Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Liposomes in the Targeted Gene Therapy of Cancer: A Critical Review

Author(s): Ashish Akkewar*, Nilesh Mahajan, Rohini Kharwade and Purushottam Gangane

Volume 20, Issue 4, 2023

Published on: 22 July, 2022

Page: [350 - 370] Pages: 21

DOI: 10.2174/1567201819666220421113127

Price: $65

conference banner
Abstract

Cancer immunotherapy has advanced significantly in recent years. Nanocarriers like liposomes can improve cancer immunotherapy and even stronger immune responses by improving cell type-specific distribution. Liposomes are lipid bilayer vesicles that are biodegradable and biocompatible and are often used as smart delivery systems for both hydrophobic and hydrophilic bioactive. Whereas the idea of employing liposomes for administering drugs has been known since the 1960s, the early 2000s saw continuing technological advances and formulations for drug entrapment and manufacturing. Modern deterministic studies have tried discovering more about how genetic material is delivered through liposomes. Liposomes' interactions with cells are still a bit of mystery. Liposome-mediated transmission of genetic material experiences systemic impediments perlysosomal degradation, endosomal escape, and nuclear uptake. Controlling the physical architecture and chemical properties of liposome structures, such as lipid-to-DNA charge, ester bond composition, size, and ligand complexation structure, is critical for targeting liposomes' success as vehicles for gene delivery. This analysis focuses on advancements in ligand-targeted liposomes and theranostic (diagnostic) liposomes for cancer diagnosis and treatment. This review will explore the numerous transgene mechanisms and molecular targets implicated in cancer cell death and the associated benefits of using liposomal formulations throughout the years. This sequence of breakthroughs will interest aspiring researchers and the pharmaceutical industry involved in liposome development.

Keywords: Gene therapy, liposomes, cancer immunotherapy, LTLs, targeted drug delivery, ligand, microfluidics, transgenes.

Graphical Abstract

[1]
Alemany, R.; Balagué, C.; Curiel, D.T. Replicative adenoviruses for cancer therapy. Nat. Biotechnol., 2000, 18(7), 723-727.
[http://dx.doi.org/10.1038/77283] [PMID: 10888838]
[2]
Schepelmann, S.; Hallenbeck, P.; Ogilvie, L.M.; Hedley, D.; Friedlos, F.; Martin, J.; Scanlon, I.; Hay, C.; Hawkins, L.K.; Marais, R.; Springer, C.J. Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2. Cancer Res., 2005, 65(12), 5003-5008.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0393] [PMID: 15958540]
[3]
Deshmukh, H.L.; Haung, L. liposome and polylysine mediated gene transfer. New J. Chem., 1997, 21, 113-124.
[4]
Mountain, A. Gene therapy: A first decade, trends. Biotechnol., 2000, 18, 119-128.
[5]
Cullis, P.R.; Chonn, A. Recent advances in liposome technologies and their applications for systemic gene delivery. Adv. Drug Deliv. Rev., 1998, 30(1-3), 73-83.
[http://dx.doi.org/10.1016/S0169-409X(97)00108-7] [PMID: 10837603]
[6]
Bally, M.B.; Harvie, P.; Wong, F.M.; Kong, S.; Wasan, E.K.; Reimer, D.L. Biological barriers to cellular delivery of lipid-based DNA carriers. Adv. Drug Deliv. Rev., 1999, 38(3), 291-315.
[http://dx.doi.org/10.1016/S0169-409X(99)00034-4] [PMID: 10837762]
[7]
Anchordoquy, T.J.; Allison, S.D.; Molina, M.C.; Girouard, L.G.; Carson, T.K. Physical stabilization of DNA-based therapeutics. Drug Discov. Today, 2001, 6(9), 463-470.
[http://dx.doi.org/10.1016/S1359-6446(01)01739-1] [PMID: 11344031]
[8]
Felgner, P.L.; Ringold, G.M. Cationic liposome-mediated transfection. Nature, 1989, 337(6205), 387-388.
[http://dx.doi.org/10.1038/337387a0] [PMID: 2463491]
[9]
Behr, J.P. DNA strongly bind to the micelles and vesicles containing lipopolyamines or lipointercalants. Tetrahedron Lett., 1986, 27(48), 5861-5864.
[http://dx.doi.org/10.1016/S0040-4039(00)85347-2]
[10]
Pinnaduwage, P.; Schmitt, L.; Huang, L. Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochim. Biophys. Acta, 1989, 985(1), 33-37.
[http://dx.doi.org/10.1016/0005-2736(89)90099-0] [PMID: 2790044]
[11]
Roma-Rodrigues, C.; Rivas-García, L.; Baptista, P.V.; Fernandes, A.R. Gene therapy in cancer treatment: Why go nano? A review. Pharmaceutics, 2020, 12, 233.
[12]
Byk, G.; Scherman, D. Novel cationic lipid for gene delivery and gene therapy. Expert Ophin. Ther. Patents, 1998, 8, 1125-1141.
[http://dx.doi.org/10.1517/13543776.8.9.1125]
[13]
Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; Gocayne, J.D.; Amanatides, P.; Ballew, R.M.; Huson, D.H.; Wortman, J.R.; Zhang, Q.; Kodira, C.D.; Zheng, X.H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P.D.; Zhang, J.; Gabor Miklos, G.L.; Nelson, C.; Broder, S.; Clark, A.G.; Nadeau, J.; McKusick, V.A.; Zinder, N.; Levine, A.J.; Roberts, R.J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S.; Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Di Francesco, V.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A.E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T.J.; Higgins, M.E.; Ji, R.R.; Ke, Z.; Ketchum, K.A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G.V.; Milshina, N.; Moore, H.M.; Naik, A.K.; Narayan, V.A.; Neelam, B.; Nusskern, D.; Rusch, D.B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z.; Wang, A.; Wang, X.; Wang, J.; Wei, M.; Wides, R.; Xiao, C.; Yan, C.; Yao, A.; Ye, J.; Zhan, M.; Zhang, W.; Zhang, H.; Zhao, Q.; Zheng, L.; Zhong, F.; Zhong, W.; Zhu, S.; Zhao, S.; Gilbert, D.; Baumhueter, S.; Spier, G.; Carter, C.; Cravchik, A.; Woodage, T.; Ali, F.; An, H.; Awe, A.; Baldwin, D.; Baden, H.; Barnstead, M.; Barrow, I.; Beeson, K.; Busam, D.; Carver, A.; Center, A.; Cheng, M.L.; Curry, L.; Danaher, S.; Davenport, L.; Desilets, R.; Dietz, S.; Dodson, K.; Doup, L.; Ferriera, S.; Garg, N.; Gluecksmann, A.; Hart, B.; Haynes, J.; Haynes, C.; Heiner, C.; Hladun, S.; Hostin, D.; Houck, J.; Howland, T.; Ibegwam, C.; Johnson, J.; Kalush, F.; Kline, L.; Koduru, S.; Love, A.; Mann, F.; May, D.; McCawley, S.; McIntosh, T.; McMullen, I.; Moy, M.; Moy, L.; Murphy, B.; Nelson, K.; Pfannkoch, C.; Pratts, E.; Puri, V.; Qureshi, H.; Reardon, M.; Rodriguez, R.; Rogers, Y.H.; Romblad, D.; Ruhfel, B.; Scott, R.; Sitter, C.; Smallwood, M.; Stewart, E.; Strong, R.; Suh, E.; Thomas, R.; Tint, N.N.; Tse, S.; Vech, C.; Wang, G.; Wetter, J.; Williams, S.; Williams, M.; Windsor, S.; Winn-Deen, E.; Wolfe, K.; Zaveri, J.; Zaveri, K.; Abril, J.F.; Guigó, R.; Campbell, M.J.; Sjolander, K.V.; Karlak, B.; Kejariwal, A.; Mi, H.; Lazareva, B.; Hatton, T.; Narechania, A.; Diemer, K.; Muruganujan, A.; Guo, N.; Sato, S.; Bafna, V.; Istrail, S.; Lippert, R.; Schwartz, R.; Walenz, B.; Yooseph, S.; Allen, D.; Basu, A.; Baxendale, J.; Blick, L.; Caminha, M.; Carnes-Stine, J.; Caulk, P.; Chiang, Y.H.; Coyne, M.; Dahlke, C.; Mays, A.; Dombroski, M.; Donnelly, M.; Ely, D.; Esparham, S.; Fosler, C.; Gire, H.; Glanowski, S.; Glasser, K.; Glodek, A.; Gorokhov, M.; Graham, K.; Gropman, B.; Harris, M.; Heil, J.; Henderson, S.; Hoover, J.; Jennings, D.; Jordan, C.; Jordan, J.; Kasha, J.; Kagan, L.; Kraft, C.; Levitsky, A.; Lewis, M.; Liu, X.; Lopez, J.; Ma, D.; Majoros, W.; McDaniel, J.; Murphy, S.; Newman, M.; Nguyen, T.; Nguyen, N.; Nodell, M.; Pan, S.; Peck, J.; Peterson, M.; Rowe, W.; Sanders, R.; Scott, J.; Simpson, M.; Smith, T.; Sprague, A.; Stockwell, T.; Turner, R.; Venter, E.; Wang, M.; Wen, M.; Wu, D.; Wu, M.; Xia, A.; Zandieh, A.; Zhu, X. The sequence of the human genome. Science, 2001, 291(5507), 1304-1351.
[http://dx.doi.org/10.1126/science.1058040] [PMID: 11181995]
[14]
DeVita, V.T., Jr; Rosenberg, S.A. Two hundred years of cancer research. N. Engl. J. Med., 2012, 366(23), 2207-2214.
[http://dx.doi.org/10.1056/NEJMra1204479] [PMID: 22646510]
[15]
Curie, P.; Curie, M.; Bémont, G. On a new, strongly radioactive substance contained in pitchblende. CR (East Lansing Mich.), 1898, 127, 1215-1217.
[16]
Goodman, L.S.; Wintrobe, M.M.; Dameshek, W.; Goodman, M.J.; Gilman, A.; McLennan, M.T. Landmark article Sept. 21, 1946: Nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. By Louis S. Goodman, Maxwell M. Wintrobe, William Dameshek, Morton J. Goodman, Alfred Gilman and Margaret T. McLennan. JAMA, 1984, 251(17), 2255-2261.
[http://dx.doi.org/10.1001/jama.1984.03340410063036] [PMID: 6368885]
[17]
Farber, S.; Diamond, L.K.; Mercer, R.D.; Sylvester, R.F., Jr; Wolff, J.A. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med., 1948, 238(23), 787-793.
[http://dx.doi.org/10.1056/NEJM194806032382301] [PMID: 18860765]
[18]
Hemminki, O.; Hemminki, A. Oncolytic adenoviruses in the treatment of cancer in humans. In: Gene Therapy of Cancer, 3rd ed; Lattime, E.C.; Gerson, S.L., Eds.; Elsevier: San Diego, CA, 2013; pp. 153-170.
[19]
Maloney, D.G.; Grillo-López, A.J.; White, C.A.; Bodkin, D.; Schilder, R.J.; Neidhart, J.A.; Janakiraman, N.; Foon, K.A.; Liles, T.M.; Dallaire, B.K.; Wey, K.; Royston, I.; Davis, T.; Levy, R. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood, 1997, 90(6), 2188-2195.
[http://dx.doi.org/10.1182/blood.V90.6.2188] [PMID: 9310469]
[20]
Sheridan, C. Gene therapy finds its niche. Nat. Biotechnol., 2011, 29(2), 121-128.
[http://dx.doi.org/10.1038/nbt.1769] [PMID: 21301435]
[21]
Chiocca, E.A.; Abbed, K.M.; Tatter, S.; Louis, D.N.; Hochberg, F.H.; Barker, F.; Kracher, J.; Grossman, S.A.; Fisher, J.D.; Carson, K.; Rosenblum, M.; Mikkelsen, T.; Olson, J.; Markert, J.; Rosenfeld, S.; Nabors, L.B.; Brem, S.; Phuphanich, S.; Freeman, S.; Kaplan, R.; Zwiebel, J. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol. Ther., 2004, 10(5), 958-966.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.021] [PMID: 15509513]
[22]
Block, S.L.; Nolan, T.; Sattler, C.; Barr, E.; Giacoletti, K.E.; Marchant, C.D.; Castellsagué, X.; Rusche, S.A.; Lukac, S.; Bryan, J.T.; Cavanaugh, P.F., Jr; Reisinger, K.S. Comparison of the immunogenicity and reactogenicity of a prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in male and female adolescents and young adult women. Pediatrics, 2006, 118(5), 2135-2145.
[http://dx.doi.org/10.1542/peds.2006-0461] [PMID: 17079588]
[23]
Kantoff, P.W.; Schuetz, T.J.; Blumenstein, B.A.; Glode, L.M.; Bilhartz, D.L.; Wyand, M.; Manson, K.; Panicali, D.L.; Laus, R.; Schlom, J.; Dahut, W.L.; Arlen, P.M.; Gulley, J.L.; Godfrey, W.R. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol., 2010, 28(7), 1099-1105.
[http://dx.doi.org/10.1200/JCO.2009.25.0597] [PMID: 20100959]
[24]
Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7413-7417.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[25]
Smith, K.R. Animal genetic manipulation--a utilitarian response. Bioethics, 2002, 16(1), 55-71.
[http://dx.doi.org/10.1111/1467-8519.00267] [PMID: 12061384]
[26]
Smith, K.R. Gene therapy: Theoretical and bioethical concepts. Arch. Med. Res., 2003, 34(4), 247-268.
[http://dx.doi.org/10.1016/S0188-4409(03)00070-5] [PMID: 12957520]
[27]
Weichselbaum, R.R.; Kufe, D. Gene therapy of cancer. Lancet, 1997, 349(Suppl. 2), SII10-SII12.
[http://dx.doi.org/10.1016/S0140-6736(97)90013-1] [PMID: 9164440]
[28]
Brown, T.A. Gene Cloning and DNA Analysis an Introduction, 6th Ed; Wiley-Blackwell: Hoboken, New Jersey, 2010, pp. 260-262.
[29]
Mozafari, M.R.; Mortazavi, M.S. Nanoliposomes: From Fundamentals to Recent Developments; Trafford Publishing Ltd: UK, 2005.
[30]
Vemuri, S.; Rhodes, C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv., 1995, 70(2), 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[31]
Williams, H.D.; Trevaskis, N.L.; Charman, S.A.; Shanker, R.M.; Charman, W.N.; Pouton, C.W.; Porter, C.J. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev., 2013, 65(1), 315-499.
[http://dx.doi.org/10.1124/pr.112.005660] [PMID: 23383426]
[32]
Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer, 2006, 6(8), 583-592.
[http://dx.doi.org/10.1038/nrc1893] [PMID: 16862189]
[33]
Hu, C-M.J.; Zhang, L. Therapeutic nanoparticles to combat cancer drug resistance. Curr. Drug Metab., 2009, 10(8), 836-841.
[http://dx.doi.org/10.2174/138920009790274540] [PMID: 20214578]
[34]
Wang, S.; El-Deiry, W.S. The p53 pathway: Targets for the development of novel cancer therapeutics. Cancer Treat. Res., 2004, 119, 175-187.
[http://dx.doi.org/10.1007/1-4020-7847-1_9] [PMID: 15164878]
[35]
Buller, R.E.; Runnebaum, I.B.; Karlan, B.Y.; Horowitz, J.A.; Shahin, M.; Buekers, T.; Petrauskas, S.; Kreienberg, R.; Slamon, D.; Pegram, M. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther., 2002, 9(7), 553-566.
[http://dx.doi.org/10.1038/sj.cgt.7700472] [PMID: 12082455]
[36]
Wills, K.N.; Maneval, D.C.; Menzel, P.; Harris, M.P.; Sutjipto, S.; Vaillancourt, M.T.; Huang, W.M.; Johnson, D.E.; Anderson, S.C.; Wen, S.F.; Bookstein, R.; Shepard, H.M.; Gregory, R.J. Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer. Hum. Gene Ther., 1994, 5(9), 1079-1088.
[http://dx.doi.org/10.1089/hum.1994.5.9-1079] [PMID: 7833367]
[37]
Frisch, S.M.; Mymryk, J.S. Adenovirus-5 E1A: Paradox and paradigm. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 441-452.
[http://dx.doi.org/10.1038/nrm827] [PMID: 12042766]
[38]
Liao, Y.; Hung, M.C. A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer drug-induced apoptosis in human breast cancer cells. Cancer Res., 2004, 64(17), 5938-5942.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1533] [PMID: 15342371]
[39]
Ding, Y.; Wen, Y.; Spohn, B.; Wang, L.; Xia, W.; Kwong, K.Y.; Shao, R.; Li, Z.; Hortobagyi, G.N.; Hung, M.C.; Yan, D.H. Proapoptotic and antitumor activities of adenovirus-mediated p202 gene transfer. Clin. Cancer Res., 2002, 8(10), 3290-3297.
[PMID: 12374701]
[40]
Crompton, M. Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr. Opin. Cell Biol., 2000, 12(4), 414-419.
[http://dx.doi.org/10.1016/S0955-0674(00)00110-1] [PMID: 10873816]
[41]
Han, J.; Sabbatini, P.; White, E. Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1B 19K. Mol. Cell. Biol., 1996, 16(10), 5857-5864.
[http://dx.doi.org/10.1128/MCB.16.10.5857] [PMID: 8816500]
[42]
Chen, J.S.; Liu, J.C.; Shen, L.; Rau, K.M.; Kuo, H.P.; Li, Y.M.; Shi, D.; Lee, Y.C.; Chang, K.J.; Hung, M.C. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther., 2004, 11(11), 740-747.
[http://dx.doi.org/10.1038/sj.cgt.7700752] [PMID: 15359286]
[43]
Kanter, P.M.; Bullard, G.A.; Pilkiewicz, F.G.; Mayer, L.D.; Cullis, P.R.; Pavelic, Z.P. Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99): Comparison with doxorubicin and empty liposomes in mice and dogs. In vivo, 1993, 7(1), 85-95.
[PMID: 8504212]
[44]
Harasym, T.O.; Cullis, P.R.; Bally, M.B. Intratumor distribution of doxorubicin following i.v. administration of drug encapsulated in egg phosphatidylcholine/cholesterol liposomes. Cancer Chemother. Pharmacol., 1997, 40(4), 309-317.
[http://dx.doi.org/10.1007/s002800050662] [PMID: 9225948]
[45]
Cowens, J.W.; Creaven, P.J.; Greco, W.R.; Brenner, D.E.; Tung, Y.; Ostro, M.; Pilkiewicz, F.; Ginsberg, R.; Petrelli, N. Initial clinical (phase I) trial of TLC D-99 (doxorubicin encapsulated in liposomes). Cancer Res., 1993, 53(12), 2796-2802.
[PMID: 8504422]
[46]
Harris, L.; Batist, G.; Belt, R.; Rovira, D.; Navari, R.; Azarnia, N.; Welles, L.; Winer, E. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer, 2002, 94(1), 25-36.
[http://dx.doi.org/10.1002/cncr.10201] [PMID: 11815957]
[47]
Allen, T.M.; Martin, F.J. Advantages of liposomal delivery systems for anthracyclines. Semin. Oncol., 2004, 31(Suppl. 13), 5-15.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.001]
[48]
Forssen, E.A.; Ross, M.E. Daunoxome® treatment of solid tumors: Preclinical and clinical investigations. J. Liposome Res., 1994, 4(1), 481-512.
[http://dx.doi.org/10.3109/08982109409037058]
[49]
Forssen, E.A.; Coulter, D.M.; Proffitt, R.T. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res., 1992, 52(12), 3255-3261.
[PMID: 1596882]
[50]
Webb, M.S.; Harasym, T.O.; Masin, D.; Bally, M.B.; Mayer, L.D. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br. J. Cancer, 1995, 72(4), 896-904.
[http://dx.doi.org/10.1038/bjc.1995.430] [PMID: 7547237]
[51]
Hong, K.; Drummond, D.C.; Kirpotin, D. Liposomes useful for drug delivery. U.S. Patent US20160030341 A1, February 4, 2016.
[52]
Murry, D.J.; Blaney, S.M. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann. Pharmacother., 2000, 34(10), 1173-1178.
[http://dx.doi.org/10.1345/aph.19347] [PMID: 11054987]
[53]
Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: Review of animal and human studies. Clin. Pharmacokinet., 2003, 42(5), 419-436.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[54]
Gabizon, A.; Catane, R.; Uziely, B.; Kaufman, B.; Safra, T.; Cohen, R.; Martin, F.; Huang, A.; Barenholz, Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res., 1994, 54(4), 987-992.
[PMID: 8313389]
[55]
Batist, G. Cardiac safety of liposomal anthracyclines. Cardiovasc. Toxicol., 2007, 7(2), 72-74.
[http://dx.doi.org/10.1007/s12012-007-0014-4] [PMID: 17652807]
[56]
Vail, D.M.; MacEwen, E.G.; Kurzman, I.D.; Dubielzig, R.R.; Helfand, S.C.; Kisseberth, W.C.; London, C.A.; Obradovich, J.E.; Madewell, B.R.; Rodriguez, C.O., Jr Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: A randomized multi-institutional clinical trial. Clin. Cancer Res., 1995, 1(10), 1165-1170.
[PMID: 9815908]
[57]
Anderson, P.M.; Tomaras, M.; McConnell, K. Mifamurtide in osteosarcoma--a practical review. Drugs Today (Barc), 2010, 46(5), 327-337.
[http://dx.doi.org/10.1358/dot.2010.46.5.1500076] [PMID: 20517534]
[58]
Balazsovits, J.A.; Mayer, L.D.; Bally, M.B.; Cullis, P.R.; McDonell, M.; Ginsberg, R.S.; Falk, R.E. Analysis of the effect of liposome encapsulation on the vesicant properties, acute and cardiac toxicities, and antitumor efficacy of doxorubicin. Cancer Chemother. Pharmacol., 1989, 23(2), 81-86.
[http://dx.doi.org/10.1007/BF00273522] [PMID: 2491964]
[59]
Petre, C.E.; Dittmer, D.P. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int. J. Nanomedicine, 2007, 2(3), 277-288.
[PMID: 18019828]
[60]
Johnston, M.J.; Semple, S.C.; Klimuk, S.K.; Edwards, K.; Eisenhardt, M.L.; Leng, E.C.; Karlsson, G.; Yanko, D.; Cullis, P.R. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim. Biophys. Acta, 2006, 1758(1), 55-64.
[http://dx.doi.org/10.1016/j.bbamem.2006.01.009] [PMID: 16487476]
[61]
Drummond, D.C.; Noble, C.O.; Guo, Z.; Hong, K.; Park, J.W.; Kirpotin, D.B. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res., 2006, 66(6), 3271-3277.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4007] [PMID: 16540680]
[62]
Richter, A.M.; Waterfield, E.; Jain, A.K.; Canaan, A.J.; Allison, B.A.; Levy, J.G. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem. Photobiol., 1993, 57(6), 1000-1006.
[http://dx.doi.org/10.1111/j.1751-1097.1993.tb02962.x] [PMID: 8367528]
[63]
Slingerland, M.; Guchelaar, H-J.; Gelderblom, H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov. Today, 2012, 17(3-4), 160-166.
[http://dx.doi.org/10.1016/j.drudis.2011.09.015] [PMID: 21983329]
[64]
Working, P.K.; Dayan, A.D. Pharmacological-toxicological expert report. CAELYX. (Stealth liposomal doxorubicin HCl). Hum. Exp. Toxicol., 1996, 15(9), 751-785.
[PMID: 8880211]
[65]
Alphandéry, E.; Grand-Dewyse, P.; Lefèvre, R.; Mandawala, C.; Durand-Dubief, M. Cancer therapy using nanoformulated substances: Scientific, regulatory and financial aspects. Expert Rev. Anticancer Ther., 2015, 15(10), 1233-1255.
[http://dx.doi.org/10.1586/14737140.2015.1086647] [PMID: 26402250]
[66]
Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W. Theory of selfassembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. II, 1976, 72, 1525-1568.
[http://dx.doi.org/10.1039/f29767201525]
[67]
Karatekin, E.; Sandre, O.; Guitouni, H.; Borghi, N.; Puech, P.H.; Brochard-Wyart, F. Cascades of transient pores in giant vesicles: Line tension and transport. Biophys. J., 2003, 84(3), 1734-1749.
[http://dx.doi.org/10.1016/S0006-3495(03)74981-9] [PMID: 12609875]
[68]
Evans, E.; Skalak, R. Mechanics and Thermodynamics of Biomembranes; CRC Press: Boca Raton, FL, 1980.
[69]
Micheletto, Y.M.S.; Marques, C.M.; Silveira, N.P.; Schroder, A.P. Electroformation of giant unilamellar vesicles: Investigating vesicle fusion versus bulge merging. Langmuir, 2016, 32(32), 8123-8130.
[http://dx.doi.org/10.1021/acs.langmuir.6b01679] [PMID: 27409245]
[70]
Maherani, B. Liposomes: A review of manufacturing techniques and targeting strategies. Curr. Nanosci., 2011, 7, 436-452.
[http://dx.doi.org/10.2174/157341311795542453]
[71]
Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. A new method for liposome preparation using a membrane contactor. J. Liposome Res., 2011, 21(3), 213-220.
[http://dx.doi.org/10.3109/08982104.2010.517537] [PMID: 20860451]
[72]
Charcosset, C.; Juban, A.; Valour, J-P.; Urbaniak, S.; Fessi, H. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem. Eng. Res. Des., 2015, 94, 508-515.
[http://dx.doi.org/10.1016/j.cherd.2014.09.008]
[73]
Ottino, J.M.; Wiggins, S. Introduction: Mixing in microfluidics. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2004, 362(1818), 923-935.
[http://dx.doi.org/10.1098/rsta.2003.1355]
[74]
Meure, L.A.; Foster, N.R.; Dehghani, F. Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech, 2008, 9(3), 798-809.
[http://dx.doi.org/10.1208/s12249-008-9097-x] [PMID: 18597175]
[75]
Mortazavi, S.M.; Mohammadabadi, M.R.; Khosravi-Darani, K.; Mozafari, M.R. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J. Biotechnol., 2007, 129(4), 604-613.
[http://dx.doi.org/10.1016/j.jbiotec.2007.02.005] [PMID: 17353061]
[76]
Otake, K.; Imura, T.; Sakai, H.; Abe, M. Development of a new preparation method of liposomes using supercritical carbon dioxide. Langmuir, 2001, 17(13), 3898-3901.
[http://dx.doi.org/10.1021/la010122k]
[77]
Castor, T.P.; Chu, L. Methods and apparatus for making liposomes containing hydrophobic drugs. US5776486, 1998.
[78]
Frederiksen, L.; Anton, K.; van Hoogevest, P.; Keller, H.R.; Leuenberger, H. Preparation of liposomes encapsulating water-soluble compounds using supercritical carbon dioxide. J. Pharm. Sci., 1997, 86(8), 921-928.
[http://dx.doi.org/10.1021/js960403q] [PMID: 9269870]
[79]
Barnadas-Rodríguez, R.; Sabés, M. Factors involved in the production of liposomes with a high-pressure homogenizer. Int. J. Pharm., 2001, 213(1-2), 175-186.
[http://dx.doi.org/10.1016/S0378-5173(00)00661-X] [PMID: 11165105]
[80]
Massing, U.; Cicko, S.; Ziroli, V. Dual asymmetric centrifugation (DAC)--a new technique for liposome preparation. J. Control. Release, 2008, 125(1), 16-24.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.010] [PMID: 18023907]
[81]
Senior, J.H. Fate and behavior of liposome in vivo: A review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst., 1987, 3, 123-193.
[82]
Balazs, D.A.; Godbey, W.; Balazs, D.A.; Godbey, W. Liposomes for use in gene delivery. J. Drug Deliv., 2011, 2011, 326497.
[83]
Yuan, D.F.; Zong, T.L.; Gao, H.L.; He, Q. Cell penetrating peptide TAT and brain tumor targeting peptide T7 dual modified liposome preparation and in vitro targeting evaluation. Yao Xue Xue Bao, 2015, 50(1), 104-110.
[PMID: 25924484]
[84]
Zhang, Y.; Zhai, M.; Chen, Z.; Han, X.; Yu, F.; Li, Z.; Xie, X.; Han, C.; Yu, L.; Yang, Y.; Mei, X. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv., 2017, 24(1), 1045-1055.
[http://dx.doi.org/10.1080/10717544.2017.1344334] [PMID: 28687044]
[85]
Portnoy, E.; Lecht, S.; Lazarovici, P.; Danino, D.; Magdassi, S. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine, 2011, 7(4), 480-488.
[http://dx.doi.org/10.1016/j.nano.2011.01.001] [PMID: 21272665]
[86]
Al-Jamal, W.T.; Al-Jamal, K.T.; Bomans, P.H.; Frederik, P.M.; Kostarelos, K. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small, 2008, 4(9), 1406-1415.
[http://dx.doi.org/10.1002/smll.200701043] [PMID: 18711753]
[87]
Erdogan, S.; Torchilin, V.P. Gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes. Methods Mol. Biol., 2017, 1522, 179-192.
[88]
Li, S.; Goins, B.; Zhang, L.; Bao, A. Novel multifunctional theranostic liposome drug delivery system: Construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug. Chem., 2012, 23(6), 1322-1332.
[http://dx.doi.org/10.1021/bc300175d] [PMID: 22577859]
[89]
Fonslow, B.R.; Stein, B.D.; Webb, K.J.; Xu, T.; Choi, J.; Park, S.K.; Yates, J.R., III Digestion and depletion of abundant proteins improves proteomic coverage. Nat. Methods, 2013, 10(1), 54-56.
[http://dx.doi.org/10.1038/nmeth.2250] [PMID: 23160281]
[90]
Ambegia, E. Stabilised plasmid particles containing PEG-diacylglycerol exhibit extended circulation lifetime and tumor selective gene expression. Biochim. Biophys. Acta, 1669, 2005, 155-163.
[91]
Farooqi, A.A.; Rehman, Z.U.; Muntane, J. Antisense therapeutics in oncology: Current status. OncoTargets Ther., 2014, 3, 2035-2042.
[http://dx.doi.org/10.2147/OTT.S49652]
[92]
Bedikian, A.Y.; Garbe, C.; Conry, R.; Lebbe, C.; Grob, J.J. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: ‘The AGENDA trial’. Melanoma Res., 2014, 24(3), 237-243.
[http://dx.doi.org/10.1097/CMR.0000000000000056] [PMID: 24667300]
[93]
Sun, H.X.; He, H.W.; Zhang, S.H.; Liu, T.G.; Ren, K.H.; He, Q.Y.; Shao, R.G. Suppression of N-Ras by shRNA-expressing plasmid increases sensitivity of HepG2 cells to vincristine-induced growth inhibition. Cancer Gene Ther., 2009, 16(9), 693-702.
[http://dx.doi.org/10.1038/cgt.2009.14] [PMID: 19247395]
[94]
Dranoff, G. GM-CSF-based cancer vaccines. Immunol. Rev., 2002, 188(1), 147-154.
[http://dx.doi.org/10.1034/j.1600-065X.2002.18813.x] [PMID: 12445288]
[95]
Shashkova, E.V.; Spencer, J.F.; Wold, W.S.; Doronin, K. Targeting interferon-alpha increases antitumor efficacy and reduces hepatotoxicity of E1A-mutated spread- enhanced oncolytic adenovirus. Mol. Ther., 2007, 15(3), 598-607.
[http://dx.doi.org/10.1038/sj.mt.6300064]
[96]
Choi, I.K.; Lee, J.S.; Zhang, S.N.; Park, J.; Sonn, C.H.; Lee, K.M.; Yun, C.O. Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther., 2011, 18(9), 898-909.
[http://dx.doi.org/10.1038/gt.2011.37] [PMID: 21451575]
[97]
Jinushi, M.; Tahara, H. Cytokine gene-mediated immunotherapy: Current status and future perspectives. Cancer Sci., 2009, 100(8), 1389-1396.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01202.x] [PMID: 19459853]
[98]
Choi, K.J.; Zhang, S.N.; Choi, I.K.; Kim, J.S.; Yun, C.O. Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther., 2012, 19(7), 711-723.
[http://dx.doi.org/10.1038/gt.2011.125] [PMID: 21993173]
[99]
Lapteva, N.; Aldrich, M.; Weksberg, D.; Rollins, L.; Goltsova, T.; Chen, S.Y.; Huang, X.F. Targeting the intratumoral dendritic cells by the oncolytic adenoviral vaccine expressing RANTES elicits potent antitumor immunity. J. Immunother., 2009, 32(2), 145-156.
[http://dx.doi.org/10.1097/CJI.0b013e318193d31e] [PMID: 19238013]
[100]
Kong, H.L.; Hecht, D.; Song, W.; Kovesdi, I.; Hackett, N.R.; Yayon, A.; Crystal, R.G. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum. Gene Ther., 1998, 9(6), 823-833.
[http://dx.doi.org/10.1089/hum.1998.9.6-823] [PMID: 9581905]
[101]
Takayama, K.; Ueno, H.; Nakanishi, Y.; Sakamoto, T.; Inoue, K.; Shimizu, K.; Oohashi, H.; Hara, N. Suppression of tumor angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res., 2000, 60(8), 2169-2177.
[PMID: 10786681]
[102]
Griscelli, F.; Li, H.; Cheong, C.; Opolon, P.; Bennaceur-Griscelli, A.; Vassal, G.; Soria, J.; Soria, C.; Lu, H.; Perricaudet, M.; Yeh, P. Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6698-6703.
[http://dx.doi.org/10.1073/pnas.110134297] [PMID: 10823901]
[103]
Hsu, J.L.; Chao, C.-H.; Xie, X.; Hung, M.-C. Advances in liposome-based targeted gene therapy of cancer. In: Recent Advances in Cancer Research and Therapy; Liu, X.-Y.; Pestka, S.; Shi, Y.-F., Eds.; Elsevier: Amsterdam, Netherlands, 2012; pp. 113-133.
[104]
Kwong, KY; Zou, Y; Day, CP; Haung, MC The suppression of colon cancer cell growth in nude mice by targeting the beta-catenin/TCF pathway. Oncogene, 2002, 21, 8340-8346.
[105]
Kyo, S.; Takakura, M.; Fujiwara, T.; Inoue, M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci., 2008, 99(8), 1528-1538.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00878.x] [PMID: 18754863]
[106]
Gu, J Tumor specific transgene expression from human telomerase reverse transcriptse promoter enables targeting of the therapeutic effects of Bax gene to cancer. Cancer Res., 2000, 60, 5359-5364.
[107]
Lin, T.; Huang, X.; Gu, J.; Zhang, L.; Roth, J.A.; Xiong, M.; Curley, S.A.; Yu, Y.; Hunt, K.K.; Fang, B. Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene, 2002, 21(52), 8020-8028.
[http://dx.doi.org/10.1038/sj.onc.1205926] [PMID: 12439752]
[108]
Ruley, H.E. p53 and response to chemotherapy and radiotherapy. In: Important Advances in Oncology; DeVita, V.T.; Hellman, S.; Rosenberg, S.A., Eds.; Lippincott-Rave: Philadelphia, PA, 1996; pp. 37-56.
[109]
Xu, Liang; Pirollo, K.F.; Tang, W.H.; Rait, A.; Chang, E.H. Transferrin–liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum. Gene Ther., 1999, 10, 2941-2952.
[110]
Larchian, W.A.; Horiguchi, Y.; Nair, S.K.; Fair, W.R.; Heston, W.D.W.; Gilboa, E. Effectiveness of combined interleukin 2 and B7.1 vaccination strategy is dependent on the sequence and order: A liposome-mediated gene therapy treatment for bladder cancer. Clin. Cancer Res., 2000, 6, 2913-2920.
[111]
Morin, P.J. Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res., 2005, 65(21), 9603-9606.
[112]
Mu, L.M.; Ju, R.J.; Liu, R.; Bu, Y.Z.; Zhang, J.Y.; Li, X.Q.; Zeng, F.; Lu, W.L. Dual-functional drug liposomes in treatment of resistant cancers. Adv. Drug Deliv. Rev., 2017, 115, 46-56.
[http://dx.doi.org/10.1016/j.addr.2017.04.006] [PMID: 28433739]
[113]
Meers, P.R.; Pak, C.; Ali, S.; Janoff, A.; Franklin, J.C.; Erukulla, R.K.; Cabral-Lilly, D.; Ahl, P.L. Pep-tide-lipid conjugates, liposomes and lipsomal drug delivery. U.S. Patent 6339069, January 15, 2002.
[114]
Papahadjopoulos, D.; Meyer, O.; Leroux, J-C. pH-sensitive, serum-stable liposomes. U.S. Patent 6426086, July 30, 2002.
[115]
Micklus, M.; Greig, N.; Rapoport, S. Targeting of liposomes to the blood-brain barrier. U.S. Patent 20020025313, February 28, 2002.
[116]
Paulson, J.C.; Chen, W.C.; Kawasaki, N.; Nycholat, C. Liposome targeting compounds and related uses. U.S. Patent 9326939, May 3, 2016.
[117]
Niyikiza, C.; Moyo, V.; Zhenghong, X.; Khalifa, K. Targeted liposomal gemcitabine compositions and methods thereof. U.S. Patent 20170319482, November 9, 2017.
[118]
Halwani, M.A.S.; Alhariri, M.A. Therapeutic liposome and method of treating a subject having can-cer. U.S. Patent 9655847, May 23, 2017.
[119]
San Kim, I.; Lee, B.H.; Lu, M.J.; Liang, H.-F.; Ko, Y.-J.; Lo, Y.-C.; Chang, L.-W.; Wei, M.-C. Target-aiming drug delivery system for diagnosis and treatment of cancer containing liposome labeled with peptides which specifically targets interleukin-4 receptors, and manufacturing method thereof. U.S. Patent 9833464, December 5, 2017.
[120]
Chang, E.H.; Xu, L.; Pirollo, K. Targeted liposome gene delivery. U.S. Patent 6749863, June 15, 2004.
[121]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[122]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[123]
Sonali; Singh, R.P.; Singh, N.; Sharma, G.; Vijayakumar, M.R.; Koch, B.; Singh, S.; Singh, U.; Dash, D.; Pandey, B.L.; Muthu, M.S. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv., 2016, 23(4), 1261-1271.
[http://dx.doi.org/10.3109/10717544.2016.1162878] [PMID: 26961144]
[124]
Zhang, Q.; Lu, L.; Zhang, L.; Shi, K.; Cun, X.; Yang, Y.; Liu, Y.; Gao, H.; He, Q. Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. Sci. Rep., 2016, 6(1), 19800.
[http://dx.doi.org/10.1038/srep19800] [PMID: 26842655]
[125]
Suga, T.; Fuchigami, Y.; Hagimori, M.; Kawakami, S. Ligand peptide-grafted PEGylated liposomes using HER2 targeted peptide-lipid derivatives for targeted delivery in breast cancer cells: The effect of serine-glycine repeated peptides as a spacer. Int. J. Pharm., 2017, 521(1-2), 361-364.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.041] [PMID: 28237886]
[126]
Sapra, P.; Allen, T.M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res., 2002, 62(24), 7190-7194.
[PMID: 12499256]
[127]
Raffaghello, L.; Pagnan, G.; Pastorino, F.; Cosimo, E.; Brignole, C.; Marimpietri, D.; Bogenmann, E.; Ponzoni, M.; Montaldo, P.G. Immunoliposomal fenretinide: A novel antitumoral drug for human neuroblastoma. Cancer Lett., 2003, 197(1-2), 151-155.
[http://dx.doi.org/10.1016/S0304-3835(03)00097-1] [PMID: 12880975]
[128]
Moosavian, S.A.; Abnous, K.; Badiee, A.; Jaafari, M.R. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids Surf. B Biointerfaces, 2016, 139, 228-236.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.009] [PMID: 26722819]
[129]
Kang, X.J.; Wang, H.Y.; Peng, H.G.; Chen, B.F.; Zhang, W.Y.; Wu, A.H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin., 2017, 38(6), 885-896.
[http://dx.doi.org/10.1038/aps.2017.10] [PMID: 28479604]
[130]
Zhou, X.; Zhang, M.; Yung, B.; Li, H.; Zhou, C.; Lee, L.J.; Lee, R.J. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int. J. Nanomedicine, 2012, 7, 5465-5474.
[PMID: 23093902]
[131]
Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 154, 104-114.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.008] [PMID: 28329728]
[132]
Cosco, D.; Tsapis, N.; Nascimento, T.L.; Fresta, M.; Chapron, D.; Taverna, M.; Arpicco, S.; Fattal, E. Polysaccharide-coated liposomes by post-insertion of a hyaluronan-lipid conjugate. Colloids Surf. B Biointerfaces, 2017, 158, 119-126.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.029] [PMID: 28686903]
[133]
Saraf, S.; Jain, A.; Tiwari, A.; Verma, A.; Panda, P.K.; Jain, S.K.; Sarafa, S. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol., 2020, 56, 101549.
[http://dx.doi.org/10.1016/j.jddst.2020.101549]
[134]
Yamashita, S.; Katsumi, H.; Hibino, N.; Isobe, Y.; Yagi, Y.; Tanaka, Y.; Yamada, S.; Naito, C.; Yamamoto, A. Development of PEGylated aspartic acid-modified liposome as a bone-targeting carrier for the delivery of paclitaxel and treatment of bone metastasis. Biomaterials, 2018, 154, 74-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.053] [PMID: 29120820]
[135]
Lin, C.; Zhang, X.; Chen, H.; Bian, Z.; Zhang, G.; Riaz, M.K.; Tyagi, D.; Lin, G.; Zhang, Y.; Wang, J.; Lu, A.; Yang, Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv., 2018, 25(1), 256-266.
[http://dx.doi.org/10.1080/10717544.2018.1425777] [PMID: 29334814]
[136]
Moghimipour, E.; Rezaei, M.; Ramezani, Z.; Kouchak, M.; Amini, M.; Angali, K.A.; Dorkoosh, F.A.; Handali, S. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur. J. Pharm. Sci., 2018, 114, 166-174.
[http://dx.doi.org/10.1016/j.ejps.2017.12.011] [PMID: 29247686]
[137]
Bi, Y.E.; Zhou, Y.; Wang, M.; Li, L.; Lee, R.J.; Xie, J.; Teng, L. Targeted delivery of cordycepin to liver cancer cells using transferrin-conjugated liposomes. Anticancer Res., 2017, 37(9), 5207-5214.
[PMID: 28870956]
[138]
Ju, R.J.; Cheng, L.; Qiu, X.; Liu, S.; Song, X.L.; Peng, X.M.; Wang, T.; Li, C.Q.; Li, X.T. Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J. Drug Target., 2018, 26(9), 793-805.
[http://dx.doi.org/10.1080/1061186X.2018.1428809] [PMID: 29334266]
[139]
Mo, L.; Song, J.G.; Lee, H.; Zhao, M.; Kim, H.Y.; Lee, Y.J.; Ko, H.W.; Han, H-K. PEGylated hyaluronic acid-coated liposome for enhanced in vivo efficacy of sorafenib via active tumor cell targeting and prolonged systemic exposure. Nanomedicine, 2018, 14(2), 557-567.
[http://dx.doi.org/10.1016/j.nano.2017.12.003] [PMID: 29248675]
[140]
Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Zhang, H.; Gong, W.; Wang, Z.; Mei, X. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials, 2014, 35(14), 4368-4381.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.076] [PMID: 24565519]
[141]
Jiang, K.; Shen, M.; Xu, W. Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: In vitro/vivo evaluation. Int. J. Nanomedicine, 2018, 13, 2561-2569.
[http://dx.doi.org/10.2147/IJN.S157746] [PMID: 29731631]
[142]
Wen, X.; Li, J.; Cai, D.; Yue, L.; Wang, Q.; Zhou, L.; Fan, L.; Sun, J.; Wu, Y. Anticancer efficacy of targeted shikonin liposomes modified with RGD in breast cancer cells. Molecules, 2018, 23(2), 268.
[http://dx.doi.org/10.3390/molecules23020268] [PMID: 29382149]
[143]
Yoon, H.Y.; Kwak, S.S.; Jang, M.H.; Kang, M.H.; Sung, S.W.; Kim, C.H.; Kim, S.R.; Yeom, D.W.; Kang, M.J.; Choi, Y.W. Docetaxel-loaded RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes: Drug release, cytotoxicity, and antitumor efficacy. Int. J. Pharm., 2017, 523(1), 229-237.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.045] [PMID: 28341149]
[144]
Xu, W.-W.; Liu, D.Y.; Cao, Y.C.; Wang, X.Y. GE11 peptide-conjugated nanoliposomes to enhance the combinational therapeutic efficacy of docetaxel and siRNA in laryngeal cancers. Int. J. Nanomedicine, 2017, 12, 6461-6470.
[http://dx.doi.org/10.2147/IJN.S129946] [PMID: 28919747]
[145]
Dou, X.Q.; Wang, H.; Zhang, J.; Wang, F.; Xu, G.L.; Xu, C.C.; Xu, H.H.; Xiang, S.S.; Fu, J.; Song, H.F. Aptamer-drug conjugate: Targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int. J. Nanomedicine, 2018, 13, 763-776.
[http://dx.doi.org/10.2147/IJN.S149887] [PMID: 29440899]
[146]
Peres-Filho, M.J.; Dos Santos, A.P.; Nascimento, T.L.; de Ávila, R.I.; Ferreira, F.S.; Valadares, M.C.; Lima, E.M. Antiproliferative activity and VEGF expression reduction in MCF7 and PC-3 cancer cells by paclitaxel and imatinib Co-encapsulation in folate-targeted liposomes. AAPS PharmSciTech, 2018, 19(1), 201-212.
[http://dx.doi.org/10.1208/s12249-017-0830-1] [PMID: 28681330]
[147]
Xia, T.; He, Q.; Shi, K.; Wang, Y.; Yu, Q.; Zhang, L.; Zhang, Q.; Gao, H.; Ma, L.; Liu, J. Losartan loaded liposomes improve the antitumor efficacy of liposomal paclitaxel modified with pH sensitive peptides by inhibition of collagen in breast cancer. Pharm. Dev. Technol., 2018, 23(1), 13-21.
[http://dx.doi.org/10.1080/10837450.2016.1265553] [PMID: 27884084]
[148]
Zhang, J.; Yang, C.; Pan, S.; Shi, M.; Li, J.; Hu, H.; Qiao, M.; Chen, D.; Zhao, X. Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine-docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both in vitro and in vivo. Drug Deliv., 2018, 25(1), 723-737.
[http://dx.doi.org/10.1080/10717544.2018.1446475] [PMID: 29513049]
[149]
Deng, Z.; Xiao, Y.; Pan, M.; Li, F.; Duan, W.; Meng, L.; Liu, X.; Yan, F.; Zheng, H. Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound. J. Contr. Release, 2016, 243, 333-341.
[150]
Nguyen, H.T.; Tran, T.H.; Thapa, R.K.; Pham, T.T.; Jeong, J.-H.; Youn, Y.S.; Choi, H.-G.; Yong, C.S.; Kim, J.O. Incorporation of chemotherapeutic agent and photosensitizer in a low temperature-sensitive liposome for effective chemo-hyperthermic anticancer activity. Drug Deliv., 2017, 14(2), 155-164.
[http://dx.doi.org/10.1080/17425247.2017.1266330] [PMID: 27892715]
[151]
Nguyen, H.T.; Tran, T.H.; Thapa, R.K.; Phung, C.D.; Shin, B.S.; Jeong, J-H.; Choi, H-G.; Yong, C.S.; Kim, J.O. Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int. J. Pharm., 2017, 527(1-2), 61-71.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.034] [PMID: 28528212]
[152]
Dai, M.; Wu, C.; Fang, H.-M.; Li, L.; Yan, J.-B.; Zeng, D.-L.; Zou, T. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J. Microencapsul., 2017, 34(4), 408-415.
[http://dx.doi.org/10.1080/02652048.2017.1339738] [PMID: 28590788]
[153]
Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Contr. Release, 2018, 277, 1-13.
[154]
Laginha, K.M.; Verwoert, S.; Charrois, G.J.; Allen, T.M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer Res., 2005, 11(19 Pt 1), 6944-6949.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0343] [PMID: 16203786]
[155]
Jakupec, M.A.; Galanski, M.; Keppler, B.K. Tumour-inhibiting platinum complexes--state of the art and future perspectives. Rev. Physiol. Biochem. Pharmacol., 2003, 146, 1-54.
[http://dx.doi.org/10.1007/s10254-002-0001-x] [PMID: 12605304]
[156]
Wang, R.H.; Cao, H.M.; Tian, Z.J.; Jin, B.; Wang, Q.; Ma, H.; Wu, J. Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol. Rep., 2015, 33(2), 783-791.
[http://dx.doi.org/10.3892/or.2014.3644] [PMID: 25482610]
[157]
Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; Simone, C.B., II; Raghavan, S.R.; Polf, J.; Mahmood, J. Liposomes: Clinical applications and potential for imageguided drug delivery. Molecules, 2018, 23(2), 288.
[http://dx.doi.org/10.3390/molecules23020288] [PMID: 29385755]
[158]
Doolittle, E.; Peiris, P.M.; Doron, G.; Goldberg, A.; Tucci, S.; Rao, S.; Shah, S.; Sylvestre, M.; Govender, P.; Turan, O.; Lee, Z.; Schiemann, W.P.; Karathanasis, E. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis. ACS Nano, 2015, 9(8), 8012-8021.
[http://dx.doi.org/10.1021/acsnano.5b01552] [PMID: 26203676]
[159]
Qin, L.; Wang, C.Z.; Fan, H.J.; Zhang, C.J.; Zhang, H.W.; Lv, M.H.; Cui, S.D. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncol. Lett., 2014, 8(5), 2000-2006.
[http://dx.doi.org/10.3892/ol.2014.2449] [PMID: 25289086]
[160]
Sunamoto, J.; Baba, Y.; Iwamoto, K.; Kondo, H. Liposomal membranes. XX. Autoxidation of unsaturated fatty acids in liposomal membranes. Biochim. Biophys. Acta, 1985, 833(1), 144-150.
[http://dx.doi.org/10.1016/0005-2760(85)90262-0] [PMID: 4038459]
[161]
Inoue, K.; Kitagawa, T. Effect of exogenous lysolecithin on liposomal membranes. Its relation to membrane fluidity. Biochim. Biophys. Acta, 1974, 363(3), 361-372.
[http://dx.doi.org/10.1016/0005-2736(74)90075-3] [PMID: 4376695]
[162]
Sato, T.; Sunamoto, J. Recent aspects in the use of liposomes in biotechnology and medicine. Prog. Lipid Res., 1992, 31(4), 345-372.
[http://dx.doi.org/10.1016/0163-7827(92)90001-Y] [PMID: 1304048]
[163]
Crowe, J.H.; Spargo, B.J.; Crowe, L.M. Preservation of dry liposomes does not require retention of residual water. Proc. Natl. Acad. Sci. USA, 1987, 84(6), 1537-1540.
[http://dx.doi.org/10.1073/pnas.84.6.1537] [PMID: 3470739]
[164]
Miyajima, K.; Tanaka, K. Cryoprotective effect of saccharides on denaturation of catalase by freeze-drying. Trends Glycosci. Glycotechnol., 1992, 4, 457-463.
[http://dx.doi.org/10.4052/tigg.4.457]
[165]
Ostro, M. Liposomes as Drug Carriers: Recent Trends and Progress; Gregonadis, G., Ed.; John Wiley: Chichester, UK, 1988, pp. 855-862.
[166]
Ollivon, M.; Walter, A.; Blumenthal, R. Study of size distribution and stability of liposomes by high performance gel exclusion chromatography. Anal. Biochem., 1986, 152, 262.
[http://dx.doi.org/10.1016/0003-2697(86)90408-2] [PMID: 3963363]
[167]
Gupta, C.M.; Radhakrishnan, R.; Khorana, H.G. Glycerophospholipid synthesis: Improved general method and new analogs containing photoactivable groups. Proc. Natl. Acad. Sci. USA, 1977, 74(10), 4315-4319.
[http://dx.doi.org/10.1073/pnas.74.10.4315] [PMID: 270675]
[168]
Abra, R.M.; Hunt, C.A. Liposome disposition in vivo. III. Dose and vesicle-size effects. Biochim. Biophys. Acta, 1981, 666(3), 493-503.
[http://dx.doi.org/10.1016/0005-2760(81)90311-8] [PMID: 7034780]
[169]
Barrow, D.A.; Lentz, B.R. Large vesicle contamination in small, unilamellar vesicles. Biochim. Biophys. Acta, 1980, 597(1), 92-99.
[http://dx.doi.org/10.1016/0005-2736(80)90153-4] [PMID: 7370249]
[170]
Huang, C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry, 1969, 8(1), 344-352.
[http://dx.doi.org/10.1021/bi00829a048] [PMID: 5777332]
[171]
Bergelson, L.D. 31P-NMR signals from inner and outer surfaces of phospholipid membranes. Methods Membr. Biol, 1972, 9, 275-335.
[172]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy