Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

A Comprehensive Review on Nanotechnological Approaches for Enhanced Delivery of Nutraceuticals in the Management of Osteoporosis

Author(s): Nisha Singh, Shatabdi Dey, Bhumika Kumar* and Pravat Kumar Sahoo

Volume 12, Issue 2, 2022

Published on: 02 June, 2022

Page: [96 - 108] Pages: 13

DOI: 10.2174/2210303112666220414100934

Price: $65

conference banner
Abstract

Osteoporosis is a chronic, progressive bone condition that is most prevalent in postmenopausal women and the elderly population. An imbalance in the natural bone remodeling process, which is involved in the formation of bone and resorption, is responsible for osteoporosis, leading to bone fragility. It shows no clinical manifestation until a fracture takes place. Osteoporosis is a global epidemic that reduces the quality of life, increases the chances of disabilities, and adds on a huge financial load. Early diagnosis and treatment can help in preventing the disease. Several drug regimens are used in treating the condition; however, the drugs are accompanied by several adverse effects. Nutraceuticals, like herbs, minerals, vitamins, and dairy products, support skeletal strength and integrity. Therefore, the use of different types of nutraceuticals can improve overall bone strength and provide improved treatment of osteoporosis. The review paper focuses on providing indepth knowledge about the various nutraceuticals that are used in the management of osteoporosis along with the novel nanotechnology-based delivery approaches for enhanced delivery of nutraceuticals as the advent of nanotechnology in pharmaceuticals have opened new avenues in the challenging arena of nutraceuticals for providing benefits like stability, higher efficiency, solubility, enhanced bioavailability, permeability, and production without additives.

Keywords: Osteoporosis, osteoporosis management, nutraceuticals, nanotechnology, delivery systems, bone mineral density (BMD).

Graphical Abstract

[1]
Sözen, T. Özışık, L.; Başaran, N.Ç. An overview and management of osteoporosis. Eur. J. Rheumatol., 2017, 4(1), 46-56.
[http://dx.doi.org/10.5152/eurjrheum.2016.048] [PMID: 28293453]
[2]
Hejazi, J.; Davoodi, A.; Khosravi, M.; Sedaghat, M.; Abedi, V.; Hosseinverdi, S.; Ehrampoush, E.; Homayounfar, R.; Shojaie, L. Nutrition and osteoporosis prevention and treatment. Biomed. Res. Ther., 2020, 7(4), 3709-3720.
[http://dx.doi.org/10.15419/bmrat.v7i4.598]
[3]
New review on management of osteoporosis in premenopausal women Available from: https://medicalxpress.com/news/2020-07-osteoporosis-premenopausal-women.html(Accessed on 27 July 2020)
[4]
Coughlan, T.; Dockery, F. Osteoporosis and fracture risk in older people. Clin. Med. (Lond.), 2014, 14(2), 187-191.
[http://dx.doi.org/10.7861/clinmedicine.14-2-187] [PMID: 24715132]
[5]
WHO scientific group on the assessment of osteoporosis at primary health care level, 2007. Available from: https://www.who.int/chp/ topics/osteoporosis.pdf(Accessed on 29 June 2007)
[6]
Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[7]
Reginster, J.Y.; Burlet, N. Osteoporosis: A still increasing prevalence. Bone, 2006, 38, S4-S9.
[http://dx.doi.org/10.1016/j.bone.2005.11.024] [PMID: 16455317]
[8]
Boyce, B.F.; Rosenberg, E.; de Papp, A.E.; Duong, L.T. The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur. J. Clin. Invest., 2012, 42(12), 1332-1341.
[http://dx.doi.org/10.1111/j.1365-2362.2012.02717.x] [PMID: 22998735]
[9]
Tarantino, U.; Cerocchi, I.; Celi, M.; Scialdoni, A.; Saturnino, L.; Gasbarra, E. Pharmacological agents and bone healing. Clin. Cases Miner. Bone Metab., 2009, 6(2), 144-148.
[PMID: 22461164]
[10]
Seifi, M.; Amdjadi, P.; Tayebi, L. Pharmacological agents for bone remodeling. Biomater. Oral Dental Tissue Eng., 2017, 503-523.
[11]
Pavone, V.; Testa, G.; Giardina, S.M.C.; Vescio, A.; Restivo, D.A.; Sessa, G. Pharmacological therapy of osteoporosis: A systematic cur-rent review of literature. Front. Pharmacol., 2017, 8, 803.
[http://dx.doi.org/10.3389/fphar.2017.00803] [PMID: 29163183]
[12]
Ghosh, D.; Smarta, R. Illness to wellness: Paradigm shift in healthcare industry. Int. J. Complement. Altern. Med., 2017, 8(4), 00267.
[http://dx.doi.org/10.15406/ijcam.2017.08.00268]
[13]
Nimesh, S.; Nimesh, V.D. Nutraceuticals in the management of diabetes mellitus. Pharm. Pharmacol. Int. J., 2018, 6(2), 114-120.
[14]
Föger-Samwald, U.; Dovjak, P.; Azizi-Semrad, U.; Kerschan-Schindl, K.; Pietschmann, P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J., 2020, 19, 1017-1037.
[PMID: 32788914]
[15]
Sandhu, S.K.; Hampson, G. The pathogenesis, diagnosis, investigation and management of osteoporosis. J. Clin. Pathol., 2011, 64(12), 1042-1050.
[http://dx.doi.org/10.1136/jcp.2010.077842] [PMID: 21896577]
[16]
Ste-Marie, L.G. Osteoporosis: Pathophysiology and bone remodelling. J. SOGC, 1995, 17(12), 1205-1209.
[http://dx.doi.org/10.1016/S1701-2163(16)30562-X]
[17]
Rucci, N. Molecular biology of bone remodelling. Clin. Cases Miner. Bone Metab., 2008, 5(1), 49-56.
[PMID: 22460846]
[18]
Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2010, 2(6), 611-625.
[http://dx.doi.org/10.3390/nu2060611] [PMID: 22254045]
[19]
McGreevy, C.; Williams, D. Safety of drugs used in the treatment of osteoporosis. Ther. Adv. Drug Saf., 2011, 2(4), 159-172.
[http://dx.doi.org/10.1177/2042098611411012] [PMID: 25083210]
[20]
Vitamins and Minerals, Available from: https://www.food standards.gov (Accessed on 11 oct 2019)
[21]
Shenkin, A. Micronutrients in health and disease. Postgrad. Med. J., 2006, 82(971), 559-567.
[http://dx.doi.org/10.1136/pgmj.2006.047670] [PMID: 16954450]
[22]
Clarke, B.L. Osteoporosis: An evidence-based guide to prevention and management. Mayo Clin. Proc., 2003, 78(6), 94.
[23]
Nieves, J.W. Calcium, vitamin D, and nutrition in elderly adults. Clin. Geriatr. Med., 2003, 19(2), 321-335.
[http://dx.doi.org/10.1016/S0749-0690(02)00073-3] [PMID: 12916289]
[24]
Calvo, M.S.; Kumar, R.; Heath, H. Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J. Clin. Endocrinol. Metab., 1990, 70(5), 1334-1340.
[http://dx.doi.org/10.1210/jcem-70-5-1334] [PMID: 2335575]
[25]
Buclin, T.; Cosma, M.; Appenzeller, M.; Jacquet, A.F.; Décosterd, L.A.; Biollaz, J.; Burckhardt, P. Diet acids and alkalis influence calcium retention in bone. Osteoporos. Int., 2001, 12(6), 493-499.
[http://dx.doi.org/10.1007/s001980170095] [PMID: 11446566]
[26]
Booth, S.L. Skeletal functions of vitamin K-dependent proteins: Not just for clotting anymore. Nutr. Rev., 1997, 55(7), 282-284.
[http://dx.doi.org/10.1111/j.1753-4887.1997.tb01619.x] [PMID: 9279066]
[27]
Hall, S.L.; Greendale, G.A. The relation of dietary vitamin C intake to bone mineral density: Results from the PEPI study. Calcif. Tissue Int., 1998, 63(3), 183-189.
[http://dx.doi.org/10.1007/s002239900512] [PMID: 9701620]
[28]
Melhus, H.; Michaëlsson, K.; Kindmark, A.; Bergström, R.; Holmberg, L.; Mallmin, H.; Wolk, A.; Ljunghall, S. Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fracture. Ann. Intern. Med., 1998, 129(10), 770-778.
[http://dx.doi.org/10.7326/0003-4819-129-10-199811150-00003] [PMID: 9841582]
[29]
Cauley, J.A.; Murphy, P.A.; Riley, T.J.; Buhari, A.M. Effects of fluoridated drinking water on bone mass and fractures: The study of oste-oporotic fractures. J. Bone Miner. Res., 1995, 10(7), 1076-1086.
[http://dx.doi.org/10.1002/jbmr.5650100712] [PMID: 7484283]
[30]
Fait, T. Menopause hormone therapy: Latest developments and clinical practice. Drugs Context, 2019, 8, 212551.
[http://dx.doi.org/10.7573/dic.212551] [PMID: 30636965]
[31]
Hozayen, W.G.; El-Desouky, M.A.; Soliman, H.A.; Ahmed, R.R.; Khaliefa, A.K. Antiosteoporotic effect of Petroselinum crispum, Oci-mum basilicum and Cichorium intybus L. in glucocorticoid-induced osteoporosis in rats. BMC Complement. Altern. Med., 2016, 16, 165.
[http://dx.doi.org/10.1186/s12906-016-1140-y] [PMID: 27255519]
[32]
Sharon, S.E.; Chitra, V. Medicinal plants for the treatment of postmenopausl osteoporosis. Biomed. Pharmacol. J., 2019, 12(3), 1561-1577.
[http://dx.doi.org/10.13005/bpj/1787]
[33]
Spilmont, M.; Léotoing, L.; Davicco, M.J.; Lebecque, P.; Mercier, S.; Miot-Noirault, E.; Pilet, P.; Rios, L.; Wittrant, Y.; Coxam, V. Pome-granate and its derivatives can improve bone health through decreased inflammation and oxidative stress in an animal model of postmen-opausal osteoporosis. Eur. J. Nutr., 2014, 53(5), 1155-1164.
[http://dx.doi.org/10.1007/s00394-013-0615-6] [PMID: 24232379]
[34]
Shen, C.L.; Yeh, J.K.; Cao, J.J.; Wang, J.S. Green tea and bone metabolism. Nutr. Res., 2009, 29(7), 437-456.
[http://dx.doi.org/10.1016/j.nutres.2009.06.008] [PMID: 19700031]
[35]
Sandoval, M.; Okuhama, N.N.; Zhang, X.J.; Condezo, L.A.; Lao, J.; Angeles’, F.M.; Musah, R.A.; Bobrowski, P.; Miller, M.J. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid con-tent. Phytomedicine, 2002, 9(4), 325-337.
[http://dx.doi.org/10.1078/0944-7113-00117] [PMID: 12120814]
[36]
Chung, H.J.; Kyung Kim, W.; Joo Park, H.; Cho, L.; Kim, M.R.; Kim, M.J.; Shin, J.S.; Ho Lee, J.; Ha, I.H.; Kook Lee, S. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models. J. Ethnopharmacol., 2016, 179, 66-75.
[http://dx.doi.org/10.1016/j.jep.2015.12.025] [PMID: 26712566]
[37]
Prakash, J. Chemical composition and antioxidant properties of ginger root (Zingiber officinale). J. Med. Plants Res., 2010, 4(24), 2674-2679.
[http://dx.doi.org/10.5897/JMPR09.464]
[38]
Doyle, B.J.; Frasor, J.; Bellows, L.E.; Locklear, T.D.; Perez, A.; Gomez-Laurito, J.; Mahady, G.B. Estrogenic effects of herbal medicines from Costa Rica used for the management of menopausal symptoms. Menopause, 2009, 16(4), 748-755.
[http://dx.doi.org/10.1097/gme.0b013e3181a4c76a] [PMID: 19424091]
[39]
Malhi, S.S.; Sahota, T.S.; Gill, K.S. Potential of management practices and amendments for preventing nutrient deficiencies in field crops under organic cropping systems. In: Agricultural Sustainability: Progress and Prospects in Crop Research; Academic press, 2012; pp. 77-101.
[40]
Mühlbauer, R.C.; Li, F. Effect of vegetables on bone metabolism. Nature, 1999, 401(6751), 343-344.
[http://dx.doi.org/10.1038/43824] [PMID: 10517630]
[41]
Irgin, C.; Çörekçi, B.; Ozan, F. Halicioğlu, K.; Toptaş, O.; Birinci Yildirim, A.; Türker, A.; Yilmaz, F. Does stinging nettle (Urtica dioica) have an effect on bone formation in the expanded inter-premaxillary suture? Arch. Oral Biol., 2016, 69, 13-18.
[http://dx.doi.org/10.1016/j.archoralbio.2016.05.003] [PMID: 27209059]
[42]
Ikeda, Y.; Iki, M.; Morita, A.; Kajita, E.; Kagamimori, S.; Kagawa, Y.; Yoneshima, H. Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) Study. J. Nutr., 2006, 136(5), 1323-1328.
[http://dx.doi.org/10.1093/jn/136.5.1323] [PMID: 16614424]
[43]
Anurag, A.P.; Prakruthi, M.; Mahesh, M.S. Flax Seeds (Linum usitatissimmum): Nutritional composition and health benefits. J. Nutr. Metabol. Health Sci., 2020, 3(2), 35-40.
[44]
Ishimi, Y. Soybean isoflavones in bone health. Forum Nutr., 2009, 61, 104-116.
[45]
Omi, N.; Aoi, S.; Murata, K.; Ezawa, I. Evaluation of the effect of soybean milk and soybean milk peptide on bone metabolism in the rat model with ovariectomized osteoporosis. J. Nutr. Sci. Vitaminol. (Tokyo), 1994, 40(2), 201-211.
[http://dx.doi.org/10.3177/jnsv.40.201] [PMID: 7931728]
[46]
Collins, F.L.; Rios-Arce, N.D.; Schepper, J.D.; Parameswaran, N.; McCabe, L.R. The potential of probiotics as a therapy for osteoporosis. Microbiol. Spectr., 2018, 213-233.
[47]
Messina, M.; Messina, V. Soyfoods, soybean isoflavones, and bone health: A brief overview. J. Ren. Nutr., 2000, 10(2), 63-68.
[http://dx.doi.org/10.1016/S1051-2276(00)90001-3] [PMID: 10757817]
[48]
Kim, Y.; Ilich, J.Z. Implications of dietary α-linolenic acid in bone health. Nutrition, 2011, 27(11-12), 1101-1107.
[http://dx.doi.org/10.1016/j.nut.2011.05.012] [PMID: 21726979]
[49]
Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med., 2014, 5(12), 1487-1499.
[PMID: 25709784]
[50]
Helal, N.A.; Eassa, H.A.; Amer, A.M.; Eltokhy, M.A.; Edafiogho, I.; Nounou, M.I. Nutraceuticals’ novel formulations: The good, the bad, the unknown and patents involved. Recent Pat. Drug Deliv. Formul., 2019, 13(2), 105-156.
[http://dx.doi.org/10.2174/1872211313666190503112040] [PMID: 31577201]
[51]
Bernela, M.; Kaur, P.; Ahuja, M.; Thakur, R. Nano-based delivery system for nutraceuticals: The potential future. Adv. Animal Biotechnol. Appl, 2018, 103-117.
[52]
Zaki, N.M. Progress and problems in nutraceuticals delivery J. Bioequiv. Bioavailab, 2014, 6, 075-077.
[53]
Yeung, A.W.K.; Souto, E.B.; Durazzo, A.; Lucarini, M.; Novellino, E.; Tewari, D.; Santini, A. Big impact of nanoparticles: Analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Curr. Res. Biotechnol., 2020, 2, 53-63.
[http://dx.doi.org/10.1016/j.crbiot.2020.04.002]
[54]
Karn, A.K.; Giri, S.; Bhatia, S.; Singh, S.; Singh, A. Nutraceuticals and their novel drug delivery system: A boon to human health. Curr. Nutr. Food Sci., 2020, 16, 1.
[55]
Ignjatović, N.; Uskoković, V.; Ajduković, Z.; Uskoković, D. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanopar-ticles for the local delivery of cholecalciferol. Mater. Sci. Eng. C, 2013, 33(2), 943-950.
[http://dx.doi.org/10.1016/j.msec.2012.11.026] [PMID: 25382938]
[56]
Balasundaram, G.; Webster, T.J. HA coated magnetic nanoparticles for the treatment of osteoporosis. , 2010. Purdue University, West Lafayette, Indiana, 47907, USA
[57]
Alghamdi, H.S.; Bosco, R.; Both, S.K.; Iafisco, M.; Leeuwenburgh, S.C.; Jansen, J.A.; van den Beucken, J.J. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats. Biomaterials, 2014, 35(21), 5482-5490.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.069] [PMID: 24731712]
[58]
Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm. (Cairo), 2014, 2014, 801820.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[59]
Fathi, M.; Mozafari, M.R.; Mohebbi, M. Nanoencapsulation of food ingredients using lipid-based delivery systems. Trends Food Sci. Technol., 2012, 23(1), 13-27.
[http://dx.doi.org/10.1016/j.tifs.2011.08.003]
[60]
Gonçalves, R.F.S.; Martins, J.T.; Duarte, C.M.M.; Vicente, A.A.; Pinheiro, A.C. Advances in nutraceutical delivery systems: From formu-lation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci. Technol., 2018, 78, 270-291.
[http://dx.doi.org/10.1016/j.tifs.2018.06.011]
[61]
Chen, J.; Hu, L. Nanoscale delivery system for nutraceuticals: preparation, application, characterization, safety, and future trends. Food Eng. Rev., 2020, 12, 14-31.
[http://dx.doi.org/10.1007/s12393-019-09208-w]
[62]
Khorasani, S.; Danaei, M.; Mozafari, M.R. Nanoliposome technology for the food and nutraceutical industries. Trends Food Sci. Technol., 2018, 79, 106-115.
[http://dx.doi.org/10.1016/j.tifs.2018.07.009]
[63]
Liu, W.; Ye, A.; Liu, W.; Liu, C.; Singh, H. Liposomes as food ingredients and nutraceutical delivery systems. Agro Food Ind. Hi-Tech, 2013, 24(2), 68-71.
[64]
Mozafari, M.R.; Darani, K.K.; Borazan, G.G.; Cui, J.; Pardakhty, A.; Yurdugul, S. Encapsulation of Food Ingredients Using Nanoliposome Technology. Int. J. Food Prop., 2008, 11(4), 833-844.
[http://dx.doi.org/10.1080/10942910701648115]
[65]
Aguilar-Pérez, K.M.; Avilés-Castrillo, J.I.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M.N. Insight into nanoliposomes as smart nanocarri-ers for greening the twenty-first century biomedical settings. Front. Bioeng. Biotechnol., 2020, 8, 579536.
[http://dx.doi.org/10.3389/fbioe.2020.579536] [PMID: 33384988]
[66]
Raimundo, P.M.; Manzano, M.; Vallet-Regí, M. Nanoparticles for the treatment of osteoporosis. AIMS Bioeng., 2017, 4(2), 259-274.
[http://dx.doi.org/10.3934/bioeng.2017.2.259]
[67]
Mohammadi, R.; Mahmoudzade, M.; Atefi, M.; Khosravi-Darani, K.; Mozafari, M.R. Applications of nanoliposomes in cheese technolo-gy. Int. J. Dairy Technol., 2014, 68(1), 11-23.
[http://dx.doi.org/10.1111/1471-0307.12174]
[68]
Aditya, N.P.; Espinosa, Y.G.; Norton, I.T. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol. Adv., 2017, 35(4), 450-457.
[http://dx.doi.org/10.1016/j.biotechadv.2017.03.012] [PMID: 28377276]
[69]
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol., 2012, 5, 854-867.
[http://dx.doi.org/10.1007/s11947-011-0683-7]
[70]
Odriozola-Serrano, I.; Oms-Oliu, G.; Martín-Belloso, O. Nanoemulsion-based delivery systems to improve functionality of lipophilic components. Front. Nutr., 2014, 1, 24.
[http://dx.doi.org/10.3389/fnut.2014.00024] [PMID: 25988126]
[71]
Katata-Seru, L.; Ramalapa, B.; Tshweu, L. Nanoformulated delivery systems of essential nutraceuticals and their applications; nanoemul-sions - Properties; Fabrications and Applications, 2019, pp. 31-44.
[http://dx.doi.org/10.5772/intechopen.86170]
[72]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[73]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[74]
Nunes, S.; Madureira, A.R.; Campos, D.; Sarmento, B.; Gomes, A.M.; Pintado, M.; Reis, F. Solid lipid nanoparticles as oral delivery sys-tems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications. Crit. Rev. Food Sci. Nutr., 2017, 57(9), 1863-1873.
[PMID: 26192708]
[75]
Yan, G.; Li, A.; Zhang, A.; Sun, Y.; Liu, J. Polymer-based nanocarriers for co-delivery and combination of diverse therapies against can-cers. Nanomaterials (Basel), 2018, 8(2), 85.
[http://dx.doi.org/10.3390/nano8020085] [PMID: 29401694]
[76]
Amin, M.C.I.M.; Butt, A.M.; Amjad, M.W.; Kesharwani, P. Polymeric micelles for drug targeting and deliveryNanotechnologybased approaches for targeting and delivery of drugs and genes; , 2017, pp. 167-202.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00006-3]
[77]
Yadav, H.K.S.; Almokdad, A.A. Polymer-based nanomaterials for drug-delivery carriers; Nanocarriers Drug Deliv, 2019, pp. 531-556.
[78]
Haham, M.; Ish-Shalom, S.; Nodelman, M.; Duek, I.; Segal, E.; Kustanovich, M.; Livney, Y.D. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct., 2012, 3(7), 737-744.
[http://dx.doi.org/10.1039/c2fo10249h] [PMID: 22569895]
[79]
Cohen, Y.; Levi, M.; Lesmes, U.; Margier, M.; Reboul, E.; Livney, Y.D. Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food Funct., 2017, 8(6), 2133-2141.
[http://dx.doi.org/10.1039/C7FO00323D] [PMID: 28513755]
[80]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[81]
Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2, 147-157.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[82]
Davidov-Pardo, G.; Pérez-Ciordia, S.; Marín-Arroyo, M.R.; McClements, D.J. Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: Impact of protein-carbohydrate maillard conjugation. J. Agric. Food Chem., 2015, 63(15), 3915-3923.
[http://dx.doi.org/10.1021/acs.jafc.5b00777] [PMID: 25843145]
[83]
McClements, D.J. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailabil-ity. J. Food Sci., 2015, 80(7), N1602-N1611.
[http://dx.doi.org/10.1111/1750-3841.12919] [PMID: 26073042]
[84]
Rajendran, S.R.C.K.; Udenigwe, C.C.; Yada, R.Y. Nano chemistry of protein-based delivery agents. Front Chem., 2016, 4, 31.
[http://dx.doi.org/10.3389/fchem.2016.00031] [PMID: 27489854]
[85]
Okagu Ogadimma, D.; Wang Bo Acquah, C.; Udenigwe Chibuike, C. Protein-based nanodelivery systems for food applications. Encyclope-dia of Food Chemistry; Elsevier, 2018, pp. 719-726.
[86]
Xixi, C.; Lina, Z.; Shaoyun, W.; Pingfan, R. Fabrication and characterization of the nano-composite of whey protein hydrolysate chelated with calcium. Food Funct., 2015, 6(3), 816-823.
[http://dx.doi.org/10.1039/C4FO00811A] [PMID: 25588126]
[87]
Sampathkumar, K.; Loo, S.C.J. Targeted Gastrointestinal Delivery of Nutraceuticals with Polysaccharide-Based Coatings. Macromol. Biosci., 2018, 18(4), e1700363.
[http://dx.doi.org/10.1002/mabi.201700363] [PMID: 29479799]
[88]
Guo, H.; Hong, Z.; Yi, R. Core-shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supple-mentation. J. Food Sci., 2015, 80(7), N1595-N1601.
[http://dx.doi.org/10.1111/1750-3841.12912] [PMID: 25990921]
[89]
Le Guével, X. Overview of inorganic nanoparticles for food science applications. Nanotechnology in agriculture and food science; , 2017, pp. 197-208.
[http://dx.doi.org/10.1002/9783527697724.ch12]
[90]
Shen, J.; Shafiq, M.; Ma, M.; Chen, H. Synthesis and surface engineering of inorganic nanomaterials based on microfluidic technology. Nanomaterials (Basel), 2020, 10(6), 1177.
[http://dx.doi.org/10.3390/nano10061177] [PMID: 32560284]
[91]
Adeyemi, O.S.; Sulaiman, F.A. Evaluation of metal nanoparticles for drug delivery systems. J. Biomed. Res., 2015, 29(2), 145-149.
[PMID: 25859270]
[92]
Sperling, R.A.; Rivera Gil, P.; Zhang, F.; Zanella, M.; Parak, W.J. Biological applications of gold nanoparticles. Chem. Soc. Rev., 2008, 37(9), 1896-1908.
[http://dx.doi.org/10.1039/b712170a] [PMID: 18762838]
[93]
Gholipourmalekabadi, M.; Mobaraki, M.; Ghaffari, M.; Zarebkohan, A.; Omrani, V.F.; Urbanska, A.M.; Seifalian, A. Targeted drug deliv-ery based on gold nanoparticle derivatives. Curr. Pharm. Des., 2017, 23(20), 2918-2929.
[http://dx.doi.org/10.2174/1381612823666170419105413] [PMID: 28425863]
[94]
Amina, S.J.; Guo, B. A Review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomedicine, 2020, 15, 9823-9857.
[http://dx.doi.org/10.2147/IJN.S279094] [PMID: 33324054]
[95]
Bai, X.; Gao, Y.; Zhang, M.; Chang, Y.N.; Chen, K.; Li, J.; Zhang, J.; Liang, Y.; Kong, J.; Wang, Y.; Liang, W.; Xing, G.; Li, W.; Xing, G. Carboxylated gold nanoparticles inhibit bone erosion by disturbing the acidification of an osteoclast absorption microenvironment. Nanoscale, 2020, 12(6), 3871-3878.
[http://dx.doi.org/10.1039/C9NR09698A] [PMID: 31996882]
[96]
Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules, 2017, 23(1), 47.
[http://dx.doi.org/10.3390/molecules23010047] [PMID: 29295564]
[97]
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed., 2007, 46(40), 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[98]
Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig., 2015, 5(3), 124-133.
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[99]
Izquierdo-Barba, I.; Colilla, M.; Vallet-Regí, M. Nanostructured mesoporous silicas for bone tissue regeneration. J. Nanomater., 2008, 106970.
[http://dx.doi.org/10.1155/2008/106970]
[100]
Kim, W.K.; Kim, J.C.; Park, H.J.; Sul, O.J.; Lee, M.H.; Kim, J.S.; Choi, H.S. Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis. Exp. Mol. Med., 2012, 44(7), 432-439.
[http://dx.doi.org/10.3858/emm.2012.44.7.048] [PMID: 22525805]
[101]
Tadic, M.; Kralj, S.; Jagodic, M.; Hanzel, D.; Makovec, D. Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Appl. Surf. Sci., 2014, 322, 255-264.
[http://dx.doi.org/10.1016/j.apsusc.2014.09.181]
[102]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[103]
Wu, Y.; Yang, X.; Yi, X.; Liu, Y.; Chen, Y.; Liu, G.; Li, R.W. Magnetic nanoparticle for biomedicine applications. J. Nanotech-nol. Nano-med. NanoBiotechnology, 2015, 2(1), 1-7.
[104]
Willard, M.A.; Kurihara, L.K.; Carpenter, E.E. Chemically prepared magnetic nanoparticles. Int. Mater. Rev., 2004, 49, 125-170.
[http://dx.doi.org/10.1179/095066004225021882]
[105]
Pareta, R.A.; Taylor, E.; Webster, T.J. Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparti-cles. Nanotechnology, 2008, 19(26), 265101.
[http://dx.doi.org/10.1088/0957-4484/19/26/265101] [PMID: 21828670]
[106]
Nah, H.; Lee, D.; Heo, M.; Lee, J.S.; Lee, S.J.; Heo, D.N.; Seong, J.; Lim, H.N.; Lee, Y.H.; Moon, H.J.; Hwang, Y.S.; Kwon, I.K. Vitamin D-conjugated gold nanoparticles as functional carriers to enhancing osteogenic differentiation. Sci. Technol. Adv. Mater., 2019, 20(1), 826-836.
[http://dx.doi.org/10.1080/14686996.2019.1644193] [PMID: 31489055]
[107]
Khalil, W.K.B.; El-Bassyouni, G.T.; Booles, H.F. Nano-encapsulated form of citrus medica for osteoporosis treatment in animal model. Int. J. Pharm. Clin. Res., 2016, 8(1), 49-59.
[108]
Pandit, A.P.; Omase, S.B.; Mute, V.M.A. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteopo-rosis. Drug Deliv. Transl. Res., 2020, 10(5), 1495-1506.
[http://dx.doi.org/10.1007/s13346-020-00708-5] [PMID: 31942700]
[109]
Jannah, A.R.; Ebnudesita, F.R.; Dienanta, S.B.; Itishom, R. The potential of soy isoflavones (glycine max) and magnetic hydroxyapatite nanoparticles as osteoporosis therapy for menopausal women Indonesian Androl. Biomed. J, 1(1)2020,
[http://dx.doi.org/10.20473/iabj.v1i1.29]
[110]
Sun, X.; Wei, J.; Lyu, J.; Bian, T.; Liu, Z.; Huang, J.; Pi, F.; Li, C.; Zhong, Z. Bone-targeting drug delivery system of biomineral-binding liposomes loaded with icariin enhances the treatment for osteoporosis. J. Nanobiotechnology, 2019, 17(1), 10.
[http://dx.doi.org/10.1186/s12951-019-0447-5] [PMID: 30670021]
[111]
Sun, X.; Zhang, J.; Wang, Z.; Liu, B.; Zhu, S.; Zhu, L.; Peng, B. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Theranostics, 2019, 9(18), 5183-5199.
[http://dx.doi.org/10.7150/thno.33376] [PMID: 31410209]
[112]
Sachaniya, J.; Savaliya, R.; Goyal, R.; Singh, S. Liposomal formulation of vitamin A for the potential treatment of osteoporosis. Int. J. Nanomedicine, 2018, 13(T-NANO 2014 Abstracts), 51-53.
[http://dx.doi.org/10.2147/IJN.S124707] [PMID: 29593395]
[113]
Wang, Y.; Xie, J.; Ai, Z.; Su, J. Nobiletin-loaded micelles reduce ovariectomy-induced bone loss by suppressing osteoclastogenesis. Int. J. Nanomedicine, 2019, 14, 7839-7849.
[http://dx.doi.org/10.2147/IJN.S213724] [PMID: 31576127]
[114]
Ahmad, N.; Banala, V.T.; Kushwaha, P.; Karvande, A.; Sharma, S.; Tripathi, A.K.; Mishra, P.R. Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: A preventive strategy for post-menopausal osteoporosis. RSC Advances, 2016, 6(100), 97613-97628.
[http://dx.doi.org/10.1039/C6RA17141A]
[115]
Ahn, J.; Jeong, J.; Lee, H.; Sung, M.J.; Jung, C.H.; Lee, H.; Hur, J.; Park, J.H.; Jang, Y.J.; Ha, T.Y. Poly (lactic-co-glycolic acid) nanoparti-cles potentiate the protective effect of curcumin against bone loss in ovariectomized rats. J. Biomed. Nanotechnol., 2017, 13, 688-698.
[http://dx.doi.org/10.1166/jbn.2017.2372]
[116]
Malathy, S.; Iyer, P. Naringin loaded chitosan nanoparticle for bone regeneration: a preliminary in vitro study. J. Nanomed. Nanotechnol., 2018, 9, 1-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy