Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Recent Advances in Chemodosimeters Designed for Amines

Author(s): Efdal Teknikel and Canan Unaleroglu*

Volume 20, Issue 1, 2023

Published on: 08 September, 2022

Page: [4 - 19] Pages: 16

DOI: 10.2174/1570179419666220414095143

Price: $65

Abstract

The analysis of amines has long been a very important task in science, industry, and healthcare. To date, this task has been accomplished by using expensive and time-consuming methods. Colorimetric and fluorescent chemodosimeters enable the fast, accurate, and sensitive analysis of various species with inexpensive instruments or the naked eye. Accordingly, the studies on these probes have gained great momentum in the last 20 years. In this review, amine chemodosimeters developed in the last 10 years were investigated. The investigated chemodosimeters are metal-free structures based on small organic compounds. The strategies for the detection, differentiation, and quantification of amines were discussed by considering the reaction types.

Keywords: Chemodosimeter, chemosensor, amine, fluorometric probe, colorimetric probe, selective probe.

Graphical Abstract

[1]
Pinheiro, H.M.; Touraud, E.; Thomas, O. Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm., 2004, 61(2), 121-139.
[http://dx.doi.org/10.1016/j.dyepig.2003.10.009]
[2]
Shuker, L.K.; Batt, S.; Rystedt, I.; Berlin, M. The Health Effects of Aromatic Amines-A review; Rochester, Kent, 1986.
[3]
Snyderwine, E.G.; Sinha, R.; Felton, J.S.; Ferguson, L.R. Highlights of the eighth international conference on carcinogenic/mutagenic N-substituted aryl compounds. Mutat. Res-Fund. Mol. M., 2002, 506,, pp. 1-8.
[4]
Chung, K.T.; Cerniglia, C.E. Mutagenicity of azo dyes: Structure-activity relationships. Mutat. Res., 1992, 277(3), 201-220.
[http://dx.doi.org/10.1016/0165-1110(92)90044-A] [PMID: 1381050]
[5]
Matin, M.M.; Sharma, T.; Sabharwal, S.G.; Dhavale, D.D. Synthesis and evaluation of the glycosidase inhibitory activity of 5-hydroxy substituted isofagomine analogues. Org. Biomol. Chem., 2005, 3(9), 1702-1707.
[http://dx.doi.org/10.1039/b418283a] [PMID: 15858653]
[6]
Dhavale, D.D.; Matin, M.M.; Sharma, T.; Sabharwal, S.G. N-hydroxyethyl-piperidine and -pyrrolidine homoazasugars: Preparation and evaluation of glycosidase inhibitory activity. Bioorg. Med. Chem., 2003, 11(15), 3295-3305.
[http://dx.doi.org/10.1016/S0968-0896(03)00231-1] [PMID: 12837540]
[7]
Paris, I.; Dagnino-Subiabre, A.; Marcelain, K.; Bennett, L.B.; Caviedes, P.; Caviedes, R.; Azar, C.O.; Segura-Aguilar, J. Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J. Neurochem., 2001, 77(2), 519-529.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00243.x] [PMID: 11299314]
[8]
Sawa, A.; Snyder, S.H. Schizophrenia: Diverse approaches to a complex disease. Science, 2002, 296(5568), 692-695.
[http://dx.doi.org/10.1126/science.1070532] [PMID: 11976442]
[9]
Lavizzari, T.; Veciana-Nogués, M.T.; Weingart, O.; Bover-Cid, S.; Mariné-Font, A.; Vidal-Carou, M.C. Occurrence of biogenic amines and polyamines in spinach and changes during storage under refrigeration. J. Agric. Food Chem., 2007, 55(23), 9514-9519.
[http://dx.doi.org/10.1021/jf071307l] [PMID: 17935290]
[10]
Halász, A.; Barath, A.; Simon-Sarkadi, L.; Holzapfel, W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol., 1994, 5(2), 42-49.
[http://dx.doi.org/10.1016/0924-2244(94)90070-1]
[11]
Preti, G.; Labows, J.N.; Kostelc, J.G.; Aldinger, S.; Daniele, R. Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl., 1988, 432, 1-11.
[http://dx.doi.org/10.1016/S0378-4347(00)80627-1] [PMID: 3220881]
[12]
Simenhoff, M.L.; Burke, J.F.; Saukkonen, J.J.; Ordinario, A.T.; Doty, R.; Dunn, S. Biochemical profile or uremic breath. N. Engl. J. Med., 1977, 297(3), 132-135.
[http://dx.doi.org/10.1056/NEJM197707212970303] [PMID: 865584]
[13]
Gingrich, J.A.; Caron, M.G. Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci., 1993, 16(1), 299-321.
[http://dx.doi.org/10.1146/annurev.ne.16.030193.001503] [PMID: 8460895]
[14]
Erim, F.B. Recent analytical approaches to the analysis of biogenic amines in food samples. Trends Analyt. Chem., 2013, 52, 239-247.
[http://dx.doi.org/10.1016/j.trac.2013.05.018]
[15]
Kannan, S.K.; Ambrose, B.; Sudalaimani, S.; Pandiaraj, M.; Giribabu, K.; Kathiresan, M. A review on chemical and electrochemical methodologies for the sensing of biogenic amines. Anal. Methods, 2020, 12(27), 3438-3453.
[http://dx.doi.org/10.1039/D0AY00358A] [PMID: 32672250]
[16]
Lin, J.F.; Kukkola, J.; Sipola, T.; Raut, D.; Samikannu, A.; Mikkola, J.P.; Mohl, M.; Toth, G.; Su, W.F.; Laurila, T.; Kordas, K. Trifluoroacetylazobenzene for optical and electrochemical detection of amines. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(8), 4687-4694.
[http://dx.doi.org/10.1039/C4TA05358C]
[17]
Draisci, R.; Volpe, G.; Lucentini, L.; Cecilia, A.; Federico, R.; Palleschi, G. Determination of biogenic amines with an electrochemical biosensor and its application to salted anchovies. Food Chem., 1998, 62(2), 225-232.
[http://dx.doi.org/10.1016/S0308-8146(97)00167-2]
[18]
Asthana, A.; Bose, D.; Durgbanshi, A.; Sanghi, S.K.; Kok, W.T. Determination of aromatic amines in water samples by capillary electrophoresis with electrochemical and fluorescence detection. J. Chromatogr. A, 2000, 895(1-2), 197-203.
[http://dx.doi.org/10.1016/S0021-9673(00)00522-7] [PMID: 11105862]
[19]
Chiu, T.C.; Lin, Y.W.; Huang, Y.F.; Chang, H.T. Analysis of biologically active amines by CE. Electrophoresis, 2006, 27(23), 4792-4807.
[http://dx.doi.org/10.1002/elps.200600126] [PMID: 17080487]
[20]
Yu, H.; Lee, S.H. Chemical ionisation mass spectrometry for the measurement of atmospheric amines. Environ. Chem., 2012, 9(3), 190-201.
[http://dx.doi.org/10.1071/EN12020]
[21]
Hanson, D.R.; McMurry, P.H.; Jiang, J.; Tanner, D.; Huey, L.G. Ambient pressure proton transfer mass spectrometry: Detection of amines and ammonia. Environ. Sci. Technol., 2011, 45(20), 8881-8888.
[http://dx.doi.org/10.1021/es201819a] [PMID: 21892835]
[22]
Müller, L.; Fattore, E.; Benfenati, E. Determination of aromatic amines by solid-phase microextraction and gas chromatography–mass spectrometry in water samples. J. Chromatogr. A, 1997, 791(1-2), 221-230.
[http://dx.doi.org/10.1016/S0021-9673(97)00795-4]
[23]
Kaneda, T.; Hirose, K.; Misumi, S. Chiral azophenolic acerands: Color indicators to judge the absolute configuration of chiral amines. J. Am. Chem. Soc., 1989, 111(2), 742-743.
[http://dx.doi.org/10.1021/ja00184a058]
[24]
Misumi, S. Amine selective coloration with chromoacerands. Pure Appl. Chem., 1990, 62(3), 493-498.
[http://dx.doi.org/10.1351/pac199062030493]
[25]
Vögtle, F.; Knops, P. Dyes for visual distinction between enantiomers: Crown ethers as optical sensors for chiral compounds. Angew. Chem. Int. Ed. Engl., 1991, 30(8), 958-960.
[http://dx.doi.org/10.1002/anie.199109581]
[26]
Chawla, H.M.; Srinivas, K. Molecular diagnostics: Synthesis of new chromogenic calix arenes as potential reagents for detection of amines. J. Chem. Soc. Chem. Commun., 1994, (22), 2593-2594.
[http://dx.doi.org/10.1039/c39940002593]
[27]
McCarrick, M.; Harris, S.J.; Diamond, D. Assessment of a chromogenic calix arene for the rapid colorimetric detection of trimethylamine. J. Mater. Chem., 1994, 4(2), 217-221.
[http://dx.doi.org/10.1039/jm9940400217]
[28]
Kubo, Y.; Maruyama, S.; Ohhara, N.; Nakamura, M.; Tokita, S. Molecular recognition of butylamines by a binaphthyl-derived chromogenic calix crown. J. Chem. Soc. Chem. Commun., 1995, (17), 1727-1728.
[http://dx.doi.org/10.1039/c39950001727]
[29]
Kubo, Y.; Hirota, N.; Tokita, S. Naked-eye detectable chiral recognition using a chromogenic receptor. Anal. Sci., 1998, 14(1), 183-189.
[http://dx.doi.org/10.2116/analsci.14.183]
[30]
Mohr, G.J.; Demuth, C.; Spichiger-Keller, U.E. Application of chromogenic and fluorogenic reactands in the optical sensing of dissolved aliphatic amines. Anal. Chem., 1998, 70(18), 3868-3873.
[http://dx.doi.org/10.1021/ac980279q]
[31]
Mertz, E.; Beil, J.B.; Zimmerman, S.C. Kinetics and thermodynamics of amine and diamine signaling by a trifluoroacetyl azobenzene reporter group. Org. Lett., 2003, 5(17), 3127-3130.
[http://dx.doi.org/10.1021/ol0351605] [PMID: 12916998]
[32]
Mohr, G.J. Chromo- and fluororeactands: Indicators for detection of neutral analytes by using reversible covalent-bond chemistry. Chemistry, 2004, 10(5), 1082-1090.
[http://dx.doi.org/10.1002/chem.200305524] [PMID: 15007799]
[33]
Reinert, S.; Mohr, G.J. Chemosensor for the optical detection of aliphatic amines and diamines. Chem. Commun., 2008, (19), 2272-2274.
[http://dx.doi.org/10.1039/b717796h] [PMID: 18463763]
[34]
Feuster, E.K.; Glass, T.E. Detection of amines and unprotected amino acids in aqueous conditions by formation of highly fluorescent iminium ions. J. Am. Chem. Soc., 2003, 125(52), 16174-16175.
[http://dx.doi.org/10.1021/ja036434m] [PMID: 14692743]
[35]
Secor, K.E.; Glass, T.E. Selective amine recognition: Development of a chemosensor for dopamine and norepinephrine. Org. Lett., 2004, 6(21), 3727-3730.
[http://dx.doi.org/10.1021/ol048625f] [PMID: 15469334]
[36]
Comes, M.; Marcos, M.D. Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Villaescusa, L.A.; Amorós, P.; Beltrán, D. Chromogenic discrimination of primary aliphatic amines in water with functionalized mesoporous silica. Adv. Mater., 2004, 16(20), 1783-1786.
[http://dx.doi.org/10.1002/adma.200400143]
[37]
Secor, K.; Plante, J.; Avetta, C.; Glass, T. Fluorescent sensors for diamines. J. Mater. Chem., 2005, 15(37), 4073-4077.
[http://dx.doi.org/10.1039/b503269e]
[38]
García-Acosta, B.; Comes, M.; Bricks, J.L.; Kudinova, M.A.; Kurdyukov, V.V.; Tolmachev, A.I.; Descalzo, A.B.; Marcos, M.D.; Martínez-Máñez, R.; Moreno, A.; Sancenón, F.; Soto, J.; Villaescusa, L.A.; Rurack, K.; Barat, J.M.; Escriche, I.; Amorós, P. Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., 2006, (21), 2239-2241.
[http://dx.doi.org/10.1039/B602497A] [PMID: 16718315]
[39]
Oguri, S.; Mizusawa, A.; Kamada, M.; Kohori, M. A new method of histamine colorimetry using 2, 3-naphthalenedicarboxaldehyde on a silica–gel column cartridge. Anal. Chim. Acta, 2006, 558(1-2), 326-331.
[http://dx.doi.org/10.1016/j.aca.2005.11.021] [PMID: 17386731]
[40]
Zhang, N.; Wang, H.; Zhao, Y.Z.; Huang, K.J.; Zhang, H.S. Sensitive determination of total aliphatic amines in water samples by spectrofluorimetry using the new fluorogenic probe 3-(4-fluorobenzoyl)-2-quinolinecarboxaldehyde. Mikrochim. Acta, 2008, 162(1-2), 205-210.
[http://dx.doi.org/10.1007/s00604-007-0874-0]
[41]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 1st ed; Plenum: New York, 1983.
[http://dx.doi.org/10.1007/978-1-4615-7658-7]
[42]
Yamaguchi, Y.; Matsubara, Y.; Ochi, T.; Wakamiya, T.; Yoshida, Z. How the π conjugation length affects the fluorescence emission efficiency. J. Am. Chem. Soc., 2008, 130(42), 13867-13869.
[http://dx.doi.org/10.1021/ja8040493] [PMID: 18816053]
[43]
Mei, J.; Leung, N.L.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev., 2015, 115(21), 11718-11940.
[http://dx.doi.org/10.1021/acs.chemrev.5b00263] [PMID: 26492387]
[44]
Lee, B.; Scopelliti, R.; Severin, K. A molecular probe for the optical detection of biogenic amines. Chem. Commun., 2011, 47(34), 9639-9641.
[http://dx.doi.org/10.1039/c1cc13604f] [PMID: 21808768]
[45]
Klockow, J.L.; Glass, T.E. Development of a fluorescent chemosensor for the detection of kynurenine. Org. Lett., 2013, 15(2), 235-237.
[http://dx.doi.org/10.1021/ol303025m] [PMID: 23265271]
[46]
Tran, T.M.; Alan, Y.; Glass, T.E. A highly selective fluorescent sensor for glucosamine. Chem. Commun., 2015, 51(37), 7915-7918.
[http://dx.doi.org/10.1039/C5CC00415B] [PMID: 25858026]
[47]
Zhu, B.; Jiang, L.; Chen, T.; Bao, G.M.; Zeng, L.; Hu, X.; Yuan, H.Q. A colorimetric and fluorescence lighting-up probe for the determination of biogenic primary diamine during the spoilage of fish. Dyes. Dyes Pigments, 2021, 186108963
[http://dx.doi.org/10.1016/j.dyepig.2020.108963]
[48]
Chaicham, A.; Sahasithiwat, S.; Tuntulani, T.; Tomapatanaget, B. Highly effective discrimination of catecholamine derivatives via FRET-on/off processes induced by the intermolecular assembly with two fluorescence sensors. Chem. Commun., 2013, 49(81), 9287-9289.
[http://dx.doi.org/10.1039/c3cc45077e] [PMID: 23999533]
[49]
Shi, L.; Fu, Y.; He, C.; Zhu, D.; Gao, Y.; Wang, Y.; He, Q.; Cao, H.; Cheng, J. A mild and catalyst-free conversion of solid phase benzylidenemalononitrile/benzylidenemalonate to N-benzylidene-amine and its application for fluorescence detection of primary alkyl amine vapor. Chem. Commun., 2014, 50(7), 872-874.
[http://dx.doi.org/10.1039/C3CC48299E] [PMID: 24296866]
[50]
Saravanakumar, M.; Umamahesh, B.; Selvakumar, R.; Dhanapal, J.; Sathiyanarayanan, K.I. A colorimetric and ratiometric fluorescent sensor for biogenic primary amines based on dicyanovinyl substituted phenanthridine conjugated probe. Dyes Pigm., 2020, 178108346
[http://dx.doi.org/10.1016/j.dyepig.2020.108346]
[51]
Zhang, G.; Loch, A.S.; Kistemaker, J.C.; Burn, P.L.; Shaw, P.E. Dicyanovinyl-based fluorescent sensors for dual mechanism amine sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(39), 13723-13732.
[http://dx.doi.org/10.1039/D0TC03974H]
[52]
Pramanik, S.; Deol, H.; Bhalla, V.; Kumar, M. AIEE Active donor–acceptor–donor-based hexaphenylbenzene probe for recognition of aliphatic and aromatic amines. ACS Appl. Mater. Interfaces, 2018, 10(15), 12112-12123.
[http://dx.doi.org/10.1021/acsami.7b09791] [PMID: 29083850]
[53]
Bai, C.B.; Zhang, J.; Yue, S.Y.; Qin, Y.X.; Chen, M.Y.; Zhang, L.; Miao, H.; Wang, C.; Qiao, R.; Qu, C.Q. Easily available aggregation-induced enhanced emission fluorescent material for detecting 1, 3-diaminopropane in gas-liquid-solid three-phase and bioimaging application. J. Lumin., 2021, 237118182
[http://dx.doi.org/10.1016/j.jlumin.2021.118182]
[54]
Venkateswarulu, M.; Gaur, P.; Koner, R.R. Sensitive molecular optical material for signaling primary amine vapors. Sens. Actuators B Chem., 2015, 210, 144-148.
[http://dx.doi.org/10.1016/j.snb.2014.12.082]
[55]
Sathiskumar, U.; Easwaramoorthi, S. Red- emitting ratiometric fluorescence chemodosimeter for the discriminative detection of aromatic and aliphatic amines. ChemistrySelect, 2019, 4(25), 7486-7494.
[http://dx.doi.org/10.1002/slct.201901254]
[56]
Gao, M.; Li, S.; Lin, Y.; Geng, Y.; Ling, X.; Wang, L.; Qin, A.; Tang, B.Z. Fluorescent light-up detection of amine vapors based on aggregation-induced emission. ACS Sens., 2016, 1(2), 179-184.
[http://dx.doi.org/10.1021/acssensors.5b00182]
[57]
Zhang, E.; Hou, X.; Yang, H.; Zou, Y.; Ju, P. A novel bicoumarin-based multifunctional fluorescent probe for naked-eye sensing of amines/ammonia. Anal. Methods, 2020, 12(13), 1744-1751.
[http://dx.doi.org/10.1039/D0AY00297F]
[58]
Bao, C.; Shao, S.; Zhou, H.; Han, Y. A new ESIPT-based fluorescent probe for the highly sensitive detection of amine vapors. New J. Chem., 2021, 45(24), 10735-10740.
[http://dx.doi.org/10.1039/D1NJ01826D]
[59]
Mallick, S.; Chandra, F.; Koner, A.L. A ratiometric fluorescent probe for detection of biogenic primary amines with nanomolar sensitivity. Analyst, 2016, 141(3), 827-831.
[http://dx.doi.org/10.1039/C5AN01911G] [PMID: 26734688]
[60]
Shi, P.; Wang, J.; Zhao, Y.; Duan, Y.; Shi, L.; Hou, Y.; Hou, J.; Li, W.; Han, T. Solid-supported synergistic twain probes with aggregation-induced emission: A sensing platform for fingerprinting volatile amines. Talanta, 2018, 178, 522-529.
[http://dx.doi.org/10.1016/j.talanta.2017.09.094] [PMID: 29136857]
[61]
Jeon, S.; Kim, T.I.; Jin, H.; Lee, U.; Bae, J.; Bouffard, J.; Kim, Y. Amine-reactive activated esters of meso-carboxy BODIPY: Fluorogenic assays and labeling of amines, amino acids, and proteins. J. Am. Chem. Soc., 2020, 142(20), 9231-9239.
[http://dx.doi.org/10.1021/jacs.9b13982] [PMID: 32302126]
[62]
Roy, R.; Sajeev, N.R.; Sharma, V.; Koner, A.L. Aggregation induced emission switching based ultrasensitive ratiometric detection of biogenic diamines using a perylenediimide-based smart fluoroprobe. ACS Appl. Mater. Interfaces, 2019, 11(50), 47207-47217.
[http://dx.doi.org/10.1021/acsami.9b14690] [PMID: 31738046]
[63]
Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev., 2007, 107(11), 4891-4932.
[http://dx.doi.org/10.1021/cr078381n] [PMID: 17924696]
[64]
Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent BODIPY dyes: Versatility unsurpassed. Angew. Chem. Int. Ed. Engl., 2008, 47(7), 1184-1201.
[http://dx.doi.org/10.1002/anie.200702070] [PMID: 18092309]
[65]
Zhai, L.; Liu, M.; Xue, P.; Sun, J.; Gong, P.; Zhang, Z.; Sun, J.; Lu, R. Nanofibers generated from nonclassical organogelators based on difluoroboron β;-diketonate complexes to detect aliphatic primary amine vapors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(34), 7939-7947.
[http://dx.doi.org/10.1039/C6TC01790H]
[66]
Li, Z.; Pei, Y.; Hou, S.; Dai, Y.; Liu, D.; Zhu, J.; Zhu, Y.P.; Liu, X. Dithienylethene-bridged difluoroboron β;-diketonate dyes: Optical switching behaviors and triple sensing for volatile amine vapors. Dyes Pigm., 2020, 179108419
[http://dx.doi.org/10.1016/j.dyepig.2020.108419]
[67]
Zhai, L.; Zhang, F.; Sun, J.; Liu, M.; Sun, M.; Lu, R. New non-traditional organogelator of β;-diketone-boron difluoride complexes with terminal tetraphenylethene: Self-assembling and fluorescent sensory properties towards amines. Dyes Pigm., 2017, 145, 54-62.
[http://dx.doi.org/10.1016/j.dyepig.2017.05.047]
[68]
Seenivasagaperumal, S.B.; Shanmugam, S. Fluorescent β;-ketothiolester boron complex: Substitution based “turn-off” or “ratiometric” sensor for diamine. New J. Chem., 2018, 42(5), 3394-3400.
[http://dx.doi.org/10.1039/C7NJ03260A]
[69]
Li, Z.; Song, Y.; Lu, Z.; Li, Z.; Li, R.; Li, Y.; Hou, S.; Zhu, Y.P.; Guo, H.; Zhu, Y.P.; Guo, H. Novel difluoroboron complexes of curcumin analogues as “dual-dual” sensing materials for volatile acid and amine vapors. Dyes Pigm., 2020, 179108406
[http://dx.doi.org/10.1016/j.dyepig.2020.108406]
[70]
Li, Z.; Gao, X.; Hu, X.; Zhang, X.; Jia, C.; Liu, C.; Shen, L.; Zhu, H.; Cui, M.; Lu, Z.; Guo, H. Dithienylethenes functionalized by triphenylethene and difluoroboron β;-diketonate fragments: Synthesis, optical switching behavior and fluorescent turn-on sensing for volatile organic amines. Dyes Pigm., 2021, 192109422
[http://dx.doi.org/10.1016/j.dyepig.2021.109422]
[71]
Li, L.; Li, W.; Wang, L.; Tang, H.; Cao, D.; Ran, X. Pyrrolopyrrole aza-BODIPY dyes for ultrasensitive and highly selective biogenic diamine detection. Sens. Actuators B Chem., 2020, 312127953
[http://dx.doi.org/10.1016/j.snb.2020.127953]
[72]
Wang, L.; Ding, H.; Tang, H.; Cao, D.; Ran, X. A novel and efficient chromophore reaction based on a lactam-fused aza-BODIPY for polyamine detection. Anal. Chim. Acta, 2020, 1135, 38-46.
[http://dx.doi.org/10.1016/j.aca.2020.08.031] [PMID: 33070857]
[73]
Lippert, A.R.; Van de Bittner, G.C.; Chang, C.J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res., 2011, 44(9), 793-804.
[http://dx.doi.org/10.1021/ar200126t] [PMID: 21834525]
[74]
Fu, Y.; He, Q.; Zhu, D.; Wang, Y.; Gao, Y.; Cao, H.; Cheng, J. A BODIPY dye as a reactive chromophoric/fluorogenic probe for selective and quick detection of vapors of secondary amines. Chem. Commun., 2013, 49(96), 11266-11268.
[http://dx.doi.org/10.1039/c3cc46571c] [PMID: 24153237]
[75]
Longstreet, A.R.; Jo, M.; Chandler, R.R.; Hanson, K.; Zhan, N.; Hrudka, J.J.; Mattoussi, H.; Shatruk, M.; McQuade, D.T. Ylidenemalononitrile enamines as fluorescent “turn-on” indicators for primary amines. J. Am. Chem. Soc., 2014, 136(44), 15493-15496.
[http://dx.doi.org/10.1021/ja509058u] [PMID: 25313715]
[76]
Longstreet, A.R.; Campbell, B.S.; Gupton, B.F.; McQuade, D.T. Improved synthesis of mono- and disubstituted 2-halonicotinonitriles from alkylidene malononitriles. Org. Lett., 2013, 15(20), 5298-5301.
[http://dx.doi.org/10.1021/ol4025265] [PMID: 24093933]
[77]
Rohand, T.; Baruah, M.; Qin, W.; Boens, N.; Dehaen, W. Functionalisation of fluorescent BODIPY dyes by nucleophilic substitution. Chem. Commun., 2006, (3), 266-268.
[http://dx.doi.org/10.1039/B512756D] [PMID: 16391729]
[78]
Jiao, L.; Pang, W.; Zhou, J.; Wei, Y.; Mu, X.; Bai, G.; Hao, E. Regioselective stepwise bromination of boron dipyrromethene (BODIPY) dyes. J. Org. Chem., 2011, 76(24), 9988-9996.
[http://dx.doi.org/10.1021/jo201754m] [PMID: 22077955]
[79]
Sekhar, A.R.; Kaloo, M.A.; Sankar, J. Aliphatic amine discrimination by pentafluorophenyl dibromo BODIPY. Chem. Asian J., 2014, 9(9), 2422-2426.
[http://dx.doi.org/10.1002/asia.201402389] [PMID: 25044964]
[80]
Kaloo, M.A.; Sekhar, A.R.; Reddy, R.R.; Raman, R.S.; Sankar, J. A facile and visual approach for the detection of trace level ammonia vapours under ambient conditions. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(13), 2452-2456.
[http://dx.doi.org/10.1039/C6TC00426A]
[81]
Teknikel, E.; Unaleroglu, C. 2,3,5,6-Tetrabromo-8-phenyl BODIPY as a fluorometric and colorimetric probe for amines. J. Photochem. Photobiol. Chem., 2022, 422113549
[http://dx.doi.org/10.1016/j.jphotochem.2021.113549]
[82]
D, B.; Dey, D.; T L, V.; Thodi F Salfeena, C.; Panda, M.K.; Somappa, S.B.; Somappa, S.B. Rapid visual detection of amines by pyrylium salts for food spoilage taggant. ACS Appl. Bio Mater., 2020, 3(2), 772-778.
[http://dx.doi.org/10.1021/acsabm.9b00711] [PMID: 35019281]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy