Paiva, E.S.; Azevedo, V.F.; Freitas, A.B.S.B.; Provenza, J.R.; Toledo, R.A.; Fontenelle, S.; Carneiro, S.; Xavier, R.; Pileggi, G.C.S.; Reis, A.P.M.G. High levels of immunosuppression are related to unfavourable outcomes in hospitalised patients with rheumatic diseases and COVID-19: First results of ReumaCoV Brasil registry. RMD Open, 2021, 7(1), e001461.
[http://dx.doi.org/10.1136/rmdopen-2020-001461] [PMID: 33510041]
[95]
Brocato, R.L.; Principe, L.M.; Kim, R.K.; Zeng, X.; Williams, J.A.; Liu, Y.; Li, R.; Smith, J.M.; Golden, J.W.; Gangemi, D.; Youssef, S.; Wang, Z.; Glanville, J.; Hooper, J.W. Disruption of adaptive immunity enhances disease in SARS-CoV-2-infected syrian hamsters. J. Virol., 2020, 94(22), e01683-20.
[http://dx.doi.org/10.1128/JVI.01683-20] [PMID: 32900822]
[96]
Revannasiddaiah, S.; Kumar Devadas, S.; Palassery, R.; Kumar Pant, N.; Maka, V.V. A potential role for cyclophosphamide in the mitigation of acute respiratory distress syndrome among patients with SARS-CoV-2. Med. Hypotheses, 2020, 144, 109850.
[http://dx.doi.org/10.1016/j.mehy.2020.109850] [PMID: 32526511]
[97]
Freres, P.; Jerusalem, G.; Moonen, M. Categories of anticancer treatments. In: Anticancer Treatments and Cardiotoxicity; Mechanisms, Diagnostic and Therapeutic Interventions, 2017; pp. 7-11.
[http://dx.doi.org/10.1016/B978-0-12-802509-3.00002-9]
[98]
Ghebeh, H.; Lehe, C.; Barhoush, E.; Al-Romaih, K.; Tulbah, A.; Al-Alwan, M.; Hendrayani, S.F.; Manogaran, P.; Alaiya, A.; Al-Tweigeri, T.; Aboussekhra, A.; Dermime, S. Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: Role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res., 2010, 12(4), R48.
[http://dx.doi.org/10.1186/bcr2605] [PMID: 20626886]
[99]
Tan, J.L.; Chan, S.T.; Lo, C.Y.; Deane, J.A.; McDonald, C.A.; Bernard, C.C.A.; Wallace, E.M.; Lim, R. Amnion cell-mediated immune modulation following bleomycin challenge: Controlling the regulatory T cell response. Stem Cell Res. Ther., 2015, 6(1), 8.
[http://dx.doi.org/10.1186/scrt542] [PMID: 25634246]
[100]
Hoshino, T.; Nakamura, H.; Okamoto, M.; Kato, S.; Araya, S.; Nomiyama, K.; Oizumi, K.; Young, H.A.; Aizawa, H.; Yodoi, J. Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. Am. J. Respir. Crit. Care Med., 2003, 168(9), 1075-1083.
[http://dx.doi.org/10.1164/rccm.200209-982OC] [PMID: 12816738]
[101]
Piguet, P.F.; Collart, M.A.; Grau, G.E.; Kapanci, Y.; Vassalli, P. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J. Exp. Med., 1989, 170(3), 655-663.
[http://dx.doi.org/10.1084/jem.170.3.655] [PMID: 2475571]
[102]
Avendaño, C.; Menéndez, J.C. Antimetabolites. In: Medicinal Chemistry of Anticancer Drug; Elsevier, 2008; pp. 9-52.
[http://dx.doi.org/10.1016/B978-0-444-52824-7.00002-0]
[103]
Szucs, Z.; Jones, R.L. Introduction to systemic antineoplastic treatments for cardiologists. Clin. Cardiooncology, 2016.
[http://dx.doi.org/10.1016/B978-0-323-44227-5.00002-8]
[104]
Levitt, M.L.; Kassem, B.; Gooding, W.E.; Miketic, L.M.; Landreneau, R.J.; Ferson, P.F.; Keenan, R.; Yousem, S.A.; Lindberg, C.A.; Trenn, M.R.; Ponas, R.S.; Tarasoff, P.; Sabatine, J.M.; Friberg, D.; Whiteside, T.L. Phase I study of gemcitabine given weekly as a short infusion for non-small cell lung cancer: Results and possible immune system-related mechanisms. Lung Cancer, 2004, 43(3), 335-344.
[http://dx.doi.org/10.1016/j.lungcan.2003.09.011] [PMID: 15165093]
[105]
Kim, Y.J.; Song, M.; Ryu, J.C. Inflammation in methotrexate-induced pulmonary toxicity occurs via the p38 MAPK pathway. Toxicology, 2009, 256(3), 183-190.
[http://dx.doi.org/10.1016/j.tox.2008.11.016] [PMID: 19100307]
[106]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(40), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[107]
Javeed, A.; Ashraf, M.; Riaz, A.; Ghafoor, A.; Afzal, S.; Mukhtar, M.M. Paclitaxel and immune system. Eur. J. Pharm. Sci., 2009, 38(4), 283-290.
[http://dx.doi.org/10.1016/j.ejps.2009.08.009] [PMID: 19733657]
[108]
Reckzeh, B.; Merte, H.; Pflüger, K.H.; Pfab, R.; Wolf, M.; Havemann, K. Severe lymphocytopenia and interstitial pneumonia in patients treated with paclitaxel and simultaneous radiotherapy for non-small-cell lung cancer. J. Clin. Oncol., 1996, 14(4), 1071-1076.
[http://dx.doi.org/10.1200/JCO.1996.14.4.1071] [PMID: 8648359]
[109]
Li, L.; Mok, H.; Jhaveri, P.; Bonnen, M.D.; Sikora, A.G.; Eissa, N.T.; Komaki, R.U.; Ghebre, Y.T. Anticancer therapy and lung injury: Molecular mechanisms. Expert Rev. Anticancer Ther., 2018, 18(10), 1041-1057.
[http://dx.doi.org/10.1080/14737140.2018.1500180] [PMID: 29996062]
[110]
O’Donnell, J.S.; Teng, M.W.L.; Smyth, M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol., 2019, 16(3), 151-167.
[http://dx.doi.org/10.1038/s41571-018-0142-8] [PMID: 30523282]
[111]
Radzikowska, E.; Szczepulska, E.; Chabowski, M.; Bestry, I. Organising pneumonia caused by transtuzumab (Herceptin) therapy for breast cancer. Eur. Respir. J., 2003, 21(3), 552-555.
[http://dx.doi.org/10.1183/09031936.03.00035502] [PMID: 12662016]
[112]
Di Cosimo, S.; Malfettone, A.; Pérez-García, J.M.; Llombart-Cussac, A.; Miceli, R.; Curigliano, G.; Cortés, J. Immune checkpoint inhibitors: A physiology-driven approach to the treatment of coronavirus disease 2019. Eur. J. Cancer, 2020, 135, 62-65.
[http://dx.doi.org/10.1016/j.ejca.2020.05.026] [PMID: 32544799]
[113]
Gambichler, T.; Reuther, J.; Scheel, C.H.; Becker, J.C. On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19. J. Immunother. Cancer, 2020, 8(2), e001145.
[http://dx.doi.org/10.1136/jitc-2020-001145] [PMID: 32611687]
[114]
Naidoo, J.; Page, D.B.; Li, B.T.; Connell, L.C.; Schindler, K.; Lacouture, M.E.; Postow, M.A.; Wolchok, J.D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol., 2015, 26(12), 2375-2391.
[http://dx.doi.org/10.1093/annonc/mdv383] [PMID: 26371282]
[115]
Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; Braiteh, F.; Waterkamp, D.; He, P.; Zou, W.; Chen, D.S.; Yi, J.; Sandler, A.; Rittmeyer, A. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030), 1837-1846.
[http://dx.doi.org/10.1016/S0140-6736(16)00587-0] [PMID: 26970723]
[116]
Barjaktarevic, I.Z.; Qadir, N.; Suri, A.; Santamauro, J.T.; Stover, D. Organizing pneumonia as a side effect of ipilimumab treatment of melanoma. Chest, 2013, 143(3), 858-861.
[http://dx.doi.org/10.1378/chest.12-1467] [PMID: 23460165]
[117]
Franzen, D.; Schad, K.; Dummer, R.; Russi, E.W. Severe acute respiratory distress syndrome due to ipilimumab. Eur. Respir. J., 2013, 42(3), 866-868.
[http://dx.doi.org/10.1183/09031936.00044113] [PMID: 24000256]
[118]
Bayoumy, A.B.; de Boer, N.K.H.; Ansari, A.R.; Crouwel, F.; Mulder, C.J.J. Unrealized potential of drug repositioning in europe during COVID-19 and beyond: A physcian’s perspective. J. Pharm. Policy Pract., 2020, 13(45), 45.
[http://dx.doi.org/10.1186/s40545-020-00249-9] [PMID: 32695427]
[119]
Lovato, E.C.W.; Barboza, L.N.; Wietzikoski, S.; de Souza, A.N.V.; Auth, P.A.; Junior, A.G.; Dos Reis Lívero, F.A. Repurposing drugs for the management of patients with confirmed coronavirus disease 2019 (COVID-19). Curr. Pharm. Des., 2021, 27(1), 115-126.
[http://dx.doi.org/10.2174/1381612826666200707121636] [PMID: 32634080]
[120]
Pilla Reddy, V.; El-Khateeb, E.; Jo, H.; Giovino, N.; Lythgoe, E.; Sharma, S.; Tang, W.; Jamei, M.; Rastomi-Hodjegan, A. Pharmacokinetics under the COVID-19 storm. Br. J. Clin. Pharmacol., 2020.
[http://dx.doi.org/10.1111/bcp.14668] [PMID: 33226664]
[121]
Di Lorenzo, G.; Di Trolio, R.; Kozlakidis, Z.; Busto, G.; Ingenito, C.; Buonerba, L.; Ferrara, C.; Libroia, A.; Ragone, G.; Ioio, C.D.; Savastano, B.; Polverino, M.; De Falco, F.; Iaccarino, S.; Leo, E. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Crit. Rev. Oncol. Hematol., 2020, 152, 102991.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102991] [PMID: 32544802]
[122]
Baburaj, G.; Thomas, L.; Rao, M. Potential drug interactions of repurposed COVID-19 drugs with lung cancer pharmacotherapies. Arch. Med. Res., 2021, 52(3), 261-269.
[http://dx.doi.org/10.1016/j.arcmed.2020.11.006] [PMID: 33257051]
[123]
Sugie, M.; Asakura, E.; Zhao, Y.L.; Torita, S.; Nadai, M.; Baba, K.; Kitaichi, K.; Takagi, K.; Takagi, K.; Hasegawa, T. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob. Agents Chemother., 2004, 48(3), 809-814.
[http://dx.doi.org/10.1128/AAC.48.3.809-814.2004] [PMID: 14982769]
[124]
Asakura, E.; Nakayama, H.; Sugie, M.; Zhao, Y.L.; Nadai, M.; Kitaichi, K.; Shimizu, A.; Miyoshi, M.; Takagi, K.; Takagi, K.; Hasegawa, T. Azithromycin reverses anticancer drug resistance and modifies hepatobiliary excretion of doxorubicin in rats. Eur. J. Pharmacol., 2004, 484(2-3), 333-339.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.035] [PMID: 14744620]
[125]
Berlińska, A.; Świątkowska-Stodulska, R.; Sworczak, K. Factors affecting dexamethasone suppression test results. Exp. Clin. Endocrinol. Diabetes, 2020, 128(10), 667-671.
[http://dx.doi.org/10.1055/a-1017-3217] [PMID: 31652475]
[126]
Silvestris, N.; Brunetti, O.; Bernardini, R.; Cinieri, S. COVID vaccination in cancer patients: What vaccination priority strategies should there be? Front. Oncol., 2021, 11, 641388.
[http://dx.doi.org/10.3389/fonc.2021.641388] [PMID: 33614516]
[127]
Forster, M.; Wuerstlein, R.; Koenig, A.; Amann, N.; Beyer, S.; Kaltofen, T.; Degenhardt, T.; Burges, A.; Trillsch, F.; Mahner, S.; Harbeck, N.; Chelariu-Raicu, A. COVID-19 vaccination in patients with breast cancer and gynecological malignancies: A German perspective. Breast, 2021, 60, 214-222.
[http://dx.doi.org/10.1016/j.breast.2021.10.012] [PMID: 34736092]
[128]
Anwar, S.L.; Cahyono, R.; Hardiyanto, H.; Suwardjo, S.; Darwito, D.; Harahap, W.A. The prioritation and gap of preoperative COVID-19 vaccination in cancer surgery of the breast, head and neck, and skin: A cohort study of 367 patients in an Indonesian hospital. Ann. Med. Surg. (Lond.), 2021, 72(103089), 103089.
[http://dx.doi.org/10.1016/j.amsu.2021.103089] [PMID: 34815869]
[129]
Ko, G.; Hota, S.; Cil, T.D. COVID-19 vaccination and breast cancer surgery timing. Breast Cancer Res. Treat., 2021, 188(3), 825-826.
[http://dx.doi.org/10.1007/s10549-021-06293-6] [PMID: 34156582]
[130]
FIOCRUZ. Boletim extraordinário do observatório COVID-19 aponta maior colapso sanitário e hospitalar da história do Brasil., 2021. Available from: https://portal.fiocruz.br/observatorio-covid-19 Accessed on 16 Março 2021.
[131]
Gasparri, M.L.; Gentilini, O.D.; Lueftner, D.; Kuehn, T.; Kaidar-Person, O.; Poortmans, P. Changes in breast cancer management during the Corona Virus Disease 19 pandemic: An international survey of the European Breast Cancer Research Association of Surgical Trialists (EUBREAST). Breast, 2020, 52, 110-115.
[http://dx.doi.org/10.1016/j.breast.2020.05.006] [PMID: 32502796]
[132]
Pinholato, L.A.; Pupim, M.C.S.; Herrera, A.C.S.A.; Oliveira, C.E.C. Comparative analysis: QOL in breast cancer patients before and during the COVID-19 pandemic. Mastology, 2021, 31, 1-6.
[http://dx.doi.org/10.29289/2594539420200084]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy