Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

The Antibacterial Activity of Zinc Oxide Nanoparticle-Loaded Soft Contact Lens

Author(s): Jactty Chew, Tommy Tong, Mun Lok Chua, Mohammad Ridwane Mungroo, Yi Xing Yap, Misni Misran and Lai Ti Gew*

Volume 16, Issue 2, 2022

Published on: 20 May, 2022

Page: [138 - 144] Pages: 7

DOI: 10.2174/2212796816666220419121948

Price: $65

Abstract

Introduction: Contact lenses coated with antibacterial agents may reduce the risk of microbial keratitis; however, to the best of our knowledge, such contact lenses are not available on the market.

Methods: We determined the ability of zinc oxide nanoparticles (ZnO-NPs)-loaded soft contact lenses to prevent the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa. Commercially acquired sterile silicone hydrogel contact lenses were soaked in ZnO-NPs (˂50 nm) suspensions of various concentrations, and the stability of the ZnO-NPs coating on contact lenses over 28 days was monitored using a UV-vis spectrophotometer. The cytotoxicity effects of ZnO-NPs on human corneal epithelial cells were evaluated using a lactate dehydrogenase (LDH) kit.

Results: The results showed that the ZnO-NPs coating on contact lenses was optimal from day seven onward. In the following assays, optimally, ZnO-NP-coated contact lenses were incubated with S. aureus and P. aeruginosa suspensions (1 x 105 colony forming unit) for 24 hr at 37°C, followed by enumeration using the plating method. Our data showed that 100 ppm of ZnO-NPs coating on contact lenses reduced the adhesion of 69.9% and 74.6% of S. aureus and P. aeruginosa significantly (p<0.05). The confocal laser scanning microscopic analyses were consistent with our bacterial adhesion findings. Low cytotoxicity against human corneal epithelial cells was observed even at the highest concentration of 300 ppm.

Conclusion: This study provides insights into the potential role of ZnO-NPs in developing contact lenses with antibacterial properties.

Keywords: Eye infections, antibacterial contact lenses, Staphylococcus aureus, Pseudomonas aeruginosa, human corneal epithelial cells, antibacterial properties.

« Previous
Graphical Abstract

[1]
Lakhundi, S.; Siddiqui, R.; Khan, N.A. Pathogenesis of microbial keratitis. Microb. Pathog., 2017, 104, 97-109.
[http://dx.doi.org/10.1016/j.micpath.2016.12.013] [PMID: 27998732]
[2]
Khan, S.A.; Lee, C.S. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater., 2020, 113, 101-118.
[http://dx.doi.org/10.1016/j.actbio.2020.06.039] [PMID: 32622052]
[3]
Green, M.; Sara, S.; Hughes, I.; Apel, A.; Stapleton, F. Trends in contact lens microbial keratitis 1999 to 2015: A retrospective clinical review. Clin. Exp. Ophthalmol., 2019, 47(6), 726-732.
[http://dx.doi.org/10.1111/ceo.13484] [PMID: 30801907]
[4]
Liesegang, T.J. Contact lens-related microbial keratitis: Part II: Pathophysiology. Cornea, 1997, 16(3), 265-273.
[http://dx.doi.org/10.1097/00003226-199705000-00002] [PMID: 9143796]
[5]
Tong, W.; Chen, D.; Chai, C.; Tan, A.M.; Manotosh, R. Disease patterns of microbial keratitis in Singapore: A retrospective case series. Cont. Lens Anterior Eye, 2019, 42(4), 455-461.
[http://dx.doi.org/10.1016/j.clae.2019.02.006] [PMID: 30808596]
[6]
Norina, T.J.; Raihan, S.; Bakiah, S.; Ezanee, M.; Liza-Sharmini, A.T.; Wan Hazzabah, W.H. Microbial keratitis: Aetiological diagnosis and clinical features in patients admitted to Hospital University Sains Malaysia. Singapore Med. J., 2008, 49(1), 67-71.
[PMID: 18204773]
[7]
Ratnalingam, V.; Umapathy, T.; Sumugam, K.; Hanafi, H.; Retnasabapathy, S. Microbial keratitis in west and east Malaysia. Int Eye Sci., 2017, 17(11), 1989-1992.
[8]
Hooi, S.; Hooi, S. Culture-proven bacterial general hospital. Med. J. Malaysia, 2005, 60(5), 614-623.
[PMID: 16515113]
[9]
Willcox, M.D.; Hume, E.B.; Vijay, A.K.; Petcavich, R. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. J. Optom., 2010, 3(3), 143-148.
[http://dx.doi.org/10.1016/S1888-4296(10)70020-0]
[10]
Carnt, N.; Samarawickrama, C.; White, A.; Stapleton, F. The diagnosis and management of contact lens-related microbial keratitis. Clin. Exp. Optom., 2017, 100(5), 482-493.
[http://dx.doi.org/10.1111/cxo.12581] [PMID: 28815736]
[11]
Alexandrakis, G.; Alfonso, E.C.; Miller, D. Shifting trends in bacterial keratitis in south Florida and emerging resistance to fluoroquinolones. Ophthalmology, 2000, 107(8), 1497-1502.
[http://dx.doi.org/10.1016/S0161-6420(00)00179-2] [PMID: 10919897]
[12]
Chang, V.S.; Dhaliwal, D.K.; Raju, L.; Kowalski, R.P. Antibiotic resistance in the treatment of Staphylococcus aureus keratitis: A 20-year review. Cornea, 2015, 34(6), 698-703.
[http://dx.doi.org/10.1097/ICO.0000000000000431] [PMID: 25811722]
[13]
Shalchi, Z.; Gurbaxani, A.; Baker, M.; Nash, J. Antibiotic resistance in microbial keratitis: Ten-year experience of corneal scrapes in the United Kingdom. Ophthalmology, 2011, 118(11), 2161-2165.
[http://dx.doi.org/10.1016/j.ophtha.2011.04.021] [PMID: 21764458]
[14]
Sharma, R.; Garg, R.; Kumari, A. A review on biogenic synthesis, applications and toxicity aspects of zinc oxide nanoparticles. EXCLI J., 2020, 19, 1325-1340.
[PMID: 33192216]
[15]
Fazly Bazzaz, B.S.; Khameneh, B.; Jalili-Behabadi, M.M.; Malaekeh-Nikouei, B.; Mohajeri, S.A. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont. Lens Anterior Eye, 2014, 37(3), 149-152.
[http://dx.doi.org/10.1016/j.clae.2013.09.008] [PMID: 24121010]
[16]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[17]
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 2007, 3(2), 168-171.
[http://dx.doi.org/10.1016/j.nano.2007.02.001] [PMID: 17468052]
[18]
Malachová, K.; Praus, P.; Rybková, Z.; Kozák, O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci., 2011, 53(4), 642-645.
[http://dx.doi.org/10.1016/j.clay.2011.05.016]
[19]
Shayani Rad, M.; Khameneh, B.; Sabeti, Z.; Mohajeri, S.A.; Fazly Bazzaz, B.S. Antibacterial activity of silver nanoparticle-loaded soft contact lens materials: The effect of monomer composition. Curr. Eye Res., 2016, 41(10), 1286-1293.
[http://dx.doi.org/10.3109/02713683.2015.1123726] [PMID: 27212193]
[20]
Dos Santos, C.A.; Seckler, M.M.; Ingle, A.P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J. Pharm. Sci., 2014, 103(7), 1931-1944.
[http://dx.doi.org/10.1002/jps.24001] [PMID: 24824033]
[21]
McShan, D.; Ray, P.C.; Yu, H. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal, 2014, 22(1), 116-127.
[http://dx.doi.org/10.1016/j.jfda.2014.01.010] [PMID: 24673909]
[22]
Nohynek, G.J.; Dufour, E.K. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch. Toxicol., 2012, 86(7), 1063-1075.
[http://dx.doi.org/10.1007/s00204-012-0831-5] [PMID: 22466067]
[23]
Keerthana, S.; Kumar, A. Potential risks and benefits of zinc oxide nanoparticles: A systematic review. Crit. Rev. Toxicol., 2020, 50(1), 47-71.
[http://dx.doi.org/10.1080/10408444.2020.1726282] [PMID: 32186437]
[24]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[25]
Siddiqi, K.S.; Ur Rahman, A. Tajuddin; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[26]
Kumar, V.V.; Anthony, S.P. Antimicrobial studies of metal and metal oxide nanoparticles Grumezescu. in: Surface Chemistry of Nanobiomaterials; Grumezescu, A.M., Ed.; Elsevier, 2016, pp. 265-300.
[http://dx.doi.org/10.1016/B978-0-323-42861-3.00009-1]
[27]
Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 2008, 279(1), 71-76.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01012.x] [PMID: 18081843]
[28]
Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine, 2014, 10(6), 1195-1208.
[http://dx.doi.org/10.1016/j.nano.2014.02.012] [PMID: 24607937]
[29]
Seil, J.T.; Webster, T.J. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater., 2011, 7(6), 2579-2584.
[http://dx.doi.org/10.1016/j.actbio.2011.03.018] [PMID: 21421087]
[30]
Tayel, A.A.; El-Tras, W.F.; Moussa, S.; El-Baz, A.F.; Mahrous, H.; Salem, M.F.; Brimer, L. Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J. Food Saf., 2011, 31(2), 211-218.
[http://dx.doi.org/10.1111/j.1745-4565.2010.00287.x]
[31]
Tiwari, V.; Mishra, N.; Gadani, K.; Solanki, P.S.; Shah, N.A.; Tiwari, M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol., 2018, 9, 1218.
[http://dx.doi.org/10.3389/fmicb.2018.01218] [PMID: 29928271]
[32]
Lee, J.H.; Kim, Y.G.; Cho, M.H.; Lee, J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Res., 2014, 169(12), 888-896.
[http://dx.doi.org/10.1016/j.micres.2014.05.005] [PMID: 24958247]
[33]
Jackson, K.D.; Starkey, M.; Kremer, S.; Parsek, M.R.; Wozniak, D.J. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol., 2004, 186(14), 4466-4475.
[http://dx.doi.org/10.1128/JB.186.14.4466-4475.2004] [PMID: 15231778]
[34]
Begun, J.; Gaiani, J.M.; Rohde, H.; Mack, D.; Calderwood, S.B.; Ausubel, F.M.; Sifri, C.D. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog., 2007, 3(4), e57.
[http://dx.doi.org/10.1371/journal.ppat.0030057] [PMID: 17447841]
[35]
Kalishwaralal, K. BarathManiKanth, S.; Pandian, S.R.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces, 2010, 79(2), 340-344.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.014] [PMID: 20493674]
[36]
Amado, A.M.; Pazin, W.M.; Ito, A.S.; Kuzmin, V.A.; Borissevitch, I.E. Acridine orange interaction with DNA: Effect of ionic strength. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 900-909.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.023] [PMID: 28130157]
[37]
Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol., 2015, 15(1), 36.
[http://dx.doi.org/10.1186/s12866-015-0376-x] [PMID: 25881030]
[38]
Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc., 2011, 133(23), 8778-8781.
[http://dx.doi.org/10.1021/ja200328s] [PMID: 21574653]
[39]
Kim, S.; Lee, S.Y.; Cho, H-J. Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma. Nanomaterials (Basel), 2017, 7(11), 354.
[http://dx.doi.org/10.3390/nano7110354] [PMID: 29143771]
[40]
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[http://dx.doi.org/10.1021/la104825u] [PMID: 21401066]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy