Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Is there Cholinesterase Activity in the Eye?

Author(s): Sandra Carolina Durán-Cristiano*

Volume 22, Issue 3, 2022

Published on: 26 September, 2022

Page: [151 - 159] Pages: 9

DOI: 10.2174/1871524922666220414093730

Price: $65

Abstract

The nervous system regulates the visual system through neurotransmitters that play an important role in visual and ocular functions. One of those neurotransmitters is acetylcholine, a key molecule that plays a variety of biological functions. Moreover, acetylcholinesterase, the enzyme responsible for the hydrolysis of acetylcholine, is implicated in cholinergic function. However, several studies have demonstrated that in addition to their enzymatic functions, acetylcholinesterase exerts non-catalytic functions. In recent years, the importance of evaluating all possible functions of acetylcholine-acetylcholinesterase has been shown. Nevertheless, there is evidence suggesting that cholinesterase activity in the eye can regulate some biological events both in structures of the anterior and posterior segment of the eye and, therefore, in the visual information that is processed in the visual cortex. Hence, the evaluation of cholinesterase activity could be a possible marker of alterations in cholinergic activity in both ocular and systemic diseases.

Keywords: Cholinesterase, acetylcholine, visual function, ocular surface, retina, neurotransmitters.

Next »
Graphical Abstract

[1]
Takeuchi, T; Yoshimoto, S; Shimada, Y; Kochiyama, T; Kondo, HM Individual differences in visual motion perception and neurotrans-mitter concentrations in the human brain. Philos Trans. R. Soc. B. Biol Sci., 1714, 372(1714), 20160111.
[http://dx.doi.org/10.1098/rstb.2016.0111]
[2]
Skangiel-Kramska, J. Neurotransmitter systems in the visual cortex of the cat: Possible involvement in plastic phenomena. Acta Neurobiol. Exp. (Warsz.), 1988, 48(6), 335-370.
[PMID: 2908014]
[3]
Nietgen, G.W.; Schmidt, J.; Hesse, L.; Hönemann, C.W.; Durieux, M.E. Muscarinic receptor functioning and distribution in the eye: Mo-lecular basis and implications for clinical diagnosis and therapy. Eye (Lond.), 1999, 13(Pt 3a), 285-300.
[http://dx.doi.org/10.1038/eye.1999.78] [PMID: 10624421]
[4]
Shimegi, S.; Kimura, A.; Sato, A.; Aoyama, C.; Mizuyama, R.; Tsunoda, K.; Ueda, F.; Araki, S.; Goya, R.; Sato, H. Cholinergic and sero-tonergic modulation of visual information processing in monkey V1. J. Physiol. Paris, 2016, 110(1-2), 44-51.
[http://dx.doi.org/10.1016/j.jphysparis.2016.09.001] [PMID: 27619519]
[5]
Kang, J.I.; Huppé-Gourgues, F.; Vaucher, E. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front. Syst. Neurosci., 2014, 8, 172.
[http://dx.doi.org/10.3389/fnsys.2014.00172] [PMID: 25278848]
[6]
Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron, 2012, 76(1), 116-129.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[7]
Amenta, F.; Tayebati, S.K. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dys-function. Curr. Med. Chem., 2008, 15(5), 488-498.
[http://dx.doi.org/10.2174/092986708783503203] [PMID: 18289004]
[8]
Ofek, K.; Soreq, H. Cholinergic involvement and manipulation approaches in multiple system disorders. Chem. Biol. Interact., 2013, 203(1), 113-119.
[http://dx.doi.org/10.1016/j.cbi.2012.07.007] [PMID: 22898318]
[9]
Jones, C.K.; Byun, N.; Bubser, M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology, 2011, 37(1), 16-42.
[10]
Ochoa, E.L.M.; Chattopadhyay, A.; McNamee, M.G. Desensitization of the nicotinic acetylcholine receptor: Molecular mechanisms and effect of modulators. In: In: Cell. Mol. Neurobiol; , 1989; Vol. 9, pp. 141-178.
[11]
Proskocil, B.J.; Sekhon, H.S.; Jia, Y.; Savchenko, V.; Blakely, R.D.; Lindstrom, J.; Spindel, E.R. Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology, 2004, 145(5), 2498-2506.
[http://dx.doi.org/10.1210/en.2003-1728] [PMID: 14764638]
[12]
Giniatullin, R.; Nistri, A.; Yakel, J.L. Desensitization of nicotinic ACh receptors: Shaping cholinergic signaling. Trends Neurosci., 2005, 28(7), 371-378.
[http://dx.doi.org/10.1016/j.tins.2005.04.009] [PMID: 15979501]
[13]
Slotkin, T.A.; Ryde, I.T.; Wrench, N.; Card, J.A.; Seidler, F.J. Nonenzymatic role of acetylcholinesterase in neuritic sprouting: Regional changes in acetylcholinesterase and choline acetyltransferase after neonatal 6-hydroxydopamine lesions. Neurotoxicol. Teratol., 2009, 31(3), 183-186.
[http://dx.doi.org/10.1016/j.ntt.2008.12.007] [PMID: 19452616]
[14]
Gollisch, T. Throwing a glance at the neural code: Rapid information transmission in the visual system. HFSP J., 2009, 3(1), 36-46.
[http://dx.doi.org/10.2976/1.3027089]
[15]
Disney, A.A.; Reynolds, J.H. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: A comparative study of rat, guinea pig, ferret, macaque, and human. J. Comp. Neurol., 2014, 522(5), 986-1003.
[http://dx.doi.org/10.1002/cne.23456] [PMID: 23983014]
[16]
Han, Z.Y.; Le Novère, N.; Zoli, M.; Hill, J.A.J., Jr; Champtiaux, N.; Changeux, J.P. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur. J. Neurosci., 2000, 12(10), 3664-3674.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00262.x] [PMID: 11029636]
[17]
Grisaru, D.; Sternfeld, M.; Eldor, A.; Glick, D.; Soreq, H. Structural roles of acetylcholinesterase variants in biology and pathology. Eur. J. Biochem., 1999, 264(3), 672-686.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00693.x] [PMID: 10491113]
[18]
UNIPROT. Acetylcholinesterase human, Available from: https://www.uniprot.org/uniprot/P22303
[19]
Sakayanathan, P.; Loganathan, C.; Kandasamy, S.; Ramanna, R.V.; Poomani, K.; Thayumanavan, P. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int. J. Biol. Macromol., 2019, 140, 1147-1157.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.168] [PMID: 31442505]
[20]
Mushtaq, G.; Greig, N.H.; Khan, J.A.; Kamal, M.A. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(8), 1432-1439.
[http://dx.doi.org/10.2174/1871527313666141023141545] [PMID: 25345511]
[21]
Johnson, G.; Moore, S.W. Cholinesterases modulate cell adhesion in human neuroblastoma cells in vitro. Int. J. Dev. Neurosci., 2000, 18(8), 781-790.
[http://dx.doi.org/10.1016/S0736-5748(00)00049-6] [PMID: 11154847]
[22]
Thullbery, M.D.; Cox, H.D.; Schule, T.; Thompson, C.M.; George, K.M. Differential localization of acetylcholinesterase in neuronal and non-neuronal cells. J. Cell. Biochem., 2005, 96(3), 599-610.
[http://dx.doi.org/10.1002/jcb.20530] [PMID: 16052514]
[23]
Day, T.; Greenfield, S.A. A non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurones in vitro: Molecular mecha-nisms. Neuroscience, 2002, 111(3), 649-656.
[http://dx.doi.org/10.1016/S0306-4522(02)00031-3] [PMID: 12031351]
[24]
Johnson, G.; Moore, S.W. Identification of a structural site on acetylcholinesterase that promotes neurite outgrowth and binds laminin-1 and collagen IV. Biochem. Biophys. Res. Commun., 2004, 319(2), 448-455.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.018] [PMID: 15178427]
[25]
Brimijoin, S.; Koenigsberger, C. Cholinesterases in neural development: New findings and toxicologic implications. Environ. Health Perspect., 1999(Suppl. 1), 59-64.
[26]
London, A.; Benhar, I.; Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol., 2013, 9(1), 44-53.
[http://dx.doi.org/10.1038/nrneurol.2012.227] [PMID: 23165340]
[27]
Hutchins, J.B.; Hollyfield, J.G. Acetylcholine receptors in the human retina. Invest. Ophthalmol. Vis. Sci., 1985, 26(11), 1550-1557.
[PMID: 2865230]
[28]
Ford, K.J.; Feller, M.B. Assembly and disassembly of a retinal cholinergic network. Vis. Neurosci., 2011, 29(1), 61-71.
[29]
Hoon, M.; Sinha, R.; Okawa, H.; Suzuki, S.C.; Hirano, A.A.; Brecha, N. Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells. Proc. Natl. Acad. Sci., 2015, 112(41), 12840-12845. [--> abstract]
[http://dx.doi.org/10.1073/pnas.1510483112]
[30]
Strang, C.E.; Renna, J.M.; Amthor, F.R.; Keyser, K.T. Muscarinic acetylcholine receptor localization and activation effects on ganglion response properties. Invest. Ophthalmol. Vis. Sci., 2009, 51(5), 2778-2789.
[31]
Strang, C.E.; Long, Y.; Gavrikov, K.E.; Amthor, F.R.; Keyser, K.T. Nicotinic and muscarinic acetylcholine receptors shape ganglion cell response properties. J. Neurophysiol., 2015, 113(1), 203-217.
[http://dx.doi.org/10.1152/jn.00405.2014] [PMID: 25298382]
[32]
Nichols, C.W.; Koelle, G.B. Acetylcholinesterase: Method for demonstration in amacrine cells of rabbit retina. Science, 1967, 155(3761), 477-478.
[http://dx.doi.org/10.1126/science.155.3761.477] [PMID: 6015699]
[33]
Pourcho, R.G.; Osman, K. Acetylcholinesterase localization in cat retina: A comparison with choline acetyltransferase. Exp. Eye Res., 1986, 43(4), 585-594.
[http://dx.doi.org/10.1016/S0014-4835(86)80025-2] [PMID: 3792461]
[34]
Glow, P.H.; Rose, S. Effects of light and dark on the acetylcholinesterase activity of the retina. Nature, 1964, 202(4930), 422-423.
[http://dx.doi.org/10.1038/202422b0] [PMID: 14152858]
[35]
Hall, C.A.; Chilcott, R.P. Eyeing up the future of the pupillary light reflex in neurodiagnostics. Diagnostics, 2018, 8(1), 19.
[http://dx.doi.org/10.3390/diagnostics8010019]
[36]
Blasina, M.F.; Faria, A.C.; Gardino, P.F.; Hokoc, J.N.; Almeida, O.M.; de Mello, F.G.; Arruti, C.; Dajas, F. Evidence for a noncholinergic function of acetylcholinesterase during development of chicken retina as shown by fasciculin. Cell Tissue Res., 2000, 299(2), 173-184.
[http://dx.doi.org/10.1007/s004419900117] [PMID: 10741458]
[37]
Appleyard, M.E.; McDonald, B.; Benjamin, L. Presence of a soluble form of acetylcholinesterase in human ocular fluids. Br. J. Ophthalmol., 1991, 75(5), 276-279.
[http://dx.doi.org/10.1136/bjo.75.5.276] [PMID: 2036344]
[38]
Almasieh, M.; MacIntyre, J.N.; Pouliot, M.; Casanova, C.; Vaucher, E.; Kelly, M.E.M.; Di Polo, A. Acetylcholinesterase inhibition pro-motes retinal vasoprotection and increases ocular blood flow in experimental glaucoma. Invest. Ophthalmol. Vis. Sci., 2013, 54(5), 3171-3183.
[http://dx.doi.org/10.1167/iovs.12-11481] [PMID: 23599333]
[39]
Goldblum, D.; Garweg, J.G.; Böhnke, M. Topical rivastigmine, a selective acetylcholinesterase inhibitor, lowers intraocular pressure in rabbits. J. Ocul. Pharmacol. Ther., 2000, 16(1), 29-35.
[http://dx.doi.org/10.1089/jop.2000.16.29] [PMID: 10673128]
[40]
Wilson, W.S.; McKean, C.E. Regional distribution of acetylcholine and associated enzymes and their regeneration in corneal epithelium. Exp. Eye Res., 1986, 43(2), 235-242.
[http://dx.doi.org/10.1016/S0014-4835(86)80091-4] [PMID: 3758222]
[41]
Sastry, B.V. Cholinergic systems and multiple cholinergic receptors in ocular tissues. J. Ocul. Pharmacol., 1985, 1(2), 201-226.
[http://dx.doi.org/10.1089/jop.1985.1.201] [PMID: 3916849]
[42]
Wang, Y.; Zekveld, A.A.; Naylor, G.; Ohlenforst, B.; Jansma, E.P.; Lorens, A.; Lunner, T.; Kramer, S.E. Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment. PLoS One, 2016, 11(4), e0153566.
[http://dx.doi.org/10.1371/journal.pone.0153566] [PMID: 27089436]
[43]
Hayakawa, S.; Hiramoto, D.; Sekiya, H. (Inhibition of acetylcholinesterase at pupil-related central nuclei by organophosphorus pesticide (fenthion)--an experimental study). Nippon Ganka Gakkai Zasshi, 1989, 93(2), 167-173.
[44]
deROETTH, AJ Cholinesterase activity in ocular tissues and fluids. Arch. Ophthalmol., 1950, 43(6), 1004-1025.
[45]
Erickson-Lamy, K.A.; Johnson, C.D.; True-Gabelt, B.; Kaufman, P.L. Ciliary muscle choline acetyltransferase and acetylcholinesterase after ciliary ganglionectomy. Exp. Eye Res., 1990, 51(3), 295-299.
[http://dx.doi.org/10.1016/0014-4835(90)90026-Q] [PMID: 2401348]
[46]
Yuen, B.G.; Tham, V.M.; Browne, E.N.; Weinrib, R.; Borkar, D.S.; Parker, J.V. Association between smoking and uveitis: Results from the pacific ocular inflammation study. Ophthalmology, 2015, 122(6), 1257-1261.
[47]
Rengstorff, R.H. Vision and ocular changes following accidental exposure to organophosphates. J. Appl. Toxicol., 1994, 14(2), 115-118.
[http://dx.doi.org/10.1002/jat.2550140213] [PMID: 8027506]
[48]
Gabelt, B.T.; Kaufman, P.L.; Polansky, J.R. Ciliary muscle muscarinic binding sites, choline acetyltransferase, and acetylcholinesterase in aging rhesus monkeys. Invest. Ophthalmol. Vis. Sci., 1990, 31(11), 2431-2436.
[PMID: 2243006]
[49]
Silveira, R.; Stjernschantz, J. Vascular effects of acetylcholinesterase inhibitors in the rabbit eye: A study with fasciculin and physostig-mine. J. Ocul. Pharmacol., 1992, 8(2), 129-137.
[http://dx.doi.org/10.1089/jop.1992.8.129] [PMID: 1506754]
[50]
Cioboata, M.; Anghelie, A.; Chiotan, C.; Liora, R.; Serban, R.; Cornăcel, C. Benefits of anterior chamber paracentesis in the management of glaucomatous emergencies. J. Med. Life, 2014, 7(2), 5-6.
[51]
Almasieh, M.; Zhou, Y.; Kelly, M.E.; Casanova, C.; Di Polo, A. Structural and functional neuroprotection in glaucoma: Role of galanta-mine-mediated activation of muscarinic acetylcholine receptors. Cell Death Dis., 2010, 1(2), e27.
[http://dx.doi.org/10.1038/cddis.2009.23] [PMID: 21364635]
[52]
Sayer, R.; Law, E.; Connelly, P.J.; Breen, K.C. Association of a salivary acetylcholinesterase with Alzheimer’s disease and response to cholinesterase inhibitors. Clin. Biochem., 2004, 37(2), 98-104.
[http://dx.doi.org/10.1016/j.clinbiochem.2003.10.007] [PMID: 14725939]
[53]
Thiphom, S.; Prapamontol, T.; Chantara, S.; Mangklabruks, A.; Suphavilai, C. A method for measuring cholinesterase activity in human saliva and its application to farmers and consumers. Anal. Methods, 2013, 5(18), 4687-4693.
[http://dx.doi.org/10.1039/c3ay40269j]
[54]
Dieckmann, G.; Fregni, F.; Hamrah, P. Neurostimulation in dry eye disease-past, present, and future. Ocul. Surf., 2019, 17(1), 20-27.
[http://dx.doi.org/10.1016/j.jtos.2018.11.002] [PMID: 30419304]
[55]
Tervo, T.; Tervo, K.; Eränkö, L.; Vannas, A.; Eränkö, O.; Cuello, A.C. Substance P immunoreaction and acetylcholinesterase activity in the cornea and Gasserian ganglion. Ophthalmic Res., 1983, 15(6), 280-288.
[http://dx.doi.org/10.1159/000265273] [PMID: 6199709]
[56]
Petersen, R.A.; Lee, K.J.; Donn, A. LEE, K-J; DONN, A. Acetylcholinesterase in the rabbit cornea. Arch. Ophthalmol., 1965, 73(3), 370-377.
[http://dx.doi.org/10.1001/archopht.1965.00970030372016] [PMID: 14246194]
[57]
Tervo, T. Histochemical demonstration of cholinesterase activity in the cornea of the rat and the effect of various denervations on the corneal nerves. Histochemistry, 1976, 47(2), 133-143.
[http://dx.doi.org/10.1007/BF00492561] [PMID: 955974]
[58]
Lasys, V.; Stanevicius, E.; Zamokas, G. Evaluation of peculiarities of the acetylcholinesterase-positive nerve plexus and its length in the cornea. Medicina (Kaunas), 2003, 39(10), 955-959.
[PMID: 14578637]
[59]
Chernyavsky, A.I.; Galitovskiy, V.; Shchepotin, I.B.; Jester, J.V.; Grando, S.A. The acetylcholine signaling network of corneal epithelium and its role in regulation of random and directional migration of corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 2014, 55(10), 6921-6933.
[http://dx.doi.org/10.1167/iovs.14-14667] [PMID: 25270189]
[60]
Eguchi, H.; Hiura, A.; Nakagawa, H.; Kusaka, S.; Shimomura, Y. Corneal nerve fiber structure, its role in corneal function, and its changes in corneal diseases. BioMed Res. Int., 2017, 2017, 3242649.
[http://dx.doi.org/10.1155/2017/3242649]
[61]
Xue, Y.; He, J.; Xiao, C.; Guo, Y.; Fu, T.; Liu, J.; Lin, C.; Wu, M.; Yang, Y.; Dong, D.; Pan, H.; Xia, C.; Ren, L.; Li, Z. The mouse auto-nomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local mac-rophages. Mucosal Immunol., 2018, 11(5), 1496-1511.
[http://dx.doi.org/10.1038/s41385-018-0031-6] [PMID: 29988115]
[62]
National Research Council. Anticholinesterases. In: Possible long-term health effects of short-term exposure to chemical agents; Anticholin-esterases and Anticholinergics, 1982; Vol. 1, .
[63]
Horikawa, Y.; Shatos, M.A.; Hodges, R.R.; Zoukhri, D.; Rios, J.D.; Chang, E.L.; Bernardino, C.R.; Rubin, P.A.; Dartt, D.A. Activation of mitogen-activated protein kinase by cholinergic agonists and EGF in human compared with rat cultured conjunctival goblet cells. Invest. Ophthalmol. Vis. Sci., 2003, 44(6), 2535-2544.
[http://dx.doi.org/10.1167/iovs.02-1117] [PMID: 12766054]
[64]
Ríos, J.D.; Forde, K.; Diebold, Y.; Lightman, J.; Zieske, J.D.; Dartt, D.A. Development of conjunctival goblet cells and their neuroreceptor subtype expression. Invest. Ophthalmol. Vis. Sci., 2000, 41(8), 2127-2137.
[PMID: 10892854]
[65]
Ríos, J.D.; Zoukhri, D.; Rawe, I.M.; Hodges, R.R.; Zieske, J.D.; Dartt, D.A. Immunolocalization of muscarinic and VIP receptor subtypes and their role in stimulating goblet cell secretion. Invest. Ophthalmol. Vis. Sci., 1999, 40(6), 1102-1111.
[PMID: 10235543]
[66]
Mitchelson, F. Muscarinic receptor agonists and antagonists: Effects on ocular function. Handb. Exp. Pharmacol., 2012, 208, 263-298.
[http://dx.doi.org/10.1007/978-3-642-23274-9_12] [PMID: 22222703]
[67]
Caro-Gamboa, L.J.; Forero-Castro, M.; Dallos-Báez, A.E. Cholinesterase inhibition as a biomarker for the surveillance of the occupation-ally exposed population to organophosphate pesticides. Cienc. Tecnol. Agropecu., 2020, 21(3), e1562.
[68]
Kim, Y.J.; Yeon, Y.; Lee, W.J.; Shin, Y.U.; Cho, H.; Sung, Y.K.; Kim, D.R.; Lim, H.W.; Kang, M.H. Comparison of microRNA expression in tears of normal subjects and Sjögren syndrome patients. Vol. 60. Invest. Ophthalmol. Vis. Sci., 2019, 60(14), 4889-4895.
[http://dx.doi.org/10.1167/iovs.19-27062] [PMID: 31752018]
[69]
Izzotti, A.; Ceccaroli, C.; Longobardi, M.G.; Micale, R.T.; Pulliero, A.; La Maestra, S.; Saccà, S.C. Molecular damage in glaucoma: From anterior to posterior eye segment. The microRNA role. MicroRNA, 2015, 4(1), 3-17.
[http://dx.doi.org/10.2174/2211536604666150707124640] [PMID: 26149270]
[70]
Nishtala, K.; Pahuja, N.; Shetty, R.; Nuijts, R.M.M.A.; Ghosh, A. Tear biomarkers for keratoconus. Eye Vis. (Lond.), 2016, 3(1), 19.
[http://dx.doi.org/10.1186/s40662-016-0051-9] [PMID: 27493978]
[71]
Jung, J.H.; Ji, Y.W.; Hwang, H.S.; Oh, J.W.; Kim, H.C.; Lee, H.K.; Kim, K.P. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci. Rep., 2017, 7(1), 13363.
[http://dx.doi.org/10.1038/s41598-017-13817-y] [PMID: 29042648]
[72]
Cunha, J.P.; Moura-Coelho, N.; Proença, R.P.; Dias-Santos, A.; Ferreira, J.; Louro, C.; Castanheira-Dinis, A. Alzheimer’s disease: A re-view of its visual system neuropathology. Optical coherence tomography-a potential role as a study tool in vivo. Graefes Arch. Clin. Exp. Ophthalmol., 2016, 254(11), 2079-2092.
[http://dx.doi.org/10.1007/s00417-016-3430-y] [PMID: 27377656]
[73]
Uhlhaas, P.J.; Pantel, J.; Lanfermann, H.; Prvulovic, D.; Haenschel, C.; Maurer, K.; Linden, D.E. Visual perceptual organization deficits in Alzheimer’s dementia. Dement. Geriatr. Cogn. Disord., 2008, 25(5), 465-475.
[http://dx.doi.org/10.1159/000125671] [PMID: 18408365]
[74]
Yap, T.E.; Davis, B.M.; Guo, L.; Normando, E.M.; Cordeiro, M.F. Annexins in Glaucoma. Int. J. Mol. Sci., 2018, 19(4), E1218.
[http://dx.doi.org/10.3390/ijms19041218] [PMID: 29673196]
[75]
Schicht, M.; Garreis, F.; Hartjen, N.; Beileke, S.; Jacobi, C.; Sahin, A.; Holland, D.; Schröder, H.; Hammer, C.M.; Paulsen, F.; Bräuer, L. SFTA3 - a novel surfactant protein of the ocular surface and its role in corneal wound healing and tear film surface tension. Sci. Rep., 2018, 8(1), 9791.
[http://dx.doi.org/10.1038/s41598-018-28005-9] [PMID: 29955092]
[76]
Darreh-Shori, T.; Kadir, A.; Almkvist, O.; Grut, M.; Wall, A.; Blomquist, G.; Eriksson, B.; Långström, B.; Nordberg, A. Inhibition of ace-tylcholinesterase in CSF versus brain assessed by 11C-PMP PET in AD patients treated with galantamine. Neurobiol. Aging, 2008, 29(2), 168-184.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.09.020] [PMID: 17196712]
[77]
Pohanka, M.; Hrabinova, M.; Kuca, K.; Simonato, J-P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. Int. J. Mol. Sci., 2011, 12(4), 2631-2640.
[http://dx.doi.org/10.3390/ijms12042631]
[78]
Claus Henn, B.; McMaster, S.; Padilla, S. Measuring cholinesterase activity in human saliva. J. Toxicol. Environ. Health A, 2006, 69(19), 1805-1818.
[http://dx.doi.org/10.1080/15287390600631458] [PMID: 16905510]
[79]
Benitez, A.; Ramírez-Vargas, M.A. Cholinesterase as a biomarker to identify cases of pesticide poisoning. Mex. J. Med. Res. ICSA., 2021, 9(17), 47-55.
[http://dx.doi.org/10.29057/mjmr.v9i17.5577]
[80]
Soria, J.; Acera, A.; Merayo-LLoves, J.; Durán, J.A.; González, N.; Rodriguez, S.; Bistolas, N.; Schumacher, S.; Bier, F.F.; Peter, H.; Stöck-lein, W.; Suárez, T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci. Rep., 2017, 7(1), 17478.
[http://dx.doi.org/10.1038/s41598-017-17536-2] [PMID: 29234088]
[81]
Can Demirdöğen, B.; Koçan Akçin, C.; Özge, G.; Mumcuoğlu, T. Evaluation of tear and aqueous humor level, and genetic variants of con-nective tissue growth factor as biomarkers for early detection of pseudoexfoliation syndrome/glaucoma. Exp. Eye Res., 2019, 189, 107837.
[http://dx.doi.org/10.1016/j.exer.2019.107837] [PMID: 31626800]
[82]
Dur, S. Tear film biomarkers and their clinical application Tear film biomarkers and its clinical application. Tear Film Biomar. Clin. Appl. Intro., 2020, 5759, 1-11.
[83]
Naguib, S.; Bernardo-Colón, A.; Cencer, C.; Gandra, N.; Rex, T.S. Galantamine protects against synaptic, axonal, and vision deficits in experimental neurotrauma. Neurobiol. Dis., 2020, 134, 104695.
[http://dx.doi.org/10.1016/j.nbd.2019.104695] [PMID: 31778813]
[84]
Hahn, B.; Shrieves, M.E.; Olmstead, C.K.; Yuille, M.B.; Chiappelli, J.J.; Pereira, E.F.R. Evidence for positive allosteric modulation of cog-nitive-enhancing effects of nicotine in healthy human subjects. Psychopharmacology, 2019, 237(1), 219-230.
[85]
Sheynin, Y.; Rosa-Neto, P.; Hess, R.F.; Vaucher, E. Cholinergic modulation of binocular vision. J. Neurosci., 2020, 40(27), 5208-5213.
[http://dx.doi.org/10.1523/JNEUROSCI.2484-19.2020] [PMID: 32457075]
[86]
Vaucher, E.; Laliberté, G.; Higgins, M-C.; Maheux, M.; Jolicoeur, P.; Chamoun, M. Cholinergic potentiation of visual perception and vi-sion restoration in rodents and humans. Restor. Neurol. Neurosci., 2019, 37(6), 553-569.
[http://dx.doi.org/10.3233/RNN-190947] [PMID: 31839615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy