Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Research Progress of Novel Drug Delivery Systems of Chinese Medicine Monomers based on Natural Silk Fibroin: A Mini-Review

Author(s): Bin Yu, Zheng Sun, Xuecheng Li, Aimei Qv, Muhammad Sohail, Yanli Li, Hui Xu* and Ping Xiang*

Volume 20, Issue 3, 2023

Published on: 10 June, 2022

Page: [211 - 222] Pages: 12

DOI: 10.2174/1567201819666220413111439

Price: $65

Abstract

Traditional Chinese medicine (TCM) has a good curative effect, but its disadvantages include complex components, poor drug stability, potential drug interaction, etc. Therefore, it is particularly important to construct a novel drug delivery system that can load Chinese medicine monomers to solve this problem. Silk fibroin is a kind of natural polymer material with unique properties. It can be used as a carrier material to load Chinese medicine monomers to prepare novel drug delivery systems that significantly affect treating diseases without toxic and side effects. However, there is still a lack of a review on silk fibroin as a carrier material to load Chinese medicine monomers to explore and analyze the current research results and progress. Here, our article focuses on the in-depth excavation and analysis of the recent research on novel drug delivery systems prepared by silk fibroin and TCM monomers. Besides, the characteristics, existing problems, and prospects of silk fibroin are discussed and explained. It is hoped that this research can provide a reference and basis for the modernization of TCM, the design of novel drug delivery systems, the research and development of new drugs in the future, and contribute to the innovation of silk protein.

Keywords: Chinese medicine, monomers, drug delivery systems, silk fibroin, TCM.

Next »
Graphical Abstract

[1]
Ma, Y.; Canup, B.S.B.; Tong, X.; Dai, F.; Xiao, B. Multi-responsive silk fibroin-based nanoparticles for drug delivery. Front Chem., 2020, 8, 585077.
[http://dx.doi.org/10.3389/fchem.2020.585077] [PMID: 33240846]
[2]
Wani, S.U.D.; Veerabhadrappa, G.H. Silk fibroin based drug delivery applications: Promises and challenges. Curr. Drug Targets, 2018, 19(10), 1177-1190.
[http://dx.doi.org/10.2174/1389450119666171227205525] [PMID: 29283071]
[3]
Zuluaga-Vélez, A.; Quintero-Martinez, A.; Orozco, L.M.; Sepúlveda-Arias, J.C. Silk fibroin nanocomposites as tissue engineering scaffolds - A systematic review. Biomed. Pharmacother., 2021, 141, 111924.
[http://dx.doi.org/10.1016/j.biopha.2021.111924] [PMID: 34328093]
[4]
Xu, Z.; Shi, L.; Yang, M.; Zhu, L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review. Mater. Sci. Eng. C, 2019, 95, 302-311.
[http://dx.doi.org/10.1016/j.msec.2018.11.010] [PMID: 30573254]
[5]
Sultan, M.T.; Lee, O.J.; Kim, S.H.; Ju, H.W.; Park, C.H. Silk fibroin in wound healing process. Adv. Exp. Med. Biol., 2018, 1077, 115-126.
[http://dx.doi.org/10.1007/978-981-13-0947-2_7] [PMID: 30357686]
[6]
Hong, H.; Seo, Y.B.; Kim, D.Y.; Lee, J.S.; Lee, Y.J.; Lee, H.; Ajiteru, O.; Sultan, M.T.; Lee, O.J.; Kim, S.H.; Park, C.H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2020, 232, 119679.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119679] [PMID: 31865191]
[7]
Zhang, W.; Wray, L.S.; Rnjak-Kovacina, J.; Xu, L.; Zou, D.; Wang, S.; Zhang, M.; Dong, J.; Li, G.; Kaplan, D.L.; Jiang, X. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration. Biomaterials, 2015, 56, 68-77.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.053] [PMID: 25934280]
[8]
Yonesi, M.; Garcia-Nieto, M.; Guinea, G.V.; Panetsos, F.; Pérez-Rigueiro, J.; González-Nieto, D. Silk fibroin: An ancient material for repairing the injured nervous system. Pharmaceutics, 2021, 13(3), 429.
[http://dx.doi.org/10.3390/pharmaceutics13030429] [PMID: 33806846]
[9]
Diez-Echave, P.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Hidalgo-García, L.; Vezza, T.; Cenis-Cifuentes, L.; Rodríguez-Sojo, M.J.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; Rodríguez-Nogales, A.; Gálvez, J.; Lozano-Pérez, A.A. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm., 2021, 606, 120935.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120935] [PMID: 34310954]
[10]
Hassani Besheli, N.; Mottaghitalab, F.; Eslami, M.; Gholami, M.; Kundu, S.C.; Kaplan, D.L.; Farokhi, M. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl. Mater. Interfaces, 2017, 9(6), 5128-5138.
[http://dx.doi.org/10.1021/acsami.6b14912] [PMID: 28106379]
[11]
Hassanzadeh, P.; Arbabi, E.; Rostami, F. Coating of ferulic acid-loaded silk fibroin nanoparticles with neutrophil membranes: A promising strategy against the acute pancreatitis. Life Sci., 2021, 270, 119128.
[http://dx.doi.org/10.1016/j.lfs.2021.119128] [PMID: 33508299]
[12]
Wang, D.; Steffi, C.; Wang, Z.; Kong, C.H.; Lim, P.N.; Shi, Z.; Thian, E.S.; Wang, W. Beta-cyclodextrin modified mesoporous bioactive glass nanoparticles/silk fibroin hybrid nanofibers as an implantable estradiol delivery system for the potential treatment of osteoporosis. Nanoscale, 2018, 10(38), 18341-18353.
[http://dx.doi.org/10.1039/C8NR05268A] [PMID: 30255905]
[13]
Xie, M.; Fan, D.; Chen, Y.; Zhao, Z.; He, X.; Li, G.; Chen, A.; Wu, X.; Li, J.; Li, Z.; Hunt, J.A.; Li, Y.; Lan, P. An implantable and controlled drug-release silk fibroin nanofibrous matrix to advance the treatment of solid tumour cancers. Biomaterials, 2016, 103, 33-43.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.049] [PMID: 27376557]
[14]
Chi, X.; Zhang, H.; Zhang, S.; Ma, K. Chinese herbal medicine for gout: A review of the clinical evidence and pharmacological mechanisms. Chin. Med., 2020, 15(1), 17.
[http://dx.doi.org/10.1186/s13020-020-0297-y] [PMID: 32082411]
[15]
Jin, Y.Q.; Jiang, Z.Y. Explore pros and cons of proproetary Chinese medicines and Western medicines. Zhongguo Zhongyao Zazhi, 2008, 33(20), 2407-2409.
[PMID: 19157140]
[16]
Farokhi, M.; Mottaghitalab, F.; Reis, R.L.; Ramakrishna, S.; Kundu, S.C. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. J. Control. Release, 2020, 321, 324-347.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.022] [PMID: 32061791]
[17]
Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev., 2013, 65(4), 457-470.
[http://dx.doi.org/10.1016/j.addr.2012.09.043] [PMID: 23137786]
[18]
Zheng, H.; Zuo, B. Functional silk fibroin hydrogels: Preparation, properties and applications. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(5), 1238-1258.
[http://dx.doi.org/10.1039/D0TB02099K] [PMID: 33406183]
[19]
Koh, L.D.; Cheng, Y.; Teng, C.P.; Khin, Y.W.; Loh, X.J.; Tee, S.Y.; Low, M.; Ye, E.; Yu, H.D.; Zhang, Y.W.; Han, M-Y. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci., 2015, 46, 86-110.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.02.001]
[20]
Gholipourmalekabadi, M.; Sapru, S.; Samadikuchaksaraei, A.; Reis, R.L.; Kaplan, D.L.; Kundu, S.C. Silk fibroin for skin injury repair: Where do things stand? Adv. Drug Deliv. Rev., 2020, 153, 28-53.
[http://dx.doi.org/10.1016/j.addr.2019.09.003] [PMID: 31678360]
[21]
Bini, E.; Knight, D.P.; Kaplan, D.L. Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol., 2004, 335(1), 27-40.
[http://dx.doi.org/10.1016/j.jmb.2003.10.043] [PMID: 14659737]
[22]
Eivazzadeh-Keihan, R.; Ahmadpour, F.; Aliabadi, H.A.M.; Radinekiyan, F.; Maleki, A.; Madanchi, H.; Mahdavi, M.; Shalan, A.E.; Lanceros-Méndez, S. Pectin-cellulose hydrogel, silk fibroin and magnesium hydroxide nanoparticles hybrid nanocomposites for biomedical applications. Int. J. Biol. Macromol., 2021, 192, 7-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.099] [PMID: 34571124]
[23]
Minoura, N.; Aiba, S.; Higuchi, M.; Gotoh, Y.; Tsukada, M.; Imai, Y. Attachment and growth of fibroblast cells on silk fibroin. Biochem. Biophys. Res. Commun., 1995, 208(2), 511-516.
[http://dx.doi.org/10.1006/bbrc.1995.1368] [PMID: 7695601]
[24]
Lazaris, A.; Arcidiacono, S.; Huang, Y.; Zhou, J.F.; Duguay, F.; Chretien, N.; Welsh, E.A.; Soares, J.W.; Karatzas, C.N. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science, 2002, 295(5554), 472-476.
[http://dx.doi.org/10.1126/science.1065780] [PMID: 11799236]
[25]
Wang, C.; Fang, H.; Qi, X.; Hang, C.; Sun, Y.; Peng, Z.; Wei, W.; Wang, Y. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation. Acta Biomater., 2019, 91, 99-111.
[http://dx.doi.org/10.1016/j.actbio.2019.04.048] [PMID: 31028907]
[26]
Choi, M.; Choi, D.; Hong, J. Multilayered controlled drug release silk fibroin nanofilm by manipulating secondary structure. Biomacromolecules, 2018, 19(7), 3096-3103.
[http://dx.doi.org/10.1021/acs.biomac.8b00687] [PMID: 29894631]
[27]
Cheng, Y.; Koh, L.D.; Li, D.; Ji, B.; Han, M.Y.; Zhang, Y.W. On the strength of β-sheet crystallites of Bombyx mori silk fibroin. J. R. Soc. Interface, 2014, 11(96), 20140305.
[http://dx.doi.org/10.1098/rsif.2014.0305] [PMID: 24789564]
[28]
Blamires, S.J.; Spicer, P.T.; Flanagan, P.J. Spider silk biomimetics programs to inform the development of new wearable technologies. Front. Mater., 2020, 7, 29.
[http://dx.doi.org/10.3389/fmats.2020.00029]
[29]
Gosline, J.M.; Guerette, P.A.; Ortlepp, C.S.; Savage, K.N. The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol., 1999, 202(Pt 23), 3295-3303.
[http://dx.doi.org/10.1242/jeb.202.23.3295] [PMID: 10562512]
[30]
Altman, G.H.; Horan, R.L.; Lu, H.H.; Moreau, J.; Martin, I.; Richmond, J.C.; Kaplan, D.L. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 2002, 23(20), 4131-4141.
[http://dx.doi.org/10.1016/S0142-9612(02)00156-4] [PMID: 12182315]
[31]
Floren, M.; Migliaresi, C.; Motta, A. Processing techniques and applications of silk hydrogels in bioengineering. J. Funct. Biomater., 2016, 7(3), 26.
[http://dx.doi.org/10.3390/jfb7030026] [PMID: 27649251]
[32]
Nazarov, R.; Jin, H.J.; Kaplan, D.L. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules, 2004, 5(3), 718-726.
[http://dx.doi.org/10.1021/bm034327e] [PMID: 15132652]
[33]
Cao, Y.; Wang, B. Biodegradation of silk biomaterials. Int. J. Mol. Sci., 2009, 10(4), 1514-1524.
[http://dx.doi.org/10.3390/ijms10041514] [PMID: 19468322]
[34]
Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Silk fibroin as a functional biomaterial for tissue engineering. Int. J. Mol. Sci., 2021, 22(3), 1499.
[http://dx.doi.org/10.3390/ijms22031499] [PMID: 33540895]
[35]
Lee, O.J.; Lee, J.M.; Kim, J.H.; Kim, J.; Kweon, H.; Jo, Y.Y.; Park, C.H. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J. Biomed. Mater. Res. A, 2012, 100(8), 2018-2026.
[http://dx.doi.org/10.1002/jbm.a.33308] [PMID: 22581612]
[36]
Ding, B.; Wahid, M.A.; Wang, Z.; Xie, C.; Thakkar, A.; Prabhu, S.; Wang, J. Triptolide and celastrol loaded silk fibroin nanoparticles show synergistic effect against human pancreatic cancer cells. Nanoscale, 2017, 9(32), 11739-11753.
[http://dx.doi.org/10.1039/C7NR03016A] [PMID: 28782773]
[37]
Crivelli, B.; Bari, E.; Perteghella, S.; Catenacci, L.; Sorrenti, M.; Mocchi, M.; Faragò, S.; Tripodo, G.; Prina-Mello, A.; Torre, M.L. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur. J. Pharm. Biopharm., 2019, 137, 37-45.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.008] [PMID: 30772432]
[38]
Montalbán, M.G.; Coburn, J.M.; Lozano-Pérez, A.A.; Cenis, J.L.; Víllora, G.; Kaplan, D.L. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials (Basel), 2018, 8(2), 126.
[http://dx.doi.org/10.3390/nano8020126] [PMID: 29495296]
[39]
Fuster, M.G.; Carissimi, G.; Montalbán, M.G.; Víllora, G. Antitumor activity of rosmarinic acid-loaded silk fibroin nanoparticles on HeLa and MCF-7 cells. Polymers (Basel), 2021, 13(18), 3169.
[http://dx.doi.org/10.3390/polym13183169] [PMID: 34578069]
[40]
Xue, B.; Zhang, Y.; Xu, M.; Wang, C.; Huang, J.; Zhang, H.; Meng, S.; Xie, M.; Tao, A.; Li, X. Curcumin-silk fibroin nanoparticles for enhanced anti-candida albicans activity in vitro and in vivo. J. Biomed. Nanotechnol., 2019, 15(4), 769-778.
[http://dx.doi.org/10.1166/jbn.2019.2722] [PMID: 30841969]
[41]
Li, C.; Yang, M.; Zhu, L.; Zhu, Y. Honeysuckle flowers extract loaded Bombyx mori silk fibroin films for inducing apoptosis of HeLa cells. Microsc. Res. Tech., 2017, 80(12), 1297-1303.
[http://dx.doi.org/10.1002/jemt.22928] [PMID: 28841768]
[42]
Xie, X.; Liu, L.; Zheng, Z.; Han, Z.; Zhi, M.; Kaplan, D.L.; Li, G.; Wang, X. Silk fibroin-based fibrous anal fistula plug with drug delivery function. Macromol. Biosci., 2018, 18(4), e1700384.
[http://dx.doi.org/10.1002/mabi.201700384] [PMID: 29411947]
[43]
Xu, X.; Wang, X.; Qin, C.; Khan, A.U.R.; Zhang, W.; Mo, X. Silk fibroin/poly-(L-lactide-co-caprolactone) nanofiber scaffolds loaded with Huangbai Liniment to accelerate diabetic wound healing. Colloids Surf. B Biointerfaces, 2021, 199, 111557.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111557] [PMID: 33434880]
[44]
Xie, X.; Zheng, X.; Han, Z.; Chen, Y.; Zheng, Z.; Zheng, B.; He, X.; Wang, Y.; Kaplan, D.L.; Li, Y.; Li, G.; Wang, X.; Lan, P. A biodegradable stent with surface functionalization of combined-therapy drugs for colorectal cancer. Adv. Healthc. Mater., 2018, 7(24), e1801213.
[http://dx.doi.org/10.1002/adhm.201801213] [PMID: 30468567]
[45]
Zhao, Z.H.; Ma, X.L.; Zhao, B.; Tian, P.; Ma, J.X.; Kang, J.Y.; Zhang, Y.; Guo, Y.; Sun, L. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration. Cell Prolif., 2021, 54(7), e13043.
[http://dx.doi.org/10.1111/cpr.13043] [PMID: 34008897]
[46]
Meng, Z.; Liu, Y.; Xu, K.; Sun, X.; Yu, Q.; Wu, Z.; Zhao, Z. Biomimetic polydopamine-modified silk fibroin/curcumin nanofibrous scaffolds for chemo-photothermal therapy of bone tumor. ACS Omega, 2021, 6(34), 22213-22223.
[http://dx.doi.org/10.1021/acsomega.1c02903] [PMID: 34497912]
[47]
Cheema, S.K.; Gobin, A.S.; Rhea, R.; Lopez-Berestein, G.; Newman, R.A.; Mathur, A.B. Silk fibroin mediated delivery of liposomal emodin to breast cancer cells. Int. J. Pharm., 2007, 341(1-2), 221-229.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.043] [PMID: 17499461]
[48]
Mao, K.L.; Fan, Z.L.; Yuan, J.D.; Chen, P.P.; Yang, J.J.; Xu, J. ZhuGe, D.L.; Jin, B.H.; Zhu, Q.Y.; Shen, B.X.; Sohawon, Y.; Zhao, Y.Z.; Xu, H.L. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf. B Biointerfaces, 2017, 160, 704-714.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.029] [PMID: 29035818]
[49]
Ratanavaraporn, J.; Soontornvipart, K.; Shuangshoti, S.; Shuangshoti, S.; Damrongsakkul, S. Localized delivery of curcumin from injectable gelatin/Thai silk fibroin microspheres for anti-inflammatory treatment of osteoarthritis in a rat model. Inflammopharmacology, 2017, 25(2), 211-221.
[http://dx.doi.org/10.1007/s10787-017-0318-3] [PMID: 28251487]
[50]
Shan, Y.H.; Peng, L.H.; Liu, X.; Chen, X.; Xiong, J.; Gao, J.Q. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int. J. Pharm., 2015, 479(2), 291-301.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.067] [PMID: 25556053]
[51]
Chan, W.P.; Huang, K.C.; Bai, M.Y. Silk fibroin protein-based nonwoven mats incorporating baicalein Chinese herbal extract: Preparation, characterizations, and in vivo evaluation. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(2), 420-430.
[http://dx.doi.org/10.1002/jbm.b.33560] [PMID: 26540289]
[52]
Vepari, C.; Kaplan, D.L. Silk as a biomaterial. Prog. Polym. Sci., 2007, 32(8-9), 991-1007.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.013] [PMID: 19543442]
[53]
Wu, Q.; He, C.; Wang, X.; Zhang, S.; Zhang, L.; Xie, R.; Li, Y.; Wang, X.; Han, Z.; Zheng, Z.; Li, G. Sustainable antibacterial surgical suture using a facile scalable silk-fibroin-based berberine loading system. ACS Biomater. Sci. Eng., 2021, 7(6), 2845-2857.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00481] [PMID: 34043327]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy