Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Oxytocin Release: A Remedy for Cerebral Inflammaging

Author(s): Benjamin Buemann*

Volume 15, Issue 3, 2022

Published on: 25 May, 2022

Page: [218 - 228] Pages: 11

DOI: 10.2174/1874609815666220414104832

Price: $65

Abstract

Oxytocin facilitates reproduction both by physiological and behavioral mechanisms. Oxytocinergic neurons emerging from the hypothalamus release oxytocin from the pituitary gland to the blood by axonal discharge to regulate reproductive organs. However, at the same time, oxytocin is secreted into neighboring areas of the hypothalamus from the dendrites of these neurons. Here, the peptide acts by autocrine and paracrine mechanisms to influence other neuroendocrine systems. Furthermore, oxytocinergic neurons project to many different locations in the brain, where they affect sensory processing, affective functions, and reward. Additional to its regulatory role, significant anti-inflammatory and restoring effects of oxytocin have been reported from many invivo and in-vitro studies. The pervasive property of the oxytocin system may enable it generally to dampen stress reactions both peripherally and centrally, and protect neurons and supportive cells from inadequate inflammation and malfunctioning. Animal experiments have documented the importance of preserving immune- and stem cell functions in the hypothalamus to impede age-related destructive processes of the body. Sexual reward has a profound stimulating impact on the oxytocinergic activity, and the present article therefore presents the hypothesis that frequent sexual activity and gratigying social experiance may postpone the onset of frailty and age-associated diseases by neural protection from the bursts of oxytocin. Furthermore, suggestions are given how the neuroplastic properties of oxytocin may be utilized to enhance sexual reward by learning processes in order to further reinforce the release of this peptide.

Keywords: Glia, hypothalamus, inflammation, learning, neuroplasticity, oxytocin, reward, sexual.

Graphical Abstract

[1]
Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care 2013; 16(1): 14-20.
[http://dx.doi.org/10.1097/MCO.0b013e32835ada13] [PMID: 23132168]
[2]
Angelova DM, Brown DR. Microglia and the aging brain: Are senescent microglia the key to neurodegeneration? J Neurochem 2019; 151(6): 676-88.
[http://dx.doi.org/10.1111/jnc.14860] [PMID: 31478208]
[3]
Perry VH, Teeling J. Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic in-flammation to chronic neurodegeneration. Semin Immunopathol 2013; 35(5): 601-12.
[http://dx.doi.org/10.1007/s00281-013-0382-8] [PMID: 23732506]
[4]
Santos LE, Beckman D, Ferreira ST. Microglial dysfunction connects depression and Alzheimer’s disease. Brain Behav Immun 2016; 55: 151-65.
[http://dx.doi.org/10.1016/j.bbi.2015.11.011] [PMID: 26612494]
[5]
Chesnokova V, Pechnick RN, Wawrowsky K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 2016; 58: 1-8.
[http://dx.doi.org/10.1016/j.bbi.2016.01.017] [PMID: 26802985]
[6]
Patterson SL. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia.IL-1β, BDNF and synaptic plasticity. Neuropharmacology 2015; 96(Pt A): 11-8.
[7]
Niraula A, Sheridan JF, Godbout JP. Microglia priming with aging and stress. Neuropsychopharmacology 2017; 42(1): 318-33.
[http://dx.doi.org/10.1038/npp.2016.185] [PMID: 27604565]
[8]
Lupien SJ, de Leon M, de Santi S, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998; 1(1): 69-73.
[http://dx.doi.org/10.1038/271] [PMID: 10195112]
[9]
Kritas SK, Saggini A, Cerulli G, et al. Corticotropin-releasing hormone, microglia and mental disorders. Int J Immunopathol Pharmacol 2014; 27(2): 163-7.
[http://dx.doi.org/10.1177/039463201402700203] [PMID: 25004828]
[10]
Frank MG, Thompson BM, Watkins LR, Maier SF. Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory re-sponses. Brain Behav Immun 2012; 26(2): 337-45.
[http://dx.doi.org/10.1016/j.bbi.2011.10.005] [PMID: 22041296]
[11]
Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 2017; 548(7665): 52-7.
[http://dx.doi.org/10.1038/nature23282] [PMID: 28746310]
[12]
Zhang G, Li J, Purkayastha S, et al. Hypothalamic programming of systemic ageing involving IKK-β NF-κB and GnRH. Nature 2013; 497(7448): 211-6.
[http://dx.doi.org/10.1038/nature12143] [PMID: 23636330]
[13]
Tang Y, Purkayastha S, Cai D. Hypothalamic microinflammation: A common basis of metabolic syndrome and aging. Trends Neurosci 2015; 38(1): 36-44.
[http://dx.doi.org/10.1016/j.tins.2014.10.002] [PMID: 25458920]
[14]
Cruz JC, Flôr AF, França-Silva MS, Balarini CM, Braga VA. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome. Front Physiol 2015; 6(6): 384.
[http://dx.doi.org/10.3389/fphys.2015.00384] [PMID: 26779026]
[15]
Blanks AM, Thornton S. The role of oxytocin in parturition. BJOG 2003; 110(Suppl. 20): 46-51.
[http://dx.doi.org/10.1016/S1470-0328(03)00024-7] [PMID: 12763111]
[16]
Crowley WR. Neuroendocrine regulation of lactation and milk production. Compr Physiol 2015; 5(1): 255-91.
[PMID: 25589271]
[17]
Gupta J, Russell R, Wayman C, Hurley D, Jackson V. Oxytocin-induced contractions within rat and rabbit ejaculatory tissues are mediated by vasopressin V1A receptors and not oxytocin receptors. Br J Pharmacol 2008; 155(1): 118-26.
[http://dx.doi.org/10.1038/bjp.2008.226] [PMID: 18552879]
[18]
Wakerley JB, Lincoln DW. The milk-ejection reflex of the rat: A 20- to 40-fold acceleration in the firing of paraventricular neurones dur-ing oxytocin release. J Endocrinol 1973; 57(3): 477-93.
[http://dx.doi.org/10.1677/joe.0.0570477] [PMID: 4577217]
[19]
Jurek B, Neumann ID. The oxytocin receptor: From intracellular signaling to behavior. Physiol Rev 2018; 98(3): 1805-908.
[http://dx.doi.org/10.1152/physrev.00031.2017] [PMID: 29897293]
[20]
Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, Rodríguez-Jiménez J, López Hidalgo M, Freund-Mercier MJ. Paraventricular hy-pothalamic influences on spinal nociceptive processing. Brain Res 2006; 1081(1): 126-37.
[http://dx.doi.org/10.1016/j.brainres.2006.01.050] [PMID: 16497280]
[21]
Oti T, Satoh K, Uta D, et al. Oxytocin influences male sexual activity via non-synaptic axonal release in the spinal cord. Curr Biol 2021; 31(1): 103-114.e..
[http://dx.doi.org/10.1016/j.cub.2020.09.089]
[22]
Garrison JL, Macosko EZ, Bernstein S, Pokala N, Albrecht DR, Bargmann CI. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 2012; 338(6106): 540-3.
[http://dx.doi.org/10.1126/science.1226201] [PMID: 23112335]
[23]
Inoue T, Yamakage H, Tanaka M, Kusakabe T, Shimatsu A, Satoh-Asahara N. Oxytocin suppresses inflammatory responses induced by lipopolysaccharide through inhibition of the eIF-2-ATF4 pathway in mouse microglia. Cells 2019; 8(6): 527.
[http://dx.doi.org/10.3390/cells8060527] [PMID: 31159306]
[24]
Hung LW, Neuner S, Polepalli JS, et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 2017; 357(6358): 1406-11.
[http://dx.doi.org/10.1126/science.aan4994] [PMID: 28963257]
[25]
van den Burg EH, Hegoburu C. Modulation of expression of fear by oxytocin signaling in the central amygdala: From reduction of fear to regulation of defensive behavior style. Neuropharmacology 2020; 173: 108130.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108130] [PMID: 32389750]
[26]
Peters JH, McDougall SJ, Kellett DO, Jordan D, Llewellyn-Smith IJ, Andresen MC. Oxytocin enhances cranial visceral afferent synaptic transmission to the solitary tract nucleus. J Neurosci 2008; 28(45): 11731-40.
[http://dx.doi.org/10.1523/JNEUROSCI.3419-08.2008] [PMID: 18987209]
[27]
Ong ZY, Alhadeff AL, Grill HJ. Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: The role of gastroin-testinal satiation signal processing. Am J Physiol Regul Integr Comp Physiol 2015; 308(9): R800-6.
[http://dx.doi.org/10.1152/ajpregu.00534.2014] [PMID: 25740340]
[28]
Komisaruk BR, Sansone G. Neural pathways mediating vaginal function: The vagus nerves and spinal cord oxytocin. Scand J Psychol 2003; 44(3): 241-50.
[http://dx.doi.org/10.1111/1467-9450.00341] [PMID: 12914587]
[29]
Higa KT, Mori E, Viana FF, Morris M, Michelini LC. Baroreflex control of heart rate by oxytocin in the solitary-vagal complex. Am J Physiol Regul Integr Comp Physiol 2002; 282(2): R537-45.
[http://dx.doi.org/10.1152/ajpregu.00806.2000] [PMID: 11792664]
[30]
Mack SO, Kc P, Wu M, Coleman BR, Tolentino-Silva FP, Haxhiu MA. Paraventricular oxytocin neurons are involved in neural modulation of breathing. J Appl Physiol 2002; 92(2): 826-34.
[http://dx.doi.org/10.1152/japplphysiol.00839.2001] [PMID: 11796698]
[31]
Sabihi S, Dong SM, Maurer SD, Post C, Leuner B. Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology 2017; 125: 1-12.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.024] [PMID: 28655609]
[32]
Maejima Y, Yokota S, Nishimori K, Shimomura K. The Anorexigenic neural pathways of oxytocin and their clinical implication. Neuroendocrinology 2018; 107(1): 91-104.
[http://dx.doi.org/10.1159/000489263] [PMID: 29660735]
[33]
Moslemi M, Motamedi F, Asadi S, Khodagholi F. Peroxisomal malfunction caused by mitochondrial toxin 3-NP: Protective role of oxyto-cin. Iran J Pharm Res 2019; 18(1): 296-307.
[PMID: 31089364]
[34]
Costa DM, Cruz-Filho JD, Vasconcelos ABS, et al. Oxytocin induces anti-catabolic and anabolic effects on protein metabolism in the fe-male rat oxidative skeletal muscle. Life Sci 2021; 279: 119665.
[http://dx.doi.org/10.1016/j.lfs.2021.119665] [PMID: 34087281]
[35]
Alizadeh AM, Faghihi M, Khori V, et al. Oxytocin protects cardiomyocytes from apoptosis induced by ischemia-reperfusion in rat heart: Role of mitochondrial ATP-dependent potassium channel and permeability transition pore. Peptides 2012; 36(1): 71-7.
[http://dx.doi.org/10.1016/j.peptides.2012.03.023] [PMID: 22504012]
[36]
Haanwinckel MA, Elias LK, Favaretto AL, Gutkowska J, McCann SM, Antunes-Rodrigues J. Oxytocin mediates atrial natriuretic peptide release and natriuresis after volume expansion in the rat. Proc Natl Acad Sci USA 1995; 92(17): 7902-6.
[http://dx.doi.org/10.1073/pnas.92.17.7902] [PMID: 7644511]
[37]
Welch MG, Margolis KG, Li Z, Gershon MD. Oxytocin regulates gastrointestinal motility, inflammation, macromolecular permeability, and mucosal maintenance in mice. Am J Physiol Gastrointest Liver Physiol 2014; 307(8): G848-62.
[38]
Herderick EE, Gonzales JA, Schneiderman N, McCabe PM. Oxytocin administration attenuates atherosclerosis and inflammation in Watanabe Heritable Hyperlipidemic rabbits. Psychoneuroendocrinology 2013; 38(5): 685-93.
[PMID: 22998949]
[39]
Kobayashi H, Yasuda S, Bao N, et al. Postinfarct treatment with oxytocin improves cardiac function and remodeling via activating cell-survival signals and angiogenesis. J Cardiovasc Pharmacol 2009; 54(6): 510-9.
[http://dx.doi.org/10.1097/FJC.0b013e3181bfac02] [PMID: 19755919]
[40]
Garrido-Urbani S, Deblon N, Poher AL, et al. Inhibitory role of oxytocin on TNFα expression assessed in vitro and in vivo. Diabetes Metab 2018; 44(3): 292-5.
[http://dx.doi.org/10.1016/j.diabet.2017.10.004] [PMID: 29129540]
[41]
Chatterjee O, Patil K, Sahu A, et al. An overview of the oxytocin-oxytocin receptor signaling network. J Cell Commun Signal 2016; 10(4): 355-60.
[http://dx.doi.org/10.1007/s12079-016-0353-7] [PMID: 27624619]
[42]
Busnelli M, Chini B. Molecular basis of oxytocin receptor signalling in the brain: What we know and what we need to know. Curr Top Behav Neurosci 2018; 35: 3-29.
[http://dx.doi.org/10.1007/7854_2017_6] [PMID: 28812263]
[43]
Gonzalez-Reyes A, Menaouar A, Yip D, et al. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simu-lated ischemia-reperfusion. Mol Cell Endocrinol 2015; 412: 170-81.
[http://dx.doi.org/10.1016/j.mce.2015.04.028] [PMID: 25963797]
[44]
Lee ES, Uhm KO, Lee YM, Kwon J, Park SH, Soo KH. Oxytocin stimulates glucose uptake in skeletal muscle cells through the calcium-CaMKK-AMPK pathway. Regul Pept 2008; 151(1-3): 71-4.
[http://dx.doi.org/10.1016/j.regpep.2008.05.001] [PMID: 18555543]
[45]
Florian M, Jankowski M, Gutkowska J. Oxytocin increases glucose uptake in neonatal rat cardiomyocytes. Endocrinology 2010; 151(2): 482-91.
[http://dx.doi.org/10.1210/en.2009-0624] [PMID: 20008042]
[46]
Klein BY, Tamir H, Hirschberg DL, Glickstein SB, Welch MG. Oxytocin modulates mTORC1 pathway in the gut. Biochem Biophys Res Commun 2013; 432(3): 466-71.
[http://dx.doi.org/10.1016/j.bbrc.2013.01.121] [PMID: 23410756]
[47]
Li Y, Chen Y. AMPK and Autophagy. Adv Exp Med Biol 2019; 1206: 85-108.
[http://dx.doi.org/10.1007/978-981-15-0602-4_4] [PMID: 31776981]
[48]
Luo D, Jin B, Zhai X, et al. Oxytocin promotes hepatic regeneration in elderly mice. iScience 2021; 24(2): 102125.
[http://dx.doi.org/10.1016/j.isci.2021.102125] [PMID: 33659883]
[49]
Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dys-function and impairment of autophagy. Neurobiol Dis 2015; 84: 39-49.
[http://dx.doi.org/10.1016/j.nbd.2015.03.014] [PMID: 25796566]
[50]
Polshekan M, Khori V, Alizadeh AM, et al. The SAFE pathway is involved in the postconditioning mechanism of oxytocin in isolated rat heart. Peptides 2019; 111: 142-51.
[http://dx.doi.org/10.1016/j.peptides.2018.04.002] [PMID: 29635063]
[51]
Ge B, Liu H, Liang Q, Shang L, Wang T, Ge S. Oxytocin facilitates the proliferation, migration and osteogenic differentiation of human periodontal stem cells in vitro. Arch Oral Biol 2019; 99: 126-33.
[http://dx.doi.org/10.1016/j.archoralbio.2019.01.007] [PMID: 30682715]
[52]
Noiseux N, Borie M, Desnoyers A, et al. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology 2012; 153(11): 5361-72.
[http://dx.doi.org/10.1210/en.2012-1402] [PMID: 23024264]
[53]
Cho SY, Kim AY, Kim J, Choi DH, Son ED, Shin DW. Oxytocin alleviates cellular senescence through oxytocin receptor-mediated extra-cellular signal-regulated kinase/Nrf2 signalling. Br J Dermatol 2019; 181(6): 1216-25.
[http://dx.doi.org/10.1111/bjd.17824] [PMID: 30801661]
[54]
Elabd C, Cousin W, Upadhyayula P, et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 2014; 5(1): 4082.
[http://dx.doi.org/10.1038/ncomms5082] [PMID: 24915299]
[55]
Al-Saqi SH, Uvnäs-Moberg K, Jonasson AF. Intravaginally applied oxytocin improves post-menopausal vaginal atrophy. Post Reprod Health 2015; 21(3): 88-97.
[http://dx.doi.org/10.1177/2053369115577328] [PMID: 25995333]
[56]
Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 2004; 279(12): 11384-91.
[http://dx.doi.org/10.1074/jbc.M310822200] [PMID: 14702342]
[57]
Elabd C, Basillais A, Beaupied H, et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 2008; 26(9): 2399-407.
[http://dx.doi.org/10.1634/stemcells.2008-0127] [PMID: 18583541]
[58]
Chen D, Zhao J, Wang H, et al. Oxytocin evokes a pulsatile PGE2 release from ileum mucosa and is required for repair of intestinal epi-thelium after injury. Sci Rep 2015; 5(1): 11731.
[http://dx.doi.org/10.1038/srep11731] [PMID: 26159321]
[59]
Xu P-F, Fang M-J, Jin Y-Z, Wang L-S, Lin D-S. Effect of oxytocin on the survival of random skin flaps. Oncotarget 2017; 8(54): 92955-65.
[http://dx.doi.org/10.18632/oncotarget.21696] [PMID: 29190969]
[60]
Kim YS, Ahn Y, Kwon JS, et al. Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury. Cells Tissues Organs 2012; 195(5): 428-42.
[http://dx.doi.org/10.1159/000329234] [PMID: 21893931]
[61]
Buemann B, Marazziti D, Uvnäs-Moberg K. Can intravenous oxytocin infusion counteract hyperinflammation in COVID-19 infected pa-tients? World J Biol Psychiatry 2020; 1-12.
[PMID: 32914674]
[62]
Clodi M, Vila G, Geyeregger R, et al. Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am J Physiol Endocrinol Metab 2008; 295(3): E686-91.
[http://dx.doi.org/10.1152/ajpendo.90263.2008] [PMID: 18593851]
[63]
Tang Y, Shi Y, Gao Y, et al. Oxytocin system alleviates intestinal inflammation by regulating macrophages polarization in experimental colitis. Clin Sci (Lond) 2019; 133(18): 1977-92.
[http://dx.doi.org/10.1042/CS20190756] [PMID: 31519790]
[64]
Yuan L, Liu S, Bai X, et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activa-tion in lipopolysaccharide-treated mice. J Neuroinflammation 2016; 13(1): 77.
[http://dx.doi.org/10.1186/s12974-016-0541-7] [PMID: 27075756]
[65]
Kokaia Z, Martino G, Schwartz M, Lindvall O. Cross-talk between neural stem cells and immune cells: The key to better brain repair? Nat Neurosci 2012; 15(8): 1078-87.
[http://dx.doi.org/10.1038/nn.3163] [PMID: 22837038]
[66]
Nomura M, Saito J, Ueta Y, Muglia LJ, Pfaff DW, Ogawa S. Enhanced up-regulation of corticotropin-releasing hormone gene expression in response to restraint stress in the hypothalamic paraventricular nucleus of oxytocin gene-deficient male mice. J Neuroendocrinol 2003; 15(11): 1054-61.
[http://dx.doi.org/10.1046/j.1365-2826.2003.01095.x] [PMID: 14622435]
[67]
Dabrowska J, Hazra R, Ahern TH, et al. Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology 2011; 36(9): 1312-26.
[http://dx.doi.org/10.1016/j.psyneuen.2011.03.003] [PMID: 21481539]
[68]
Cohen H, Kaplan Z, Kozlovsky N, Gidron Y, Matar MA, Zohar J. Hippocampal microinfusion of oxytocin attenuates the behavioural response to stress by means of dynamic interplay with the glucocorticoid-catecholamine responses. J Neuroendocrinol 2010; 22(8): 889-904.
[PMID: 20403087]
[69]
Windle RJ, Kershaw YM, Shanks N, Wood SA, Lightman SL, Ingram CD. Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J Neurosci 2004; 24(12): 2974-82.
[http://dx.doi.org/10.1523/JNEUROSCI.3432-03.2004] [PMID: 15044536]
[70]
Latt HM, Matsushita H, Morino M, et al. Oxytocin inhibits corticosterone-induced apoptosis in primary hippocampal neurons. Neuroscience 2018; 379: 383-9.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.025] [PMID: 29596965]
[71]
Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci 2010; 3: 1.
[http://dx.doi.org/10.3389/neuro.02.001.2010] [PMID: 20162032]
[72]
Yang JL, Lin YT, Chuang PC, Bohr VA, Mattson MP. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med 2014; 16(1): 161-74.
[http://dx.doi.org/10.1007/s12017-013-8270-x] [PMID: 24114393]
[73]
Dayi A, Cetin F, Sisman AR, et al. The effects of oxytocin on cognitive defect caused by chronic restraint stress applied to adolescent rats and on hippocampal VEGF and BDNF levels. Med Sci Monit 2015; 21: 69-75.
[http://dx.doi.org/10.12659/MSM.893159] [PMID: 25559382]
[74]
Leuner B, Caponiti JM, Gould E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus 2012; 22(4): 861-8.
[http://dx.doi.org/10.1002/hipo.20947] [PMID: 21692136]
[75]
Lee SY, Park SH, Chung C, Kim JJ, Choi SY, Han JS. Oxytocin protects hippocampal memory and plasticity from uncontrollable stress. Sci Rep 2015; 5(1): 18540.
[http://dx.doi.org/10.1038/srep18540] [PMID: 26688325]
[76]
Ludwig M, Stern J. Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 1672; 370(1672): 20140182.
[77]
Son SJ, Filosa JA, Potapenko ES, et al. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preauto-nomic networks. Neuron 2013; 78(6): 1036-49.
[http://dx.doi.org/10.1016/j.neuron.2013.04.025] [PMID: 23791197]
[78]
Veening JG, de Jong T, Barendregt HP. Oxytocin-messages via the cerebrospinal fluid: Behavioral effects; a review. Physiol Behav 2010; 101(2): 193-210.
[http://dx.doi.org/10.1016/j.physbeh.2010.05.004] [PMID: 20493198]
[79]
Ebner N, Månsson K, Lin T, Lussier D. Neuroplasticity and cognitive benefits associated with chronic intranasal oxytocin administration in aging. Alpine Brain Imaging Meeting (ABIM). Champéry, Switzerland January 6-10 2019.
[80]
Blitzer DS, Wells TE, Hawley WR. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats. Horm Behav 2017; 94: 33-9.
[http://dx.doi.org/10.1016/j.yhbeh.2017.06.002] [PMID: 28596135]
[81]
Zimmermann-Peruzatto JM, Lazzari VM, Agnes G, et al. The impact of oxytocin gene knockout on sexual behavior and gene expression related to neuroendocrine systems in the brain of female mice. Cell Mol Neurobiol 2017; 37(5): 803-15.
[http://dx.doi.org/10.1007/s10571-016-0419-3] [PMID: 27558735]
[82]
Caldwell JD, Jirikowski GF, Greer ER, Pedersen CA. Medial preoptic area oxytocin and female sexual receptivity. Behav Neurosci 1989; 103(3): 655-62.
[http://dx.doi.org/10.1037/0735-7044.103.3.655] [PMID: 2660848]
[83]
Gil M, Bhatt R, Picotte KB, Hull EM. Oxytocin in the medial preoptic area facilitates male sexual behavior in the rat. Horm Behav 2011; 59(4): 435-43.
[http://dx.doi.org/10.1016/j.yhbeh.2010.12.012] [PMID: 21195714]
[84]
Calabrò RS, Cacciola A, Bruschetta D, et al. Neuroanatomy and function of human sexual behavior: A neglected or unknown issue? Brain Behav 2019; 9(12): e01389.
[http://dx.doi.org/10.1002/brb3.1389] [PMID: 31568703]
[85]
Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res Brain Res Rev 2007; 56(2): 283-321.
[http://dx.doi.org/10.1016/j.brainresrev.2007.07.014] [PMID: 17905440]
[86]
Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 2017; 95(2): 368-384.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.06.003] [PMID: 28669546]
[87]
Melis MR, Melis T, Cocco C, et al. Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur J Neurosci 2007; 26(4): 1026-35.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05721.x] [PMID: 17672853]
[88]
Succu S, Sanna F, Melis T, Boi A, Argiolas A, Melis MR. Stimulation of dopamine receptors in the paraventricular nucleus of the hypo-thalamus of male rats induces penile erection and increases extra-cellular dopamine in the nucleus accumbens: Involvement of central ox-ytocin. Neuropharmacology 2007; 52(3): 1034-43.
[http://dx.doi.org/10.1016/j.neuropharm.2006.10.019] [PMID: 17164075]
[89]
Rolls ET. The orbitofrontal cortex, food rewrd, a body weight, and obesity. Soc Cogn Affect Neurosci 2021; nsab044.
[http://dx.doi.org/10.1093/scan/nsab044]
[90]
Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron 2015; 86(3): 646-64.
[http://dx.doi.org/10.1016/j.neuron.2015.02.018] [PMID: 25950633]
[91]
Georgiadis JR, Kringelbach ML. The human sexual response cycle: Brain imaging evidence linking sex to other pleasures. Prog Neurobiol 2012; 98(1): 49-81.
[http://dx.doi.org/10.1016/j.pneurobio.2012.05.004] [PMID: 22609047]
[92]
Löken LS, Wessberg J, Morrison I, McGlone F, Olausson H. Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 2009; 12(5): 547-8.
[http://dx.doi.org/10.1038/nn.2312] [PMID: 19363489]
[93]
Chen Y, Becker B, Zhang Y, et al. Oxytocin increases the pleasantness of affective touch and orbitofrontal cortex activity independent of valence. Eur Neuropsychopharmacol 2020; 39: 99-110.
[http://dx.doi.org/10.1016/j.euroneuro.2020.08.003] [PMID: 32861545]
[94]
Scheele D, Kendrick KM, Khouri C, et al. An oxytocin-induced facilitation of neural and emotional responses to social touch correlates inversely with autism traits. Neuropsychopharmacology 2014; 39(9): 2078-85.
[http://dx.doi.org/10.1038/npp.2014.78] [PMID: 24694924]
[95]
Li Q, Becker B, Wernicke J, et al. Foot massage evokes oxytocin release and activation of orbitofrontal cortex and superior temporal sul-cus. Psychoneuroendocrinology 2019; 101: 193-203.
[http://dx.doi.org/10.1016/j.psyneuen.2018.11.016] [PMID: 30469087]
[96]
Okabe S, Yoshida M, Takayanagi Y, Onaka T. Activation of hypothalamic oxytocin neurons following tactile stimuli in rats. Neurosci Lett 2015; 600: 22-7.
[http://dx.doi.org/10.1016/j.neulet.2015.05.055] [PMID: 26033183]
[97]
Tops M, van Peer JM, Korf J, Wijers AA, Tucker DM. Anxiety, cortisol, and attachment predict plasma oxytocin. Psychophysiology 2007; 44(3): 444-9.
[http://dx.doi.org/10.1111/j.1469-8986.2007.00510.x] [PMID: 17371496]
[98]
Murphy MR, Seckl JR, Burton S, Checkley SA, Lightman SL. Changes in oxytocin and vasopressin secretion during sexual activity in men. J Clin Endocrinol Metab 1987; 65(4): 738-41.
[http://dx.doi.org/10.1210/jcem-65-4-738] [PMID: 3654918]
[99]
Althammer F, Grinevich V. Diversity of oxytocin neurons: Beyond magno- and parvocellular cell types? J Neuroendocrinol 2017; 29: e12549.
[PMID: 29024187]
[100]
Carmichael MS, Humbert R, Dixen J, Palmisano G, Greenleaf W, Davidson JM. Plasma oxytocin increases in the human sexual response. J Clin Endocrinol Metab 1987; 64(1): 27-31.
[http://dx.doi.org/10.1210/jcem-64-1-27] [PMID: 3782434]
[101]
Carmichael MS, Warburton VL, Dixen J, Davidson JM. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch Sex Behav 1994; 23(1): 59-79.
[http://dx.doi.org/10.1007/BF01541618] [PMID: 8135652]
[102]
Murphy MR, Checkley SA, Seckl JR, Lightman SL. Naloxone inhibits oxytocin release at orgasm in man. J Clin Endocrinol Metab 1990; 71(4): 1056-8.
[http://dx.doi.org/10.1210/jcem-71-4-1056] [PMID: 2401707]
[103]
Caruso S, Mauro D, Scalia G, Palermo CI, Rapisarda AMC, Cianci A. Oxytocin plasma levels in orgasmic and anorgasmic women. Gynecol Endocrinol 2018; 34(1): 69-72.
[http://dx.doi.org/10.1080/09513590.2017.1336219] [PMID: 28604123]
[104]
Brooks DC, Coon VJS, Ercan CM, et al. Brain aromatase and the regulation of sexual activity in male mice. Endocrinology 2020; 161(10): bqaa137.
[http://dx.doi.org/10.1210/endocr/bqaa137]
[105]
El-Emam Dief A, Caldwell JD, Jirikowski GF. Colocalization of p450 aromatase and oxytocin immunostaining in the rat hypothalamus. Horm Metab Res 2013; 45(4): 273-6.
[PMID: 23225240]
[106]
Gossen A, Hahn A, Westphal L, et al. Oxytocin plasma concentrations after single intranasal oxytocin administration - a study in healthy men. Neuropeptides 2012; 46(5): 211-5.
[http://dx.doi.org/10.1016/j.npep.2012.07.001] [PMID: 22884888]
[107]
Frayne J, Nicholson HD. Effect of oxytocin on testosterone production by isolated rat Leydig cells is mediated via a specific oxytocin receptor. Biol Reprod 1995; 52(6): 1268-73.
[http://dx.doi.org/10.1095/biolreprod52.6.1268] [PMID: 7632835]
[108]
Allan CA, Forbes EA, Strauss BJ, McLachlan RI. Testosterone therapy increases sexual desire in ageing men with low-normal testosterone levels and symptoms of androgen deficiency. Int J Impot Res 2008; 20(4): 396-401.
[http://dx.doi.org/10.1038/ijir.2008.22] [PMID: 18528400]
[109]
Kruger THC, Deiter F, Zhang Y, et al. Effects of intranasal oxytocin administration on sexual functions in healthy women: A laboratory paradigm. J Clin Psychopharmacol 2018; 38(3): 239-42.
[http://dx.doi.org/10.1097/JCP.0000000000000863] [PMID: 29596150]
[110]
Muin DA, Wolzt M, Marculescu R, et al. Effect of long-term intranasal oxytocin on sexual dysfunction in premenopausal and postmeno-pausal women: A randomized trial. Fertil Steril 2015; 104(3): 715-23.e4.
[http://dx.doi.org/10.1016/j.fertnstert.2015.06.010] [PMID: 26151620]
[111]
Behnia B, Heinrichs M, Bergmann W, et al. Differential effects of intranasal oxytocin on sexual experiences and partner interactions in couples. Horm Behav 2014; 65(3): 308-18.
[http://dx.doi.org/10.1016/j.yhbeh.2014.01.009] [PMID: 24503174]
[112]
Striepens N, Kendrick KM, Hanking V, et al. Elevated cerebrospinal fluid and blood concentrations of oxytocin following its intranasal administration in humans. Sci Rep 2013; 3(1): 3440.
[http://dx.doi.org/10.1038/srep03440] [PMID: 24310737]
[113]
Erdozain AM, Peñagarikano O. Oxytocin as treatment for social cognition, not there yet. Front Psychiatry 2020; 10: 930.
[http://dx.doi.org/10.3389/fpsyt.2019.00930] [PMID: 31998152]
[114]
Martins D, Broadmann K, Veronese M, et al. “Less is more”: A dose-response account of intranasal oxytocin pharmacodynamics in the human brain. BioRxiv
[115]
Both S, Laan E, Spiering M, Nilsson T, Oomens S, Everaerd W. Appetitive and aversive classical conditioning of female sexual response. J Sex Med 2008; 5(6): 1386-401.
[http://dx.doi.org/10.1111/j.1743-6109.2008.00815.x] [PMID: 18373525]
[116]
O’Donohue W, Plaud JJ. The conditioning of human sexual arousal. Arch Sex Behav 1994; 23(3): 321-44.
[http://dx.doi.org/10.1007/BF01541567] [PMID: 8024444]
[117]
Fang L-Y, Quan R-D, Kaba H. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb. Neurosci Lett 2008; 438(2): 133-7.
[http://dx.doi.org/10.1016/j.neulet.2007.12.070] [PMID: 18468792]
[118]
Pekarek BT, Hunt PJ, Arenkiel BR. Oxytocin and sensory network plasticity. Front Neurosci 2020; 14: 30.
[http://dx.doi.org/10.3389/fnins.2020.00030] [PMID: 32063835]
[119]
Monks DA, Lonstein JS, Breedlove SM. Got milk? Oxytocin triggers hippocampal plasticity. Nat Neurosci 2003; 6(4): 327-8.
[http://dx.doi.org/10.1038/nn0403-327] [PMID: 12658276]
[120]
Eckstein M, Scheele D, Patin A, et al. Oxytocin facilitates pavlovian fear learning in males. Neuropsychopharmacology 2016; 41(4): 932-9.
[http://dx.doi.org/10.1038/npp.2015.245] [PMID: 26272050]
[121]
Marlin BJ, Mitre M, D’amour JA, Chao MV, Froemke RC. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 2015; 520(7548): 499-504.
[http://dx.doi.org/10.1038/nature14402] [PMID: 25874674]
[122]
Owen SF, Tuncdemir SN, Bader PL, Tirko NN, Fishell G, Tsien RW. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 2013; 500(7463): 458-62.
[http://dx.doi.org/10.1038/nature12330] [PMID: 23913275]
[123]
Thibault K, Lin WK, Rancillac A, et al. BDNF-dependent plasticity induced by peripheral inflammation in the primary sensory and the cingulate cortex triggers cold allodynia and reveals a major role for endogenous BDNF as a tuner of the affective aspect of pain. J Neurosci 2014; 34(44): 14739-51.
[http://dx.doi.org/10.1523/JNEUROSCI.0860-14.2014] [PMID: 25355226]
[124]
Levin R, Meston C. Nipple/Breast stimulation and sexual arousal in young men and women. J Sex Med 2006; 3(3): 450-4.
[http://dx.doi.org/10.1111/j.1743-6109.2006.00230.x] [PMID: 16681470]
[125]
Krychman M, Goren A, Brandt L, McCoy J. Novel topical formulation applied to the nipple-areola complex improves female orgasm. J Cosmet Dermatol 2020; 19(2): 404-6.
[http://dx.doi.org/10.1111/jocd.13262] [PMID: 31846189]
[126]
Chiodera P, Salvarani C, Bacchi-Modena A, et al. Relationship between plasma profiles of oxytocin and adrenocorticotropic hormone during suckling or breast stimulation in women. Horm Res 1991; 35(3-4): 119-23.
[http://dx.doi.org/10.1159/000181886] [PMID: 1666892]
[127]
Komisaruk BR, Wise N, Frangos E, Liu WC, Allen K, Brody S. Women’s clitoris, vagina, and cervix mapped on the sensory cortex: fMRI evidence. J Sex Med 2011; 8(10): 2822-30.
[http://dx.doi.org/10.1111/j.1743-6109.2011.02388.x] [PMID: 21797981]
[128]
Buemann B, Uvnäs-Moberg K. Oxytocin may have a therapeutical potential against cardiovascular disease. Possible pharmaceutical and behavioral approaches. Med Hypotheses 2020; 138: 109597.
[http://dx.doi.org/10.1016/j.mehy.2020.109597] [PMID: 32032912]
[129]
Palmore EB. Predictors of the longevity difference: A 25-year follow-up. Gerontologist 1982; 22(6): 513-8.
[http://dx.doi.org/10.1093/geront/22.6.513] [PMID: 7152310]
[130]
Davey Smith G, Frankel S, Yarnell J. Sex and death: Are they related? Findings from the Caerphilly Cohort Study. BMJ 1997; 315(7123): 1641-4.
[http://dx.doi.org/10.1136/bmj.315.7123.1641] [PMID: 9448525]
[131]
Cabeza de Baca T, Epel ES, Robles TF, et al. Sexual intimacy in couples is associated with longer telomere length. Psychoneuroendocrinology 2017; 81: 46-51.
[http://dx.doi.org/10.1016/j.psyneuen.2017.03.022] [PMID: 28411413]
[132]
Faraji J, Karimi M, Soltanpour N, et al. Oxytocin-mediated social enrichment promotes longer telomeres and novelty seeking. eLife 2018; 7: e40262.
[http://dx.doi.org/10.7554/eLife.40262] [PMID: 30422111]
[133]
Reichert S, Stier A. Does oxidative stress shorten telomeres in vivo? A review. Biol Lett 2017; 13(12): 20170463.
[http://dx.doi.org/10.1098/rsbl.2017.0463] [PMID: 29212750]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy