Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Biodegradable Nanogels for Dermal Applications: An Insight

Author(s): Payal Kesharwani, Shiv Kumar Prajapati, Anushka Jain, Swapnil Sharma, Nishi Mody and Ankit Jain*

Volume 19, Issue 4, 2023

Published on: 25 October, 2022

Page: [509 - 524] Pages: 16

DOI: 10.2174/1573413718666220415095630

Price: $65

Abstract

Biodegradable nanogels in the biomedical field are emerging vehicles comprising dispersions of hydrogel nanoparticles having 3D crosslinked polymeric networks. Nanogels show distinguished characteristics including their homogeneity, adjustable size, low toxicity, stability in serum, stimuli-responsiveness (pH, temperature, enzymes, light, etc.), and relatively good drug encapsulation capability. Due to these characteristics, nanogels are referred to as nextgeneration drug delivery systems and are suggested as promising carriers for dermal applications. The site-specific delivery of drugs with effective therapeutic effects is crucial in transdermal drug delivery. The nanogels made from biodegradable polymers can show external stimuliresponsiveness which results in a change in gel volume, water content, colloidal stability, mechanical strength, and other physical and chemical properties, thus improving the site-specific topical drug delivery. This review provides insight into the advances in development, limitations, and therapeutic significance of nanogels formulations. It also highlights the process of release of drugs in response to external stimuli, various biodegradable polymers in the formulation of the nanogels, and dermal applications of nanogels and their role in imaging, anti‐inflammatory therapy, antifungal and antimicrobial therapy, anti‐psoriatic therapy, and ocular and protein/peptide drug delivery.

Keywords: anticancer, anti-inflammatory, biodegradable, herbal, nanogel, stimuli-responsive

Graphical Abstract

[1]
Verma, A.; Singh, S.; Kaur, R.; Jain, U.K. Topical gels as drug delivery systems: A review. Int. J. Pharm. Sci. Rev. Res., 2013, 23(2), 374-382.
[2]
Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical applications of hydrogels in drug delivery system: An update. J. Drug Deliv. Sci. Technol., 2021, 66, 102914.
[http://dx.doi.org/10.1016/j.jddst.2021.102914]
[3]
Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(4), 433-440.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[4]
Yin, Y.; Hu, B.; Yuan, X.; Cai, L.; Gao, H.; Yang, Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics, 2020, 12(3), E290.
[http://dx.doi.org/10.3390/pharmaceutics12030290] [PMID: 32210184]
[5]
Prajapati, S.K.; Jain, A. Dendrimers for advanced drug delivery. In: Advanced Biopolymeric Systems for Drug Delivery; Springer, 2020; pp. 339-360.
[http://dx.doi.org/10.1007/978-3-030-46923-8_13]
[6]
Chaudhari, P.M.; Paithankar, A.V.J.S. Herbal nanogel formulation: A novel approch. J. Sci. Technol., 2020, 5(05), 149-153.
[http://dx.doi.org/10.46243/jst.2020.v5.i5.pp149-153]
[7]
Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851.
[http://dx.doi.org/10.1016/j.addr.2012.02.002] [PMID: 22342438]
[8]
Tsintou, M.; Wang, C.; Dalamagkas, K.; Weng, D.; Zhang, Y-N.; Niu, W. Nanogels for biomedical applications: Drug delivery, imaging, tissue engineering, and biosensors. In: Nanobiomaterials Science, Development and Evaluation; Elsevier, 2017; pp. 87-124.
[9]
Garg, T.; Goyal, A.K. Biomaterial-based scaffolds--current status and future directions. Expert Opin. Drug Deliv., 2014, 11(5), 767-789.
[http://dx.doi.org/10.1517/17425247.2014.891014] [PMID: 24669779]
[10]
Morales-Bonilla, S.; Mota-Díaz, I.I.; Douda, J.; González-Vargas, C.R.; Villalpando, I.; Torres-Torres, C. Thermo-mechanical effects and photo-induced release of liposome-encapsulated nanodiamonds by polarization-resolved laser pulses. Optik (Stuttg.), 2021, 245, 167738.
[http://dx.doi.org/10.1016/j.ijleo.2021.167738]
[11]
Sharma, A.; Garg, T.; Aman, A.; Panchal, K.; Sharma, R.; Kumar, S.; Markandeywar, T. Nanogel--an advanced drug delivery tool: Current and future. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 165-177.
[http://dx.doi.org/10.3109/21691401.2014.930745] [PMID: 25053442]
[12]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24(1), 539-557.
[http://dx.doi.org/10.1080/10717544.2016.1276232] [PMID: 28181831]
[13]
Shaikh, M.S.; Kale, M.A. Formulation and molecular docking simulation study of luliconazole nanosuspension–based nanogel for transdermal drug delivery using modified polymer. Mater. Today Chem., 2020, 18, 100364.
[http://dx.doi.org/10.1016/j.mtchem.2020.100364]
[14]
Jain, S.; Prajapati, S.K.; Jain, S.; Jain, S.; Jain, A. Propylene glycol-liposome for anticoagulant drug delivery through skin. J. Bionanoscience., 2018, 12(5), 721-727.
[http://dx.doi.org/10.1166/jbns.2018.1586]
[15]
Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J., 2019, 120, 109191.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.018]
[16]
Kothale, D.; Verma, U.; Dewangan, N.; Jana, P.; Jain, A.; Jain, D. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr. Drug Deliv., 2020, 17(9), 755-775.
[http://dx.doi.org/10.2174/1567201817666200810110226] [PMID: 32778024]
[17]
Ibrahim, N.A.; Nada, A.A.; Eid, B.M. Polysaccharide-based polymer gels and their potential applications. Polymer Gels, 2018, 97-126.
[18]
Jain, R.; Prajapati, S.K.; Jain, S.; Jain, A. Chemically modified polysaccharides in tissue engineering; Tailor-Made Polysaccharides in Biomedical Applications; Elsevier, 2020, pp. 197-224.
[http://dx.doi.org/10.1016/B978-0-12-821344-5.00009-6]
[19]
Simonson, A.W.; Lawanprasert, A.; Goralski, T.D.P.; Keiler, K.C.; Medina, S.H. Bioresponsive peptide-polysaccharide nanogels - A versatile delivery system to augment the utility of bioactive cargo. Nanomedicine, 2019, 17, 391-400.
[http://dx.doi.org/10.1016/j.nano.2018.10.008] [PMID: 30399437]
[20]
Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics:Review . J. Mater. Sci. Mater. Med., 2020, 31(6), 50.
[http://dx.doi.org/10.1007/s10856-020-06390-w] [PMID: 32451785]
[21]
Prajapati, S.K.; Jain, A. Polysaccharide-based interpenetrating polymeric network system for biomedical use. In: Tailor-Made Polysaccharides in Biomedical Applications; Elsevier, 2020; pp. 133-150.
[22]
Jain, A.; Gulbake, A.; Shilpi, S.; Jain, A.; Hurkat, P.; Jain, S.K. A new horizon in modifications of chitosan: Syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(2), 91-181.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005678]
[23]
Jain, A.; Jain, S.K. Environmentally responsive chitosan-based nanocarriers (CBNs). In: Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers; , 2015; 3, p. 105.
[24]
Panonnummal, R.; Sabitha, M. Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model. Int. J. Biol. Macromol., 2018, 110, 245-258.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.112] [PMID: 29054520]
[25]
Algharib, SA; Dawood, A; Zhou, K; Chen, D; Li, C; Meng, K Designing, structural determination and biological effects of rifaximin loaded chitosan-carboxymethyl chitosan nanogel. 2020, 248, 116782.
[http://dx.doi.org/10.1016/j.carbpol.2020.116782]
[26]
Divya, G.; Panonnummal, R.; Gupta, S.; Jayakumar, R.; Sabitha, M. Acitretin and aloe-emodin loaded chitin nanogel for the treatment of psoriasis. Eur. J. Pharm. Biopharm., 2016, 107, 97-109.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.019] [PMID: 27368748]
[27]
Prajapati, S.K.; Jain, A.; Shrivastava, C.; Jain, A.K. Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int. J. Biol. Macromol., 2019, 123, 691-703.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.116] [PMID: 30445095]
[28]
Prajapati, S.K.; Mody, N.; Jain, A. Hyaluronic Acid: Biodegradable Material of Choice for Drug Delivery Applications; Nova Science Publisher, 2020.
[29]
Mohan, N.; Mohanan, P.V.; Sabareeswaran, A.; Nair, P. Chitosan-hyaluronic acid hydrogel for cartilage repair. Int. J. Biol. Macromol., 2017, 104(Pt B), 1936-1945.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.142] [PMID: 28359897]
[30]
Zhu, J.; Li, F.; Wang, X.; Yu, J.; Wu, D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl. Mater. Interfaces, 2018, 10(16), 13304-13316.
[http://dx.doi.org/10.1021/acsami.7b18927] [PMID: 29607644]
[31]
Choi, H.; Kwon, M.; Choi, H.E.; Hahn, S.K.; Kim, K.S. Non-invasive topical drug-delivery system using hyaluronate nanogels crosslinked via click chemistry. Materials (Basel), 2021, 14(6), 1504.
[http://dx.doi.org/10.3390/ma14061504] [PMID: 33803897]
[32]
Normand, V.; Lootens, D.L.; Amici, E.; Plucknett, K.P.; Aymard, P. New insight into agarose gel mechanical properties. Biomacromolecules, 2000, 1(4), 730-738.
[http://dx.doi.org/10.1021/bm005583j] [PMID: 11710204]
[33]
Bilal, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int. J. Biol. Macromol., 2019, 124, 742-749.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.220] [PMID: 30496859]
[34]
Zarrintaj, P.; Manouchehri, S.; Ahmadi, Z.; Saeb, M.R.; Urbanska, A.M.; Kaplan, D.L.; Mozafari, M. Agarose-based biomaterials for tissue engineering. Carbohydr. Polym., 2018, 187, 66-84.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.060] [PMID: 29486846]
[35]
Nguyen, D.H.; Nguyen, N.B.; Nguyen, L.T.; Do, L.T.; Nguyen, T.T.; Nguyen, N.H. An agarose–curdlan nanogel that carries etanercept to target and neutralises TNF-α produced by dectin-1-expressing immune cells. J. Electron. Mater., 2019, 48(10), 6570-6582.
[http://dx.doi.org/10.1007/s11664-019-07458-2]
[36]
Jain, A.; Prajapati, S.K.; Kumari, A.; Mody, N.; Bajpai, M. Engineered nanosponges as versatile biodegradable carriers: An insight. J. Drug Deliv. Sci. Technol., 2020, 57, 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[37]
Tian, B.; Hua, S.; Liu, J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr. Polym., 2020, 232, 115805.
[http://dx.doi.org/10.1016/j.carbpol.2019.115805] [PMID: 31952603]
[38]
Wadhwa, S.; Singh, B.; Sharma, G.; Raza, K.; Katare, O.P. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv., 2016, 23(4), 1204-1213.
[http://dx.doi.org/10.3109/10717544.2015.1110845] [PMID: 26592918]
[39]
Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[40]
DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein polymer-based nanoparticles: Fabrication and medical applications. Int. J. Mol. Sci., 2018, 19(6), 1717.
[http://dx.doi.org/10.3390/ijms19061717] [PMID: 29890756]
[41]
Pathan, I.B.; Munde, S.J.; Shelke, S.; Ambekar, W.; Setty, C.M. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex vivo and in vivo evaluation. Int. J. Polymer. Materials Polymeric Biomaterials., 2019, 68(4), 165-174.
[http://dx.doi.org/10.1080/00914037.2018.1429437]
[42]
Devalliere, J.; Dooley, K.; Hu, Y.; Kelangi, S.S.; Uygun, B.E.; Yarmush, M.L. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials, 2017, 141, 149-160.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.043] [PMID: 28688286]
[43]
Feroz, S.; Muhammad, N.; Ratnayake, J. Keratin-Based materials for biomedical applications. Dias GJBm., 2020, 5(3), 496-509.
[44]
Cheng, Z.; Chen, X.; Zhai, D.; Gao, F.; Guo, T.; Li, W.; Hao, S.; Ji, J.; Wang, B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J. Nanobiotechnology, 2018, 16(1), 24.
[http://dx.doi.org/10.1186/s12951-018-0353-2] [PMID: 29554910]
[45]
Hathout, R.M.; Metwally, A.A. Gelatin nanoparticles. In: Pharmaceutical Nanotechnology; Springer, 2019; pp. 71-78.
[http://dx.doi.org/10.1007/978-1-4939-9516-5_6]
[46]
Kanmani, P.; Rhim, J.W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem., 2014, 148, 162-169.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.047] [PMID: 24262541]
[47]
Kim, J.; Gauvin, R.; Yoon, H.J.; Kim, J.H.; Kwon, S.M.; Park, H.J. Skin penetration-inducing gelatin methacryloyl nanogels for transdermal macromolecule delivery. Macromol. Res., 2016, 24(12), 1115-1125.
[http://dx.doi.org/10.1007/s13233-016-4147-9]
[48]
Elzoghby, A.O.; Samy, W.M. Albumin-based nanoparticles as potential controlled release drug delivery systems. Elgindy NAJJocr., 2012, 157(2), 168-182.
[49]
Jiang, Y.; Stenzel, M. Drug delivery vehicles based on albumin-polymer conjugates. Macromol. Biosci., 2016, 16(6), 791-802.
[http://dx.doi.org/10.1002/mabi.201500453] [PMID: 26947019]
[50]
Jain, A.; Tripathi, M.; Prajapati, S.K.; Raichur, A.M. Biopolymer Matrix Composite for Drug Delivery Applications in Cancer. Encyclopedia of Materials: Composites; Brabazon, D., Ed.; Elsevier: Oxford, 2021, pp. 804-817.
[http://dx.doi.org/10.1016/B978-0-12-819724-0.00028-8]
[51]
Balakrishnan, P.; Geethamma, V.; Sreekala, M.S.; Thomas, S. Polymeric biomaterials: State-of-the-art and new challenges. In: Fundamental Biomaterials: Polymers; Elsevier, 2018; pp. 1-20.
[52]
Suggs, L.J.; Moore, S.A.; Mikos, A.G. Synthetic biodegradable polymers for medical applications. In: Physical Properties of Polymers Handbook; Springer, 2007; pp. 939-950.
[http://dx.doi.org/10.1007/978-0-387-69002-5_55]
[53]
Jem, K.J.; Tan, B.J.A.I. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Industrial Eng. Polymer Res., 2020, 3(2), 60-70.
[54]
Qi, H.; Yang, L.; Shan, P.; Zhu, S.; Ding, H.; Xue, S.; Wang, Y.; Yuan, X.; Li, P. The stability maintenance of protein drugs in organic coatings based on nanogels. Pharmaceutics, 2020, 12(2), 115.
[http://dx.doi.org/10.3390/pharmaceutics12020115] [PMID: 32024083]
[55]
Urbánek, T; Jäger, E; Jäger, A Hrubý, MJP Selectively biodegradable polyesters: Nature-inspired construction materials for future biomedical applications. 2019, 11(6), 1061.
[56]
Balani, K.; Verma, V.; Agarwal, A.; Narayan, R.; Perspective, E. Physical, thermal, and mechanical properties of polymers; The American Ceramic Society, 2015.
[57]
Basu, A.; Domb, A.J. Recent advances in polyanhydride based biomaterials. Adv. Mater., 2018, 30(41), e1706815.
[http://dx.doi.org/10.1002/adma.201706815] [PMID: 29707879]
[58]
Karandikar, S.; Mirani, A.; Waybhase, V.; Patravale, V. Nanovaccines for oral delivery-formulation strategies and challenges. In: Nanostructures for Oral Medicine; Elsevier, 2017; pp. 263-293.
[59]
Stefan, N.; Miroiu, F.M.; Socol, G. Degradable silk fibroin - Poly (sebacic acid) diacetoxy terminated, (SF-PSADT) polymeric composite coatings for biodegradable medical applications deposited by laser technology. Prog. Org. Coat., 2019, 134, 11-21.
[http://dx.doi.org/10.1016/j.porgcoat.2019.04.075]
[60]
Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater., 2020, 6(4), 1083-1106.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.002] [PMID: 33102948]
[61]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[62]
Reglero Ruiz, J.A.; Trigo-López, M.; García, F.C.; García, J.M. Functional aromatic polyamides. Polymers, 2017, 9(9), 414.
[http://dx.doi.org/10.3390/polym9090414]
[63]
Sharma, K.; Kesharwani, P.; Prajapati, S.K.; Jain, A.; Mittal, N.; Kaushik, R. Smart Devices in Healthcare Sector: Applications.Handbook of Smart Materials, Technologies, and Devices: Applications of Industry 40; Hussain, C.M.; Di Sia, P, Eds.; Springer International Publishing: Cham, 2020, pp. 1-27.
[64]
Zhang, Z.; Kuijer, R.; Bulstra, S.K.; Grijpma, D.W.; Feijen, J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials, 2006, 27(9), 1741-1748.
[http://dx.doi.org/10.1016/j.biomaterials.2005.09.017] [PMID: 16221493]
[65]
Soni, K.S.; Desale, S.S. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[66]
Bronich, T.K.; Keifer, P.A.; Shlyakhtenko, L.S.; Kabanov, A.V. Polymer micelle with cross-linked ionic core. J. Am. Chem. Soc., 2005, 127(23), 8236-8237.
[http://dx.doi.org/10.1021/ja043042m] [PMID: 15941228]
[67]
O’Reilly, R.K.; Hawker, C.J.; Wooley, K.L. Cross-linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem. Soc. Rev., 2006, 35(11), 1068-1083.
[http://dx.doi.org/10.1039/b514858h] [PMID: 17057836]
[68]
Oishi, M.; Nagasaki, Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine (Lond.), 2010, 5(3), 451-468.
[http://dx.doi.org/10.2217/nnm.10.18] [PMID: 20394537]
[69]
Chiang, W.H.; Ho, V.T.; Huang, W.C.; Huang, Y.F.; Chern, C.S.; Chiu, H.C. Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release. Langmuir, 2012, 28(42), 15056-15064.
[http://dx.doi.org/10.1021/la302903v] [PMID: 23036055]
[70]
Water, J.J.; Kim, Y.; Maltesen, M.J.; Franzyk, H.; Foged, C. Hyaluronic acid-based nanogels produced by microfluidics-facilitated self-assembly improves the safety profile of the cationic host defense peptide novicidin. Nielsen HMJPr., 2015, 32(8), 2727-2735.
[71]
Lai, H.J.; Wu, P.Y. A infrared spectroscopic study on the mechanism of temperature-induced phase transition of concentrated aqueous solutions of poly(N-isopropylacrylamide) and N-isopropylpropionamide. Polymer (Guildf.), 2010, 51(6), 1404-1412.
[http://dx.doi.org/10.1016/j.polymer.2010.01.036]
[72]
Mok, H.; Jeong, H.; Kim, S.J.; Chung, B.H. Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes. Chem. Commun. (Camb.), 2012, 48(69), 8628-8630.
[http://dx.doi.org/10.1039/c2cc33555g] [PMID: 22745939]
[73]
Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429.
[http://dx.doi.org/10.1002/anie.200900441]
[74]
Motornov, M.; Roiter, Y.; Tokarev, I.; Minko, S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog. Polym. Sci., 2010, 35(1-2), 174-211.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.10.004]
[75]
Oberoi, H.S.; Laquer, F.C.; Marky, L.A.; Kabanov, A.V.; Bronich, T.K. Core cross-linked block ionomer micelles as pH-responsive carriers for cis-diamminedichloroplatinum(II). J. Control. Release, 2011, 153(1), 64-72.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.028] [PMID: 21497174]
[76]
Tamura, G.; Shinohara, Y.; Tamura, A.; Sanada, Y.; Oishi, M.; Akiba, I. Dependence of the swelling behavior of a pH-responsive PEG-modified nanogel on the cross-link density. Polym. J., 2012, 44(3), 240-244.
[http://dx.doi.org/10.1038/pj.2011.123]
[77]
Ricka, J.; Tanaka, T. Swelling of ionic gels - Quantitative performance of the donnan theory. Macromolecules, 1984, 17(12), 2916-2921.
[http://dx.doi.org/10.1021/ma00142a081]
[78]
Eichenbaum, G.M.; Kiser, P.F.; Dobrynin, A.V.; Simon, S.A.; Needham, D. Investigation of the swelling response and loading of ionic microgels with drugs and proteins: The dependence on cross-link density. Macromolecules, 1999, 32(15), 4867-4878.
[http://dx.doi.org/10.1021/ma981945s]
[79]
Pikabea, A.; Aguirre, G.; Miranda, J.I.; Ramos, J.; Forcada, J. Understanding of nanogels swelling behavior through a deep insight into their morphology. J. Polym. Sci. A Polym. Chem., 2015, 53(17), 2017-2025.
[http://dx.doi.org/10.1002/pola.27653]
[80]
Sultana, F.; Manirujjaman, M.; Imran-Ul-Haque, M.A.; Sharmin, S.J.J.A.P.S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(8), 95-105.
[81]
Singh, S.; Möller, M. Biocompatible and biodegradable nanogels and hydrogels for protein peptide delivery; Lehrstuhl für Textilchemie und Makromolekulare Chemie, 2014.
[82]
Prajapati, S.K.; Mishra, G.; Malaiya, A.; Kesharwani, P.; Mody, N.; Jain, A. Application of coatings with smart functions. Mini Rev. Org. Chem., 2021, 18(7), 943-960.
[http://dx.doi.org/10.2174/1570193X18666210225122813]
[83]
Gan, J.; Guan, X.; Zheng, J.; Guo, H.; Wu, K.; Liang, L. Biodegradable, thermoresponsive PNIPAM-based hydrogel scaffolds for the sustained release of levofloxacin. RSC Advances, 2016, 6(39), 32967-32978.
[http://dx.doi.org/10.1039/C6RA03045A]
[84]
Gonçalves, C.; Pereira, P.; Gama, M.J.M. Self-assembled hydrogel nanoparticles for drug delivery applications. Materials, 2010, 3(2), 1420-1460.
[http://dx.doi.org/10.3390/ma3021420]
[85]
Shah, P.P.; Desai, P.R.; Patel, A.R.; Singh, M.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials, 2012, 33(5), 1607-1617.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.011] [PMID: 22118820]
[86]
Shen, C.Y.; Xu, P.H.; Shen, B.D.; Min, H.Y.; Li, X.R.; Han, J.; Yuan, H.L. Nanogel for dermal application of the triterpenoids isolated from Ganoderma lucidum (GLT) for frostbite treatment. Drug Deliv., 2016, 23(2), 610-618.
[http://dx.doi.org/10.3109/10717544.2014.929756] [PMID: 24963753]
[87]
Yadav, H.; Al Halabi, N. Alsalloum, GJJPPR Nanogels as novel drug delivery systems-a review. J. Pharm. Pharmaceut. Res., 2017, 1(5), 1-8.
[88]
Vinogradov, S.V. Nanogels in the race for drug delivery. Nanomedicine (Lond.), 2010, 5(2), 165-168.
[http://dx.doi.org/10.2217/nnm.09.103] [PMID: 20148627]
[89]
Karg, M.; Pich, A.; Hellweg, T.; Hoare, T.; Lyon, L.A.; Crassous, J.J.; Suzuki, D.; Gumerov, R.A.; Schneider, S.; Potemkin, I.I.; Richtering, W. Nanogels and microgels: From model colloids to applications, recent developments, and future trends. Langmuir, 2019, 35(19), 6231-6255.
[http://dx.doi.org/10.1021/acs.langmuir.8b04304] [PMID: 30998365]
[90]
Eckmann, D.M.; Composto, R.J.; Tsourkas, A.; Muzykantov, V.R. Nanogel carrier design for targeted drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8085-8097.
[http://dx.doi.org/10.1039/C4TB01141D] [PMID: 25485112]
[91]
Kazakov, S.; Levon, K. Liposome-nanogel structures for future pharmaceutical applications. Curr. Pharm. Des., 2006, 12(36), 4713-4728.
[http://dx.doi.org/10.2174/138161206779026281] [PMID: 17168774]
[92]
Liechty, W.B.; Scheuerle, R.L. Peppas, NAJP Tunable, responsive nanogels containing t-butyl methacrylate and 2-(t-butylamino) ethyl methacrylate. Polymer, 2013, 54(15), 3784-3795.
[93]
Sim, T.; Lim, C. Hoang, NH Recent advance of pH-sensitive nanocarriers targeting solid tumors. J. Pharm. Investig., 2017, 47(5), 383-394.
[94]
Zangabad, P.S.; Mirkiani, S.; Shahsavari, S.; Masoudi, B.; Masroor, M.; Hamed, H.; Jafari, Z.; Taghipour, Y.D.; Hashemi, H.; Karimi, M.; Hamblin, M.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev., 2018, 7(1), 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[95]
Du, J.Z.; Sun, T.M.; Song, W.J.; Wu, J.; Wang, J. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew. Chem. Int. Ed. Engl., 2010, 49(21), 3621-3626.
[http://dx.doi.org/10.1002/anie.200907210] [PMID: 20391548]
[96]
Miyake, M.; Ogawa, K.; Kokufuta, E. Light-scattering study of polyelectrolyte complex formation between anionic and cationic nanogels in an aqueous salt-free system. Langmuir, 2006, 22(17), 7335-7341.
[http://dx.doi.org/10.1021/la060701v] [PMID: 16893235]
[97]
Oh, N.M.; Oh, K.T.; Youn, Y.S.; Lee, D.K.; Cha, K.H.; Lee, D.H.; Lee, E.S. Poly(L-aspartic acid) nanogels for lysosome-selective antitumor drug delivery. Colloids Surf. B Biointerfaces, 2013, 101, 298-306.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.013] [PMID: 23010033]
[98]
Vicario-de-la-Torre, M.; Forcada, J. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy. Gels, 2017, 3(2), 16.
[http://dx.doi.org/10.3390/gels3020016]
[99]
Ulański, P.; Janik, I. Rosiak, JJRP Chemistry. Radiation formation of polymeric nanogels. Radiat. Phys. Chem., 1998, 52(1-6), 289-294.
[100]
Lee, J.H.; Kim, Y.G.; Cho, H.S.; Kim, J.; Kim, S.C.; Cho, M.H.; Lee, J. Thermoresponsive oligomers reduce Escherichia coli O157:H7 biofouling and virulence. Biofouling, 2014, 30(5), 627-637.
[http://dx.doi.org/10.1080/08927014.2014.907402] [PMID: 24735097]
[101]
Schwerdt, A.; Zintchenko, A.; Concia, M.; Roesen, N.; Fisher, K.; Lindner, L.H.; Issels, R.; Wagner, E.; Ogris, M. Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum. Gene Ther., 2008, 19(11), 1283-1292.
[http://dx.doi.org/10.1089/hum.2008.064] [PMID: 19866491]
[102]
Rejinold, N.S.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr. Polym., 2011, 83(2), 776-786.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.052]
[103]
Zhao, Y. Rational design of light-controllable polymer micelles. Chem. Rec., 2007, 7(5), 286-294.
[http://dx.doi.org/10.1002/tcr.20127] [PMID: 17924441]
[104]
Tomatsu, I.; Peng, K.; Kros, A. Photoresponsive hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1257-1266.
[http://dx.doi.org/10.1016/j.addr.2011.06.009] [PMID: 21745509]
[105]
Patnaik, S.; Sharma, A.K.; Garg, B.S.; Gandhi, R.P.; Gupta, K.C. Photoregulation of drug release in azo-dextran nanogels. Int. J. Pharm., 2007, 342(1-2), 184-193.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.038] [PMID: 17574354]
[106]
He, J.; Yan, B.; Tremblay, L.; Zhao, Y. Both core- and shell-cross-linked nanogels: Photoinduced size change, intraparticle LCST, and interparticle UCST thermal behaviors. Langmuir, 2011, 27(1), 436-444.
[http://dx.doi.org/10.1021/la1040322] [PMID: 21141813]
[107]
Piogé, S.; Nesterenko, A.; Brotons, G.; Pascual, S.; Fontaine, L. Core cross-linking of dynamic diblock copolymer micelles. Quantitative study of photopolymerization efficiency and micelle structure. Quantitative Study of Photopolymerization Efficiency and Micelle Structure, 2011, 44(3), 594-603.
[108]
Lee, W.C.; Li, Y.C.; Chu, I.M. Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromol. Biosci., 2006, 6(10), 846-854.
[http://dx.doi.org/10.1002/mabi.200600101] [PMID: 17039577]
[109]
Seo, S.; Lee, C.S.; Jung, Y.S.; Na, K. Thermo-sensitivity and triggered drug release of polysaccharide nanogels derived from pullulan-g-poly(L-lactide) copolymers. Carbohydr. Polym., 2012, 87(2), 1105-1111.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.061]
[110]
Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med., 2001, 30(11), 1191-1212.
[http://dx.doi.org/10.1016/S0891-5849(01)00480-4] [PMID: 11368918]
[111]
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013, 972913.
[http://dx.doi.org/10.1155/2013/972913]
[112]
Singh, S.; Topuz, F.; Hahn, K.; Albrecht, K.; Groll, J. Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking. Angew. Chem. Int. Ed. Engl., 2013, 52(10), 3000-3003.
[http://dx.doi.org/10.1002/anie.201206266] [PMID: 23386357]
[113]
Zhang, S.; Li, Y.; Qiu, X.; Jiao, A.; Luo, W.; Lin, X.; Zhang, X.; Zhang, Z.; Hong, J.; Cai, P.; Zhang, Y.; Wu, Y.; Gao, J.; Liu, C.; Li, Y. Incorporating redox-sensitive nanogels into bioabsorbable nanofibrous membrane to acquire ROS-balance capacity for skin regeneration. Bioact. Mater., 2021, 6(10), 3461-3472.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.009] [PMID: 33817421]
[114]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[115]
Zhao, X.Q.; Wang, T.X.; Liu, W.; Wang, C.D.; Wang, D.; Shang, T. Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J. Mater. Chem., 2011, 21(20), 7240-7247.
[http://dx.doi.org/10.1039/c1jm10277j]
[116]
Hasegawa, U.; Nomura, S.M.; Kaul, S.C.; Hirano, T.; Akiyoshi, K. Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem. Biophys. Res. Commun., 2005, 331(4), 917-921.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.228] [PMID: 15882965]
[117]
Pikabea, A.; Ramos, J.; Papachristos, N.; Stamopoulos, D.; Forcada, J. Synthesis and characterization of PDEAEMA-based magneto-nanogels: Preliminary results on the biocompatibility with cells of human peripheral blood. J. Polym. Sci. A Polym. Chem., 2016, 54(11), 1479-1494.
[http://dx.doi.org/10.1002/pola.27996]
[118]
Maver, T.; Kurečič, M.; Smrke, D.M.; Kleinschek, K.S.; Maver, U. Plant-derived medicines with potential use in wound treatment; Herbal Medicine, 2018.
[119]
Prajapati, S.K.; Mishra, G.; Malaiya, A.; Jain, A.; Mody, N.; Raichur, A.M. Antimicrobial application potential of phytoconstituents from turmeric and garlic. In: Bioactive Natural Products for Pharmaceutical Applications; Springer, 2021; pp. 409-435.
[120]
Athya, D.K.; Jain, A.; Verma, A. Phytochemical and pharmacological investigation of cassia siamea lamk: An insight. Nat. Prod. J., 2017, 7, 255-266.
[121]
Zhou, T.; Xiao, C.; Fan, J.; Chen, S.; Shen, J.; Wu, W.; Zhou, S. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery. Acta Biomater., 2013, 9(1), 4546-4557.
[http://dx.doi.org/10.1016/j.actbio.2012.08.017] [PMID: 22906624]
[122]
Sharma, K.; Kesharwani, P.; Prajapati, S.K.; Jain, A.; Jain, D.; Mody, N.; Sharma, S. An insight into anticancer bioactives from punica granatum (Pomegranate). Anticancer. Agents Med. Chem., 2021.
[http://dx.doi.org/10.2174/1871520621666210726143553] [PMID: 34315399]
[123]
Seyfoori, A.; Sarfarazijami, S.; Seyyed Ebrahimi, S.A. pH-responsive carbon nanotube-based hybrid nanogels as the smart anticancer drug carrier. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1437-1443.
[http://dx.doi.org/10.1080/21691401.2019.1596939] [PMID: 30991848]
[124]
Pan, G.; Mou, Q.; Ma, Y.; Ding, F.; Zhang, J.; Guo, Y.; Huang, X.; Li, Q.; Zhu, X.; Zhang, C. pH-responsive and gemcitabine-containing DNA nanogel to facilitate the chemodrug delivery. ACS Appl. Mater. Interfaces, 2019, 11(44), 41082-41090.
[http://dx.doi.org/10.1021/acsami.9b14892] [PMID: 31603313]
[125]
Rajput, R.; Narkhede, J.; Naik, B.N. DMPK. Nanogels as nanocarriers for drug delivery: a review. ADMET & DMPK, 2020, 8(1), 1-15.
[126]
Mohammed, N.; Rejinold, N.S.; Mangalathillam, S.; Biswas, R.; Nair, S.V.; Jayakumar, R. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J. Biomed. Nanotechnol., 2013, 9(9), 1521-1531.
[http://dx.doi.org/10.1166/jbn.2013.1647] [PMID: 23980500]
[127]
Hamzah, M.L. Formulation and evaluation of flurbiprofen nanogel. Res. J. Pharm. Technology, 2020, 13(11), 5183-5188.
[128]
Farooq, U.; Rasul, A.; Sher, M.; Qadir, M.I.; Nazir, I.; Mehmood, Y.; Riaz, H.; Shah, P.A.; Jamil, Q.A.; Khan, B.A. Development, characterization and evaluation of anti-fungal activity of miconazole based nanogel prepared from biodegradable polymer. Pak. J. Pharm. Sci., 2020, 33(1(Special)), 449-457.
[PMID: 32173643]
[129]
Obuobi, S.; Julin, K.; Fredheim, E.G.A.; Johannessen, M.; Škalko-Basnet, N. Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. J. Control. Release, 2020, 324, 620-632.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.002] [PMID: 32525012]
[130]
Ye, C.; Chi, H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Mater. Sci. Eng. C, 2018, 83, 233-246.
[http://dx.doi.org/10.1016/j.msec.2017.10.003] [PMID: 29208283]
[131]
Fonte, P.; Araújo, F.; Silva, C.; Pereira, C.; Reis, S.; Santos, H.A.; Sarmento, B. Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnol. Adv., 2015, 33(6 Pt 3), 1342-1354.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.010] [PMID: 25728065]
[132]
Yang, Q.; Peng, J.; Shi, K.; Xiao, Y.; Liu, Q.; Han, R.; Wei, X.; Qian, Z. Rationally designed peptide-conjugated gold/platinum nanosystem with active tumor-targeting for enhancing tumor photothermal-immunotherapy. J. Control. Release, 2019, 308, 29-43.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.031] [PMID: 31252039]
[133]
Huang, X.; Yin, Y.L.; Wu, M.; Zan, W.; Yang, Q. LyP-1 peptide-functionalized gold nanoprisms for SERRS imaging and tumor growth suppressing by PTT induced-hyperthermia. Chin. Chem. Lett., 2019, 30(6), 1335-1340.
[http://dx.doi.org/10.1016/j.cclet.2019.02.019]
[134]
Witting, M.; Molina, M.; Obst, K.; Plank, R.; Eckl, K.M.; Hennies, H.C.; Calderón, M.; Friess, W.; Hedtrich, S. Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomedicine, 2015, 11(5), 1179-1187.
[http://dx.doi.org/10.1016/j.nano.2015.02.017] [PMID: 25791808]
[135]
Avasatthi, V.; Pawar, H.; Dora, C.P.; Bansod, P.; Gill, M.S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol., 2016, 21(5), 554-562.
[136]
Kesharwani, P.; Jain, A.; Srivastava, A.K.; Keshari, M.K. Systematic development and characterization of curcumin-loaded nanogel for topical application. Drug Dev. Ind. Pharm., 2020, 46(9), 1443-1457.
[http://dx.doi.org/10.1080/03639045.2020.1793998] [PMID: 32644836]
[137]
Gao, L.; Zabihi, F.; Ehrmann, S.; Hedtrich, S.; Haag, R. Supramolecular nanogels fabricated via host-guest molecular recognition as penetration enhancer for dermal drug delivery. J. Control. Release, 2019, 300, 64-72.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.011] [PMID: 30797001]
[138]
Giulbudagian, M.; Rancan, F.; Klossek, A.; Yamamoto, K.; Jurisch, J.; Neto, V.C.; Schrade, P.; Bachmann, S.; Rühl, E.; Blume-Peytavi, U.; Vogt, A.; Calderón, M. Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release, 2016, 243, 323-332.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.022] [PMID: 27793686]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy