Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Caracasine, An ent-kaurane Diterpene with Proapoptotic and Pro-differentiator Activity in Human Leukaemia Cell Lines

Author(s): Gricelis Patricia Martínez*, Michael Rodney Mijares, Katiuska Chávez, Perla Chirinos, Alírica Isabel Suárez, Reinaldo Santi Compagnone and Juan Bautista De Sanctis

Volume 23, Issue 10, 2023

Published on: 15 June, 2022

Page: [1145 - 1155] Pages: 11

DOI: 10.2174/1871520622666220415105615

Price: $65

Abstract

Background: Kaurane-type diterpenoids, obtained from various natural sources, have shown many biological activities, including anti-inflammatory and antitumor effects. Caracasine, an ent-kaurane diterpenoid isolated from the flowers of Croton micans, was shown to induce apoptosis in leukaemia cell lines.

Objective: The present study aimed to ascertain the compound’s mechanism of cell death induction using two leukaemia cell lines, Jurkat E6.1 (T cell) and HL-60 (promyeloblast cells).

Methods: Cell death in Jurkat and HL60 cells were evaluated by flow cytometry for apoptosis with annexin-V/PI, mitochondrial membrane potential disturbance, changes in cell cycle, CD95 expression, caspase activation, Nuclear Factor kappa B inhibition, and differentiation into a neutrophil-like cell (dHL60).

Results: Caracasine (10 μM) increased the G0/G1 phase in Jurkat and arrested the cell cycle in the S phase in HL60. Caracasine increased CD95 expression (p<0.01 in Jurkat and p<0.05 in HL60) and caspase-8 activation (p<0.001 in Jurkat and p<0.05 in HL60). Caspase-9 was activated in both cell lines (p<0.001) along with the decline in mitochondrial Δψm (p<0.05 in Jurkat and p<0.001 in HL60). In HL60 cells, the kaurane induced neutrophil differentiation was assessed by CD40 expression and reactive oxygen species production. In Jurkat cells, caracasine inhibited the NF-κB pathway in cells pretreated with PHA to activate the NF-κB pathway, suggesting a possible role in inflammatory diseases.

Conclusion: Caracasine induced apoptosis through the intrinsic and extrinsic pathways in both cell lines were evaluated which could be the leading structure for new anti-leukemic and anti-inflammatory drugs.

Keywords: Caracasine, caracasine acid, apoptosis, differentiation, caspases, NF-κB, cell cycle, kaurane-type diterpenoids.

Graphical Abstract

[1]
An, Q.; Fan, C.H.; Xu, S.M. Recent perspectives of pediatric leukemia - an update. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(4)(Suppl.), 31-36.
[PMID: 29165768]
[2]
Kuhlen, M.; Klusmann, J.H.; Hoell, J.I. Molecular approaches to treating pediatric leukemias. Front Pediatr., 2019, 7, 368.
[http://dx.doi.org/10.3389/fped.2019.00368] [PMID: 31555628]
[3]
Roy, A.; Banerjee, S. p27 and leukemia: Cell cycle and beyond. J. Cell. Physiol., 2015, 230(3), 504-509.
[http://dx.doi.org/10.1002/jcp.24819] [PMID: 25205053]
[4]
Ghelli Luserna di Rora’, A.; Iacobucci, I.; Martinelli, G. The cell cycle checkpoint inhibitors in the treatment of leukemias. J. Hematol. Oncol., 2017, 10(1), 77.
[http://dx.doi.org/10.1186/s13045-017-0443-x] [PMID: 28356161]
[5]
Cassier, P.A.; Castets, M.; Belhabri, A.; Vey, N. Targeting apoptosis in acute myeloid leukaemia. Br. J. Cancer, 2017, 117(8), 1089-1098.
[http://dx.doi.org/10.1038/bjc.2017.281] [PMID: 29017180]
[6]
Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 227-241.
[http://dx.doi.org/10.1002/wsbm.1331] [PMID: 26990581]
[7]
Taniguchi, K. Karin, M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol., 2018, 18(5), 309-324.
[http://dx.doi.org/10.1038/nri.2017.142] [PMID: 29379212]
[8]
Ishikawa, C.; Senba, M.; Mori, N. Butein inhibits NF-κB, AP-1 and Akt activation in adult T-cell leukemia/lymphoma. Int. J. Oncol., 2017, 51(2), 633-643.
[http://dx.doi.org/10.3892/ijo.2017.4026] [PMID: 28586006]
[9]
Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 years of NF-κB: A blossoming of relevance to human pathobiology. Cell, 2017, 168(1-2), 37-57.
[http://dx.doi.org/10.1016/j.cell.2016.12.012] [PMID: 28086098]
[10]
Cui, Q.; Yang, D.H.; Chen, Z.S. Special issue: Natural products: Anticancer and beyond. Molecules, 2018, 23(6), 1246.
[http://dx.doi.org/10.3390/molecules23061246] [PMID: 29882875]
[11]
Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res., 2019, 139, 126-140.
[http://dx.doi.org/10.1016/j.phrs.2018.11.001] [PMID: 30395947]
[12]
Wang, Y.; Zhong, J.; Bai, J.; Tong, R.; An, F.; Jiao, P.; He, L.; Zeng, D.; Long, E.; Yan, J.; Yu, J.; Cai, L. The application of natural products in cancer therapy by targeting apoptosis pathways. Curr. Drug Metab., 2018, 19(9), 739-749.
[http://dx.doi.org/10.2174/1389200219666180511154722] [PMID: 29749309]
[13]
Salminen, A.; Lehtonen, M.; Suuronen, T.; Kaarniranta, K.; Huuskonen, J. Terpenoids: Natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell. Mol. Life Sci., 2008, 65(19), 2979-2999.
[http://dx.doi.org/10.1007/s00018-008-8103-5] [PMID: 18516495]
[14]
Chávez, K.; Compagnone, R.S.; Álvarez, A.; Figarella, K.; Galindo-Castro, I.; Marsiccobetre, S.; Triviño, J.; Arocha, I.; Taddei, A.; Orsini, G.; Tillett, S.; Suárez, A.I. Synthesis and biological evaluation of caracasine acid derivatives. Bioorg. Med. Chem., 2015, 23(13), 3687-3695.
[http://dx.doi.org/10.1016/j.bmc.2015.04.015] [PMID: 25891984]
[15]
Wang, L.; Li, D.; Wang, C.; Zhang, Y.; Xu, J. Recent progress in the development of natural ent-kaurane diterpenoids with anti-tumor activity. Mini Rev. Med. Chem., 2011, 11(10), 910-919.
[http://dx.doi.org/10.2174/138955711796575416] [PMID: 21781025]
[16]
He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550.
[http://dx.doi.org/10.1038/s41467-018-04947-6] [PMID: 29959312]
[17]
Osafo, N.; Obiri, D.D.; Antwi, A.O.; Yeboah, O.K. The acute anti-inflammatory action of xylopic acid isolated from Xylopia aethiopica. J. Basic Clin. Physiol. Pharmacol., 2018, 29(6), 659-669.
[http://dx.doi.org/10.1515/jbcpp-2018-0019] [PMID: 30052517]
[18]
Wang, J.; Li, F.; Ding, J.; Tian, G.; Jiang, M.; Gao, Z.; Tuyghun, E. Investigation of the anti asthmatic activity of Oridonin on a mouse model of asthma. Mol. Med. Rep., 2016, 14(3), 2000-2006.
[http://dx.doi.org/10.3892/mmr.2016.5485] [PMID: 27431862]
[19]
Suárez, A.I.; Chavez, K.; Mateu, E.; Compagnone, R.S.; Muñoz, A.; Sojo, F.; Arvelo, F.; Mijares, M.; De Sanctis, J.B. Cytotoxic activity of seco-entkaurenes from Croton caracasana on human cancer cell lines. Nat. Prod. Commun., 2009, 4(11), 1547-1550.
[http://dx.doi.org/10.1177/1934578X0900401117] [PMID: 19967987]
[20]
Song, M.; Liu, X.; Liu, K.; Zhao, R.; Huang, H.; Shi, Y.; Zhang, M.; Zhou, S.; Xie, H.; Chen, H.; Li, Y.; Zheng, Y.; Wu, Q.; Liu, F.; Li, E.; Bode, A.M.; Dong, Z.; Lee, M.H. Targeting AKT with oridonin inhibits growth of esophageal squamous cell carcinoma in vitro and patient-derived xenografts in vivo. Mol. Cancer Ther., 2018, 17(7), 1540-1553.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0823] [PMID: 29695636]
[21]
Mateu, E.; Chavez, K.; Riina, R.; Compagnone, RS; Delle Monache, F Suárez, AI New 3,4-seco-ent-kaurene dimers from Croton micans. Nat. Prod. Commun., 2012, 7(1), 5-8.
[22]
Suárez, A.I.; Chavez, K.; Delle Monache, F.; Vasquez, L.; Orsini, G.; Compagnone, R.S. New 3,4-seco-entkaurenes from Croton caracasana flowers. Nat. Prod. Commun., 2008, 3(3), 319-322.
[http://dx.doi.org/10.1177/1934578X0800300303]
[23]
Soheily, Z.; Soleimani, M.; Majidzadeh-Ardebili, K. Detection of mycoplasma contamination of cell culture by a loop-mediated isothermal amplification method. Cell J., 2019, 21(1), 43-48.
[http://dx.doi.org/10.22074/cellj.2019.5624] [PMID: 30507087]
[24]
Martínez, G.P.; Mijares, M.R.; Chávez, K.; Suarez, A.I.; Compagnone, R.S.; Chirinos, P.; De Sanctis, J.B. Caracasine acid, an ent-3,4-seco-kaurene, promotes apoptosis and cell differentiation through NFkB signal pathway inhibition in leukemia cells. Eur. J. Pharmacol., 2019, 862172624
[http://dx.doi.org/10.1016/j.ejphar.2019.172624] [PMID: 31449809]
[25]
Mijares, M.R.; Ochoa, M.; Barroeta, A.; Martinez, G.P.; Suarez, A.I.; Compagnone, R.S.; Chirinos, P.; Avila, R.; De Sanctis, J.B. Cytotoxic effects of fisturalin-3 and 11-deoxyfisturalin-3 on jurkat and U937 cell lines. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2013, 157(3), 222-226.
[http://dx.doi.org/10.5507/bp.2012.089] [PMID: 23128821]
[26]
García, P.A.; de Oliveira, A.B.; Batista, R. Occurrence, biological activities and synthesis of kaurane diterpenes and their glycosides. Molecules, 2007, 12(3), 455-483.
[http://dx.doi.org/10.3390/12030455] [PMID: 17851404]
[27]
Li, H.; Jiao, R.; Mu, J.; Xu, S.; Li, X.; Wang, X.; Li, Z.; Xu, J.; Hua, H.; Li, D. Bioactive natural spirolactone-type 6,7-seco-ent-kaurane diterpenoids and synthetic derivatives. Molecules, 2018, 23(11), 2914.
[http://dx.doi.org/10.3390/molecules23112914] [PMID: 30413071]
[28]
Li, D.; Han, T.; Liao, J.; Hu, X.; Xu, S.; Tian, K.; Gu, X.; Cheng, K.; Li, Z.; Hua, H.; Xu, J. Oridonin, a promising ent-kaurane diterpenoid lead compound. Int. J. Mol. Sci., 2016, 17(9), 1395.
[http://dx.doi.org/10.3390/ijms17091395] [PMID: 27563888]
[29]
Sarwar, M.S.; Xia, Y.X.; Liang, Z.M.; Tsang, S.W.; Zhang, H.J. Mechanistic pathways and molecular targets of plant-derived anticancer ent-kaurane diterpenes. Biomolecules, 2020, 10(1), 144.
[http://dx.doi.org/10.3390/biom10010144] [PMID: 31963204]
[30]
Sisa, M.; Vanek, T. Synthesis of tetracyclic diterpenoids with pharmacologic relevance. Curr. Pharm. Des., 2016, 22(12), 1767-1807.
[http://dx.doi.org/10.2174/1381612822666160105112218] [PMID: 26728618]
[31]
Morales, A.; Alvarez, A.; Arvelo, F.; Suárez, A.I.; Compagnone, R.S.; Galindo-Castro, I. The natural diterpene ent-16β-17α-dihydroxykaurane down-regulates Bcl-2 by disruption of the Ap-2α/Rb transcription activating complex and induces E2F1 up-regulation in MCF-7 cells. Apoptosis, 2011, 16(12), 1245-1252.
[http://dx.doi.org/10.1007/s10495-011-0638-5] [PMID: 21850486]
[32]
Ma, Y.C.; Zhu, Y.L.; Su, N.; Ke, Y.; Fan, X.X.; Shi, X.J.; Liu, H.M.; Wang, A.F. A novel ent-kaurane diterpenoid analog, DN3, selectively kills human gastric cancer cells via acting directly on mitochondria. Eur. J. Pharmacol., 2019, 848, 11-22.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.013] [PMID: 30659827]
[33]
Luo, D.; Yi, Y.; Peng, K.; Liu, T.; Yang, J.; Liu, S.; Zhao, W.; Qu, X.; Yu, W.; Gu, Y.; Wan, S. Oridonin derivatives as potential anticancer drug candidates triggering apoptosis through mitochondrial pathway in the liver cancer cells. Eur. J. Med. Chem., 2019, 178, 365-379.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.006] [PMID: 31200238]
[34]
Gupta, S.C.; Kunnumakkara, A.B.; Aggarwal, S.; Aggarwal, B.B. Inflammation, a double-edge sword for cancer and other age-related diseases. Front. Immunol., 2018, 9, 2160.
[http://dx.doi.org/10.3389/fimmu.2018.02160] [PMID: 30319623]
[35]
Imbert, V. Peyron, J.F. NF-κB in Hematological malignancies. Biomedicines, 2017, 5(2), 27.
[http://dx.doi.org/10.3390/biomedicines5020027] [PMID: 28561798]
[36]
Gao, H.L.; Liu, W.; Tian, L.; Li, Y.G.; Li, H.X.; Mao, Y.N. Expression levels of HES1, C-MYC and NF-kB in peripheral blood of patients with T cell acute lymphoblastic leukemia and their significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2019, 27(5), 1449-1454.
[PMID: 31607297]
[37]
Ikezoe, T.; Yang, Y.; Bandobashi, K.; Saito, T.; Takemoto, S.; Machida, H.; Togitani, K.; Koeffler, H.P.; Taguchi, H. Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-kappa B signal pathways. Mol. Cancer Ther., 2005, 4(4), 578-586.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0277] [PMID: 15827331]
[38]
Ma, Y.; Liao, Z.; Xu, Y.; Zhong, Z.; Wang, X.; Zhang, F.; Chen, S.; Yang, L.; Luo, G.; Huang, X.; Huang, S.; Wu, X.; Li, Y. Characteristics of CARMA1-BCL10-MALT1-A20-NF-κB expression in T cell-acute lymphocytic leukemia. Eur. J. Med. Res., 2014, 19(1), 62.
[http://dx.doi.org/10.1186/s40001-014-0062-8] [PMID: 25384343]
[39]
Bae, K.J.; Lee, Y.; Kim, S.A.; Kim, J. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells. Biochem. Biophys. Res. Commun., 2016, 473(1), 272-277.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.092] [PMID: 27018383]
[40]
Chen, Y.L.; Tang, C.; Zhang, M.Y.; Huang, W.L.; Xu, Y.; Sun, H.Y.; Yang, F.; Song, L.L.; Wang, H.; Mu, L.L.; Li, M.H.; Zheng, W.W.; Miao, Y.; Ding, L.X.; Li, B.S.; Shen, S.H.; Liu, S.L.; Li, H.; Zhu, Z.Q.; Chen, H.W.; Tang, Z.H.; Chen, J.; Hong, D.L.; Chen, H.Z.; Duan, C.W.; Zhou, B.S. Blocking ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic leukemia. Leukemia, 2019, 33(10), 2365-2378.
[http://dx.doi.org/10.1038/s41375-019-0458-0] [PMID: 30940905]
[41]
Ge, Y.; Montano, I.; Rustici, G.; Freebern, W.J.; Haggerty, C.M.; Cui, W.; Ponciano-Jackson, D.; Chandramouli, G.V.; Gardner, E.R.; Figg, W.D.; Abu-Asab, M.; Tsokos, M.; Jackson, S.H.; Gardner, K. Selective leukemic-cell killing by a novel functional class of thalidomide analogs. Blood, 2006, 108(13), 4126-4135.
[http://dx.doi.org/10.1182/blood-2006-04-017046] [PMID: 16940421]
[42]
Lee, JH; Koo, TH; Hwang, BY; Lee, JJ Kaurane diterpene, kamebakaurin, inhibits NF-kappa B by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-kappa B target genes. J. Biol. Chem., 2002, 277(21), 18411.
[43]
Lainey, E.; Wolfromm, A.; Sukkurwala, A.Q.; Micol, J.B.; Fenaux, P.; Galluzzi, L.; Kepp, O.; Kroemer, G. EGFR inhibitors exacerbate differentiation and cell cycle arrest induced by retinoic acid and vitamin D3 in acute myeloid leukemia cells. Cell Cycle, 2013, 12(18), 2978-2991.
[http://dx.doi.org/10.4161/cc.26016] [PMID: 23974111]
[44]
de Souza, L.F.; Pearson, A.G.; Pace, P.E.; Dafre, A.L.; Hampton, M.B.; Meotti, F.C.; Winterbourn, C.C. Peroxiredoxin expression and redox status in neutrophils and HL-60 cells. Free Radic. Biol. Med., 2019, 135, 227-234.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.007] [PMID: 30862546]
[45]
Breccia, M.; Foà, R. Intravenous arsenic trioxide and all-trans retinoic acid as front-line therapy for low-risk acute promyelocytic leukemia. Expert Rev. Hematol., 2019, 12(2), 81-87.
[http://dx.doi.org/10.1080/17474086.2019.1562332] [PMID: 30572725]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy