Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Altering Landscape of Cancer Vaccines: Unique Platforms, Research on Therapeutic Applications and Recent Patents

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

Volume 18, Issue 2, 2023

Published on: 27 September, 2022

Page: [133 - 146] Pages: 14

DOI: 10.2174/1574892817666220414110335

Price: $65

Abstract

Recent developments in several areas are rekindling interest and empowering progress in improving therapeutic cancer vaccines. These advances have been made in target selection, vaccine technology, and approaches for reversing the immunosuppressive mechanisms exploited by cancers. Studies on diverse tumor antigens have revealed target properties, including high cell specificity and adequate immunogenicity, to affect clinical efficiency. Therefore, one of the principal goals of cancer vaccinology is the development of efficient therapeutic cancer vaccines that are capable of eliciting an effector as well as memory T cell response specific to tumor antigens. Neoantigens, which arise from mutated proteins in cancer cells, are cancer-specific and may be highly immunogenic. However, the vast majority of these are distinctive to each patient’s cancer and hence require the development of personalised therapies. Novel immunotherapeutic strategies are focused on breaking immune tolerance to tumor antigens, improving the immunogenicity of tumor vaccines, in addition to overcoming mechanisms of tumor escape. However, current developments and patents in cancer immune therapies, together with associated technologies, are significant. Supreme achievements in immune inhibitor-centered therapies and neo-antigen identification tools envisage probable improvements in cancer vaccines with respect to treatments of malignancies. Antibody modulation of T cell function through checkpoint blockade or co-stimulatory activation may restore survival, proliferation, and effector function. Thus, these tumor-infiltrating T cells with genetically engineered therapeutic vaccines have the potential to act as curative cancer immune therapeutics. In this review, target tumor antigens employed in recent years in the development of therapeutic cancer vaccine approaches are described, and the patents involved in the process are highlighted.

Keywords: Cancer vaccine, patents, tumor antigen, immune tolerance, personalized therapies, immune response.

[1]
Zahm CD, Colluru VT, McNeel DG. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8+ T cells. Cancer Immunol Res 2017; 5(8): 630-41.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0374] [PMID: 28634215]
[2]
Mahdavi M, Moreau V, Kheirollahi M. Identification of B and T cell epitope based peptide vaccine from IGF-1 receptor in breast cancer. J Mol Graph Model 2017; 75: 316-21.
[http://dx.doi.org/10.1016/j.jmgm.2017.06.004] [PMID: 28628857]
[3]
Ye Z, Li Z, Jin H, Qian Q. Therapeutic cancer vaccines. Adv Exp Med Biol 2016; 909: 139-67.
[http://dx.doi.org/10.1007/978-94-017-7555-7_3] [PMID: 27240458]
[4]
Obara W, Eto M, Mimata H, et al. A phase I/II study of cancer peptide vaccine S-288310 in patients with advanced urothelial carcinoma of the bladder. Ann Oncol 2017; 28(4): 798-803.
[http://dx.doi.org/10.1093/annonc/mdw675] [PMID: 27998971]
[5]
Melssen M, Slingluff CL Jr. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 2017; 47: 85-92.
[http://dx.doi.org/10.1016/j.coi.2017.07.004] [PMID: 28755541]
[6]
Pedersen SR, Sørensen MR, Buus S, Christensen JP, Thomsen AR. Comparison of vaccine-induced effector CD8 T cell responses directed against self- and non-self-tumor antigens: Implications for cancer immunotherapy. J Immunol 2013; 191(7): 3955-67.
[http://dx.doi.org/10.4049/jimmunol.1300555] [PMID: 24018273]
[7]
Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019; 9(25): 7807-25.
[http://dx.doi.org/10.7150/thno.37194] [PMID: 31695802]
[8]
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15(5): 576-90.
[http://dx.doi.org/10.1016/j.ajps.2019.10.006] [PMID: 33193861]
[9]
Apostolopoulos V. Vaccine delivery methods into the future. Vaccines (Basel) 2016; 4(2): 9.
[http://dx.doi.org/10.3390/vaccines4020009] [PMID: 27043641]
[10]
Lipson EJ, Drake CG. Ipilimumab: An anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 2011; 17(22): 6958-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1595] [PMID: 21900389]
[11]
Davids MS, Kim HT, Bachireddy P, et al. Leukemia and Lymphoma Society Blood Cancer Research Partnership. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med 2016; 375(2): 143-53.
[http://dx.doi.org/10.1056/NEJMoa1601202] [PMID: 27410923]
[12]
Weber J, Gibney G, Kudchadkar R, et al. Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol Res 2016; 4(4): 345-53.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0193] [PMID: 26873574]
[13]
Langer CJ, Gadgeel SM, Borghaei H, et al. KEYNOTE-021 investigators. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016; 17(11): 1497-508.
[http://dx.doi.org/10.1016/S1470-2045(16)30498-3] [PMID: 27745820]
[14]
Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer 2021; 20(1): 41.
[http://dx.doi.org/10.1186/s12943-021-01335-5] [PMID: 33632261]
[15]
Zhao Y, Baldin AV, Isayev O, Werner J, Zamyatnin AA Jr, Bazhin AV. Cancer vaccines: Antigen selection strategy. Vaccines (Basel) 2021; 9(2): 85.
[http://dx.doi.org/10.3390/vaccines9020085] [PMID: 33503926]
[16]
Buonaguro L, Tagliamonte M. Selecting target antigens for cancer vaccine development. Vaccines (Basel) 2020; 8(4): 615.
[http://dx.doi.org/10.3390/vaccines8040615] [PMID: 33080888]
[17]
Lokhov PG, Balashova EE. Antigenic essence: Upgrade of cellular cancer vaccines. Cancers (Basel) 2021; 13(4): 774.
[http://dx.doi.org/10.3390/cancers13040774] [PMID: 33673325]
[18]
van den Berg JH, Heemskerk B, van Rooij N, et al. Tumor Infiltrating Lymphocytes (TIL) therapy in metastatic melanoma: Boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer 2020; 8(2): e000848.
[http://dx.doi.org/10.1136/jitc-2020-000848] [PMID: 32753545]
[19]
Le DT, Pardoll DM, Jaffee EM. Cellular vaccine approaches. Cancer J 2010; 16(4): 304-10.
[http://dx.doi.org/10.1097/PPO.0b013e3181eb33d7] [PMID: 20693840]
[20]
Hopkins AC, Yarchoan M, Durham JN, et al. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 2018; 3(13): e122092.
[http://dx.doi.org/10.1172/jci.insight.122092] [PMID: 29997287]
[21]
Rocconi RP, Stevens EE, Bottsford-Miller JN, et al. A phase I combination study of vigil and atezolizumab in recurrent/refractory advanced-stage ovarian cancer: Efficacy assessment in BRCA1/2-wt patients. J Clin Oncol 2020; 38: 3002.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.3002]
[22]
Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 2011; 19(3): 620-6.
[http://dx.doi.org/10.1038/mt.2010.272] [PMID: 21157437]
[23]
Sur D, Havasi A, Cainap C, et al. Chimeric antigen receptor T-cell therapy for colorectal cancer. J Clin Med 2020; 9(1): 182.
[http://dx.doi.org/10.3390/jcm9010182] [PMID: 31936611]
[24]
Yang A, Farmer E, Lin J, Wu TC, Hung CF. The current state of therapeutic and T cell-based vaccines against human papillomaviruses. Virus Res 2017; 231: 148-65.
[http://dx.doi.org/10.1016/j.virusres.2016.12.002] [PMID: 27932207]
[25]
Rumfield CS, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic vaccines for HPV-associated malignancies. ImmunoTargets Ther 2020; 9: 167-200.
[http://dx.doi.org/10.2147/ITT.S273327] [PMID: 33117742]
[26]
Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017; 547(7662): 217-21.
[http://dx.doi.org/10.1038/nature22991] [PMID: 28678778]
[27]
Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017; 547(7662): 222-6.
[http://dx.doi.org/10.1038/nature23003] [PMID: 28678784]
[28]
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol 2021; 18(4): 215-29.
[http://dx.doi.org/10.1038/s41571-020-00460-2] [PMID: 33473220]
[29]
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol 2020; 20(11): 651-68.
[http://dx.doi.org/10.1038/s41577-020-0306-5] [PMID: 32433532]
[30]
Stephens AJ, Burgess-Brown NA, Jiang S. Beyond just peptide antigens: The complex world of peptide-based cancer vaccines. Front Immunol 2021; 12: 696791.
[http://dx.doi.org/10.3389/fimmu.2021.696791] [PMID: 34276688]
[31]
Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci 2021; 267: 118919.
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[32]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[33]
Chiang CL, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: Where are we? Vaccines (Basel) 2015; 3(2): 344-72.
[http://dx.doi.org/10.3390/vaccines3020344] [PMID: 26343191]
[34]
Aerts JGJV, de Goeje PL, Cornelissen R, et al. Autologous dendritic cells pulsed with allogeneic tumor cell lysate in mesothelioma: From mouse to human. Clin Cancer Res 2018; 24(4): 766-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2522] [PMID: 29233904]
[35]
Haen SP, Löffler MW, Rammensee HG, Brossart P. Towards new horizons: Characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 2020; 17(10): 595-610.
[http://dx.doi.org/10.1038/s41571-020-0387-x] [PMID: 32572208]
[36]
Yarchoan M, Johnson BA III, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017; 17(4): 209-22.
[http://dx.doi.org/10.1038/nrc.2016.154] [PMID: 28233802]
[37]
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019; 4: 7.
[http://dx.doi.org/10.1038/s41541-019-0103-y] [PMID: 30774998]
[38]
Schooten E, Di Maggio A, en, Henegouwen PM. Kijanka MM. MAGE-A antigens as targets for cancer immunotherapy. Cancer Treat Rev 2018; 67: 54-62.
[http://dx.doi.org/10.1016/j.ctrv.2018.04.009] [PMID: 29763778]
[39]
Fratta E, Coral S, Covre A, et al. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol Oncol 2011; 5(2): 164-82.
[http://dx.doi.org/10.1016/j.molonc.2011.02.001] [PMID: 21376678]
[40]
Dillon PM, Brenin CM, Slingluff CL Jr. Evaluating nelipepimut-s in the treatment of breast cancer: A short report on the emerging data. Breast Cancer (Dove Med Press) 2020; 12: 69-75.
[http://dx.doi.org/10.2147/BCTT.S224758] [PMID: 32308474]
[41]
Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev 2018; 32(19-20): 1267-84.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[42]
Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too? Expert Opin Biol Ther 2016; 16(5): 655-74.
[http://dx.doi.org/10.1517/14712598.2016.1152256] [PMID: 26855028]
[43]
Qian Y, Feng L, Wu W, et al. MicroRNA expression profiling of pancreatic cancer cell line L3.6p1 following B7-H4 knockdown. Cell Physiol Biochem 2017; 44(2): 494-504.
[http://dx.doi.org/10.1159/000485086] [PMID: 29145206]
[44]
Chen X, Tao L, Yuan C, Xiu D. The prognostic value of B7-H4 in pancreatic cancer: Systematic review and meta-analysis. Medicine (Baltimore) 2018; 97(12): e0088.
[http://dx.doi.org/10.1097/MD.0000000000010088] [PMID: 29561406]
[45]
Cohen IJ, Blasberg R. Impact of the tumor microenvironment on tumor-infiltrating lymphocytes: Focus on breast cancer. Breast Cancer (Auckl) 2017; 11: 1178223417731565.
[http://dx.doi.org/10.1177/1178223417731565] [PMID: 28979132]
[46]
Fuchs TL, Sioson L, Sheen A, et al. Assessment of tumor-infiltrating lymphocytes using International TILs Working Group (ITWG) system is a strong predictor of overall survival in colorectal carcinoma: A study of 1034 patients. Am J Surg Pathol 2020; 44(4): 536-44.
[http://dx.doi.org/10.1097/PAS.0000000000001409] [PMID: 31743129]
[47]
Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91(3): 1071-121.
[http://dx.doi.org/10.1152/physrev.00038.2010] [PMID: 21742796]
[48]
Wang W, Zou R, Qiu Y, et al. Interaction networks converging on immunosuppressive roles of granzyme B: Special niches within the tumor microenvironment. Front Immunol 2021; 12: 670324.
[http://dx.doi.org/10.3389/fimmu.2021.670324] [PMID: 33868318]
[49]
Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: Naive to memory and everything in between. Adv Physiol Educ 2013; 37(4): 273-83.
[http://dx.doi.org/10.1152/advan.00066.2013] [PMID: 24292902]
[50]
Weigelin B, den Boer AT, Wagena E, et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat Commun 2021; 12(1): 5217.
[http://dx.doi.org/10.1038/s41467-021-25282-3] [PMID: 34471116]
[51]
Embgenbroich M, Burgdorf S. Current concepts of antigen cross-presentation. Front Immunol 2018; 9: 1643.
[http://dx.doi.org/10.3389/fimmu.2018.01643] [PMID: 30061897]
[52]
Bretscher PA. The history of the two-signal model of lymphocyte activation: A personal perspective. Scand J Immunol 2019; 89(6): e12762.
[http://dx.doi.org/10.1111/sji.12762] [PMID: 30825214]
[53]
Ara A, Ahmed KA, Xiang J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. ImmunoTargets Ther 2018; 7: 55-61.
[http://dx.doi.org/10.2147/ITT.S163614] [PMID: 29988701]
[54]
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13(4): 227-42.
[http://dx.doi.org/10.1038/nri3405] [PMID: 23470321]
[55]
Beier KC, Kallinich T, Hamelmann E. Master switches of T-cell activation and differentiation. Eur Respir J 2007; 29(4): 804-12.
[http://dx.doi.org/10.1183/09031936.00094506] [PMID: 17400879]
[56]
Fu C, Jiang A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol 2018; 9: 3059.
[http://dx.doi.org/10.3389/fimmu.2018.03059] [PMID: 30619378]
[57]
Brzostek J, Gascoigne NR, Rybakin V. Cell type-specific regulation of immunological synapse dynamics by B7 ligand recognition. Front Immunol 2016; 7: 24.
[http://dx.doi.org/10.3389/fimmu.2016.00024] [PMID: 26870040]
[58]
Carrabba MG, Castelli C, Maeurer MJ, et al. Suboptimal activation of CD8(+) T cells by melanoma-derived altered peptide ligands: Role of Melan-A/MART-1 optimized analogues. Cancer Res 2003; 63(7): 1560-7.
[PMID: 12670905]
[59]
Hawse WF, De S, Greenwood AI, et al. TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility. J Immunol 2014; 192(6): 2885-91.
[http://dx.doi.org/10.4049/jimmunol.1302953] [PMID: 24523505]
[60]
Madura F, Rizkallah PJ, Holland CJ, et al. Structural basis for ineffective T-cell responses to MHC anchor residue-improved “heteroclitic” peptides. Eur J Immunol 2015; 45(2): 584-91.
[http://dx.doi.org/10.1002/eji.201445114] [PMID: 25471691]
[61]
Szeto C, Lobos CA, Nguyen AT, Gras S. TCR recognition of peptide-MHC-I: Rule makers and breakers. Int J Mol Sci 2020; 22(1): 68.
[http://dx.doi.org/10.3390/ijms22010068] [PMID: 33374673]
[62]
Geynisman DM, Zha Y, Kunnavakkam R, et al. A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma. J Immunother Cancer 2013; 1: 8.
[http://dx.doi.org/10.1186/2051-1426-1-8] [PMID: 24829746]
[63]
Capasso C, Magarkar A, Cervera-Carrascon V, et al. A novel in silico framework to improve MHC-I epitopes and break the tolerance to melanoma. OncoImmunology 2017; 6(9): e1319028.
[http://dx.doi.org/10.1080/2162402X.2017.1319028] [PMID: 28932628]
[64]
Tran E, Ahmadzadeh M, Lu YC, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 2015; 350(6266): 1387-90.
[http://dx.doi.org/10.1126/science.aad1253] [PMID: 26516200]
[65]
Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature 2013; 500(7463): 415-21.
[http://dx.doi.org/10.1038/nature12477] [PMID: 23945592]
[66]
Finn OJ, Beatty PL. Cancer immunoprevention. Curr Opin Immunol 2016; 39: 52-8.
[http://dx.doi.org/10.1016/j.coi.2016.01.002] [PMID: 26799207]
[67]
Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol 2020; 11: 924.
[http://dx.doi.org/10.3389/fimmu.2020.00924] [PMID: 32508825]
[68]
Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: An emerging tumor immunotherapy. Mol Cancer 2019; 18(1): 128.
[http://dx.doi.org/10.1186/s12943-019-1055-6] [PMID: 31443694]
[69]
Ye Z, Qian Q, Jin H, Qian Q. Cancer vaccine: Learning lessons from immune checkpoint inhibitors. J Cancer 2018; 9(2): 263-8.
[http://dx.doi.org/10.7150/jca.20059] [PMID: 29344272]
[70]
Ueno H, Schmitt N, Klechevsky E, et al. Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010; 234(1): 199-212.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00884.x] [PMID: 20193020]
[71]
Alcaide EG, Krishnarajah S, Junker F. Dendritic cell tumor vaccination via Fc gamma receptor targeting: Lessons learned from pre-clinical and translational studies. Vaccines (Basel) 2021; 9(4): 409.
[http://dx.doi.org/10.3390/vaccines9040409] [PMID: 33924183]
[72]
Castenmiller C, Keumatio-Doungtsop BC, van Ree R, de Jong EC, van Kooyk Y. Tolerogenic immunotherapy: Targeting DC surface receptors to induce antigen-specific tolerance. Front Immunol 2021; 12: 643240.
[http://dx.doi.org/10.3389/fimmu.2021.643240] [PMID: 33679806]
[73]
El Shikh ME, Pitzalis C. Follicular dendritic cells in health and disease. Front Immunol 2012; 3: 292.
[http://dx.doi.org/10.3389/fimmu.2012.00292] [PMID: 23049531]
[74]
Dowling JK, Mansell A. Toll-like receptors: The swiss army knife of immunity and vaccine development. Clin Transl Immunology 2016; 5(5): e85.
[http://dx.doi.org/10.1038/cti.2016.22] [PMID: 27350884]
[75]
Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging roles of DC crosstalk in cancer immunity. Front Immunol 2019; 10: 1014.
[http://dx.doi.org/10.3389/fimmu.2019.01014] [PMID: 31143179]
[76]
Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 2016; 13(3): 143-58.
[http://dx.doi.org/10.1038/nrclinonc.2015.209] [PMID: 26598942]
[77]
Kleponis J, Skelton R, Zheng L. Fueling the engine and releasing the break: Combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol Med 2015; 12(3): 201-8.
[PMID: 26487965]
[78]
Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer vaccines, adjuvants, and delivery systems. Front Immunol 2021; 12: 627932.
[http://dx.doi.org/10.3389/fimmu.2021.627932] [PMID: 33859638]
[79]
Abiko K, Matsumura N, Hamanishi J, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 2015; 112(9): 1501-9.
[http://dx.doi.org/10.1038/bjc.2015.101] [PMID: 25867264]
[80]
Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 2010; 33(8): 828-33.
[http://dx.doi.org/10.1097/CJI.0b013e3181eec14c] [PMID: 20842054]
[81]
Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: Multimodal approaches to improve efficacy and patient response rates. J Oncol 2019; 2019: 4508794.
[http://dx.doi.org/10.1155/2019/4508794] [PMID: 30941175]
[82]
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res 2020; 10(3): 727-42.
[PMID: 32266087]
[83]
Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat Rev Clin Oncol 2014; 11(9): 509-24.
[http://dx.doi.org/10.1038/nrclinonc.2014.111] [PMID: 25001465]
[84]
Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[85]
Massarelli E, William W, Johnson F, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: A phase 2 clinical trial. JAMA Oncol 2019; 5(1): 67-73.
[http://dx.doi.org/10.1001/jamaoncol.2018.4051] [PMID: 30267032]
[86]
Linch SN, Kasiewicz MJ, McNamara MJ, Hilgart-Martiszus IF, Farhad M, Redmond WL. Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice. Proc Natl Acad Sci USA 2016; 113(3): E319-27.
[http://dx.doi.org/10.1073/pnas.1510518113] [PMID: 26729864]
[87]
Igarashi Y, Sasada T. Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. J Immunol Res 2020; 2020: 5825401.
[http://dx.doi.org/10.1155/2020/5825401] [PMID: 33282961]
[88]
Vermaelen K. Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunol 2019; 10: 8.
[http://dx.doi.org/10.3389/fimmu.2019.00008] [PMID: 30723469]
[89]
Aurisicchio L, Ciliberto G. Patented cancer vaccines: The promising leads. Expert Opin Ther Pat 2010; 20(5): 647-60.
[http://dx.doi.org/10.1517/13543771003720483]
[90]
AGIRx Limited. Anticancer vaccine compositions comprising allogenic tumor cells modified with hyper-cytokines, particularly for the treatment of melanoma. WO2009095261, 2009.
[91]
Caprion Pharmaceutical Inc. Lung cancer-associated tumor antigen TAT-039, and methods of assessing and treating cancer. WO2007089659, 2007.
[92]
Sood A. Anti-PDEF (prostate-derived Ets factor) antibodies for diagnosing and treating cancer, as well as PDEF-comprising tumor vaccines. US20090202595, 2009.
[93]
The Trustees of the University of Pennsylvania. Sequences for simian adenoviruses of subfamily C, SAdV-40, SAdV-31 or SAdV-34, and uses thereof for gene delivery, vaccination and recombinant production. WO2009105084, 2009.
[94]
Aleixo AA, Michelin MA, Murta EF. Dendritic cell vaccine and cancer treatment: New patents. Recent Pat Endocr Metab Immune Drug Discov 2014; 8(1): 26-9.
[http://dx.doi.org/10.2174/1872214807666140107152008] [PMID: 24397783]
[95]
Brink JAT, Van Ham SM, Zwaginga JJ. Maturation of dendritic cells. US20090297541, 2009.
[96]
Barsoum AL, Rohrer S, Segers CC, Coggin KM. Vaccines with oncofetal antigen/iLRP-loaded autologous dendritic cells and uses thereof. US20130052211, 2013.
[97]
Barbuto JAM, Gonzalez RP. Process for obtaining dendritic cell vaccine and immunomodulator or product employing these dendritic cells. PI0504559-2A, 2007.
[98]
Tjoa BA, Bosch ML. Generation of dendritic cells from monocytic dendritic precursor cells with GM-CSF in the absence of additional cytokines. US20130273654, 2013.
[99]
Quintella CM, Quintella HM, Rohweder M, Quintella GM. Advances in patent applications related to cancer vaccine using CpG-ODN and OX40 association. Expert Opin Ther Pat 2020; 30(4): 287-301.
[http://dx.doi.org/10.1080/13543776.2020.1724960]
[100]
Schlom J, Hodge JW, Palena C, et al. Therapeutic cancer vaccines. Adv Cancer Res 2014; 121: 67-124.
[http://dx.doi.org/10.1016/B978-0-12-800249-0.00002-0] [PMID: 24889529]
[101]
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother 2014; 10(11): 3332-46.
[http://dx.doi.org/10.4161/21645515.2014.973317] [PMID: 25483639]
[102]
Zhou F, Shang W, Yu X, Tian J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2018; 38(2): 741-67.
[http://dx.doi.org/10.1002/med.21455] [PMID: 28621802]
[103]
Baxevanis CN. Outlining novel scenarios for improved therapeutic cancer vaccines: The PANVAC paradigm. Expert Rev Vaccines 2012; 11(3): 275-7.
[http://dx.doi.org/10.1586/erv.11.193] [PMID: 22380820]
[104]
Hailemichael Y, Dai Z, Jaffarzad N, et al. Persistent antigen at vaccination sites induces tumor-specific CD8⁺ T cell sequestration, dysfunction and deletion. Nat Med 2013; 19(4): 465-72.
[http://dx.doi.org/10.1038/nm.3105] [PMID: 23455713]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy