Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Letter Article

Mechanochemical Promoted Heterocycles: A Solvent-free Route to Triazole Carbohydrates as Glycogen Phosphorylase Inhibitors

Author(s): Ahlem Guesmi*, Wesam Abdulfattah, Manel Ben Ticha, Faisal K. Algathami, Kaiss Aouadi, Ammar Houas, Lotfi Khezami and Naoufel Ben Hamadi

Volume 19, Issue 8, 2022

Published on: 06 July, 2022

Page: [930 - 936] Pages: 7

DOI: 10.2174/1570179419666220420133644

Price: $65

Abstract

Aims: This study aimed to recommend a novel way for the preparation of carbohydrates containing triazole derivatives.

Background: Triazoles containing derivatives have numerous biological activities. Ball milling is a fast, modest, green process with massive potential. One of the greatest interesting applications of this technique is in the arena of heterocycles.

Objective: Solvent-free click reactions are facilitated via the activation of copper powder using a ball milling mechanochemical procedure. An optimization study of parameters affecting the reaction rate, such as reaction time, size, and milling ball number, has been conducted. Different substrates have been tested using this adopted procedure considering in all cases, in high yields and purity, the corresponding chiral optically pure five-membered glycoconjugates containing 1,2,3-triazole.

Methods: Three milling balls of 10 mm in diameter were placed in the milling jar (50 mL; stainless steel). 1 mmol of alkyne, 2 mmol of azide, and 1 mmol of Cu powder (63 mg) were added, respectively, in the presented order. Milling was assured for 25 min at 650 rpm deprived of solvent.

Results: The cycloaddition results and the deprotection of the cycloadducts were affected by the selection of the protective groups. Cleavage of the acetyl protecting groups provided water-soluble triazoles. The four 1,4-di-substituted 1,2,3-triazoles synthesized via deacetylation were tested against glycogen phosphorylase. The best inhibitor of rabbit muscle glycogen phosphorylase was 2-Amino-3-{2-[1-(3,4,5,6-tetrahydroxytetrahydro- pyran-2-ylmethyl)-1H-[1,2,3]triazol-4-yl]-ethylsulfanyl}-propionic acid b (Ki = 40.8 ± 3.2 μM). This novel procedure affords an eco-friendly reaction profile (catalyst-free) affording high yields and short reaction times.

Conclusion: In this work, acetyl protective groups were used to the corresponding deprotected watersoluble triazole analogous to recognizing glycogen phosphorylase inhibitors. Triazole 6a was the most effective inhibitor of RMGP b with a Ki value of 40.8 μM.

Keywords: Mechanochemical synthesis, solvent-free reaction, carbohydrate, high-speed vibration milling, hydrolysis, glycogen phosphorylase.

Graphical Abstract

[1]
Hajlaoui, K.; Guesmi, A.; Ben Hamadi, N.; Msaddek, M. One-pot synthesis of new triazole-sucrose derivatives via click chemistry and evaluation of their antitubercular activity. Heterocycl. Commun., 2016, 22(4), 293-242.
[http://dx.doi.org/10.1515/hc-2016-0028]
[2]
Hajlaoui, K.; Ben Hamadi, N.; Msaddek, M. Copper nanoparticles cycloaddition of terminal acetylenes with carbohydrate azide. Catal. Lett., 2015, 145(6), 1246-1250.
[http://dx.doi.org/10.1007/s10562-015-1521-8]
[3]
Ge, X.; Qian, C.; Chen, X. Synthesis of novel carbohydrate-based valine-derived formamide organocatalysts by CuAAC click chemistry and their application in asymmetric reduction of imines with trichlorosilane. Tetrahedron Asymmetry, 2014, 25(22), 1450-1455.
[http://dx.doi.org/10.1016/j.tetasy.2014.10.003]
[4]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[5]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41] [PMID: 12203546]
[6]
Ali, A.A.; Chetia, M.; Saikia, B.; Saikia, P.J.; Sarma, D. AgN(CN)2/DIPEA/H2O-EG: A highly efficient catalytic system for synthesis of 1,4-disubstituted-1,2,3 triazoles at room temperature. Tetrahedron Lett., 2015, 56(43), 5892-5895.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.025]
[7]
Campeau, D.; Pommainville, A.; Gagosz, F. Ynamides as three-atom components in cycloadditions: An unexplored chemical reaction space. J. Am. Chem. Soc., 2021, 143(25), 9601-9611.
[http://dx.doi.org/10.1021/jacs.1c04051] [PMID: 34132536]
[8]
Fang, Y.; Bao, K.; Zhang, P.; Sheng, H.; Yun, Y.; Hu, S.X.; Astruc, D.; Zhu, M. Insight into the mechanism of the CuAAC Reaction by capturing the crucial Au4Cu4-π-Alkyne intermediate. J. Am. Chem. Soc., 2021, 143(4), 1768-1772.
[http://dx.doi.org/10.1021/jacs.0c12498] [PMID: 33482056]
[9]
Mondal, P.; Behera, P.; Singha, N.K. Macromolecular engineering in functional polymers via ‘click chemistry’ using triazolinedione derivatives. Prog. Polym. Sci., 2021, 113, 101343.
[http://dx.doi.org/10.1016/j.progpolymsci.2020.101343]
[10]
Hui, E.; Sumey, J.L.; Caliari, S.R. Click-functionalized hydrogel design for mechanobiology investigations. Mol. Syst. Des. Eng., 2021, 6(9), 670-707.
[http://dx.doi.org/10.1039/D1ME00049G]
[11]
Barrales-Martínez, C.; Martínez-Araya, J.I.; Jaque, P. 1,3-Dipolar cycloadditions by a unified perspective based on conceptual and thermodynamics models of chemical reactivity. J. Phys. Chem. A, 2021, 125(3), 801-815.
[http://dx.doi.org/10.1021/acs.jpca.0c10013] [PMID: 33448854]
[12]
Bahsis, L.; Ablouh, E.H.; Anane, H.; Taourirte, M.; Julve, M.; Stiriba, S.E. Cu(II)-alginate-based superporous hydrogel catalyst for click chemistry azide-alkyne cycloaddition type reactions in water. RSC Advances, 2020, 10(54), 32821-32832.
[http://dx.doi.org/10.1039/D0RA06410F]
[13]
Yang, Y.; Kamon, Y.; Lynd, N.A.; Hashidzume, A. Self-Healing thermoplastic elastomers formed from triblock copolymers with dense 1,2,3-Triazole blocks. Macromolecules, 2020, 53(23), 10323-10329.
[http://dx.doi.org/10.1021/acs.macromol.0c02080]
[14]
Yamamoto, M.; Tantikanjana, T.; Nishio, T.; Nasrallah, M.E.; Nasrallah, J.B. Site-specific N-glycosylation of the S-locus receptor kinase and its role in the self-incompatibility response of the brassicaceae. Plant Cell, 2014, 26(12), 4749-4762.
[http://dx.doi.org/10.1105/tpc.114.131987] [PMID: 25480368]
[15]
Ben Hamadi, N. Mechanochemical synthesis and reactivity of 1,2,3-Triazole carbohydrate derivatives as glycogen phosphorylase inhibitors. Curr. Org. Synth., 2021, 18(4), 406-410.
[http://dx.doi.org/10.2174/1570179417666201217142634] [PMID: 33334290]
[16]
Szczęśniak, B.S.; Borysiuk, C.J.; Jaroniec, M. Mechanochemical synthesis of highly porous materials. Mater. Horiz., 2020, 7(6), 1457-1473.
[http://dx.doi.org/10.1039/D0MH00081G]
[17]
Do, J.L.; Friščić, T. Mechanochemistry: A force of synthesis. ACS Cent. Sci., 2017, 3(1), 13-19.
[http://dx.doi.org/10.1021/acscentsci.6b00277] [PMID: 28149948]
[18]
Lo Conte, M.; Pacifico, S.; Chambery, A.; Marra, A.; Dondoni, A. Photoinduced addition of glycosyl thiols to alkynyl peptides: Use of free-radical thiol-yne coupling for post-translational double-glycosylation of peptides. J. Org. Chem., 2010, 75(13), 4644-4647.
[http://dx.doi.org/10.1021/jo1008178] [PMID: 20527977]
[19]
Zemplén, G.; Pascu, E. Über die verseifung acetylierter Zucker und verwandter substanzen. Ber. Dtsch. Chem. Ges. B, 1929, 62(6), 1613-1614.
[http://dx.doi.org/10.1002/cber.19290620640]
[20]
Somsák, L.; Nagya, V.; Hadady, Z.; Docsa, T.; Gergely, P. Glucose analog inhibitors of glycogen phosphorylases as potential antidiabetic agents: Recent developments. Curr. Pharm. Des., 2003, 9(15), 1177-1189.
[http://dx.doi.org/10.2174/1381612033454919] [PMID: 12769745]
[21]
Struthers, H.; Spingler, B.; Mindt, T.L.; Schibli, R. “Click-to-chelate”: Design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest. Chemistry, 2008, 14(20), 6173-6183.
[http://dx.doi.org/10.1002/chem.200702024] [PMID: 18494020]
[22]
Kayser, B.; Altman, J.; Beck, W. Alkyne bridged α- amino acids by palladium mediated coupling of alkynes with n-t-boc-4-iodo-phenylalanine methyl ester. Tetrahedron, 1997, 53(7), 2475-2448.
[http://dx.doi.org/10.1016/S0040-4020(96)01195-7]
[23]
Lei, H.; Stoakes, M.S.; Schwabacher, A.W.; Herath, K.P.B.; Lee, J. Efficient synthesis of a phosphinate Bis-amino acid and its use in the construction of amphiphilic peptides. J. Org. Chem., 1994, 59(15), 4206-4210.
[http://dx.doi.org/10.1021/jo00094a036]
[24]
Bokor, E.; Docsa, T.; Gergely, P.; Somsák, L. C-Glucopyranosyl-1,2,4-triazoles as new potent inhibitors of glycogen phosphorylase. ACS Med. Chem. Lett., 2013, 4(7), 612-615.
[http://dx.doi.org/10.1021/ml4001529] [PMID: 24900719]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy