Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Superamphiphilic Polymeric Coating in Membrane Application: A Mini- Review

Author(s): Sara Falah, Mohsen Ghorbani* and Mohamadreza Azimifar

Volume 20, Issue 5, 2023

Published on: 29 August, 2022

Page: [438 - 454] Pages: 17

DOI: 10.2174/1570193X19666220413103855

Price: $65

conference banner
Abstract

As one of the most efficient and cost-effective separation methods, Membrane technology has been mainly considered for different applications. But as with any method, there are some special drawbacks in membranes, such as fouling, concentration polarization, and durability, which can limit the membrane performance in terms of permeate flux and solute rejection. Superamphiphilic polymers have different applications in different fields, including liquid-liquid separation membranes, self-healing, antifouling, self-cleaning, and adsorbent coatings. Recently, these kinds of coatings were applied to different membrane systems, and the effects of coating on the membrane performance were evaluated. As a review, an overview of the most common methods for manufacturing membranes with a superamphiphilic surface, a general review of the explored practical applications of such coatings in membranes, conclusions about the current situation of research, and commercial applications of superamphiphilic membranes are presented in this study.

Keywords: Superamphiphilic, polymer coating, membrane coating, switchable wettability, anti-fouling

Graphical Abstract

[1]
Atta, A.M.; Al-Lohedan, H.A.; Tawfik, A.M.; Ezzat, A.O. Application of super-amphiphilic silica-nanogel composites for fast removal of water pollutants. Molecules, 2016, 21(10), 1392.
[http://dx.doi.org/10.3390/molecules21101392] [PMID: 27775576]
[2]
Bui, V-T.; Liu, X.; Ko, S.H.; Choi, H.S. Super-amphiphilic surface of nano silica/polyurethane hybrid coated PET film via a plasma treatment. J. Colloid Interface Sci., 2015, 453, 209-215.
[http://dx.doi.org/10.1016/j.jcis.2015.04.065] [PMID: 25985425]
[3]
Chang, Y. Novel wettability of Cu3SnS4 (CTS) surface for superamphiphilic or hydrophobicity-superlipophilic. Mater. Lett., 2017, 187, 162-165.
[http://dx.doi.org/10.1016/j.matlet.2016.10.091]
[4]
Du, X. Switchable and simultaneous oil/water separation induced by prewetting with a superamphiphilic self-cleaning mesh. Chem. Eng. J., 2017, 313, 398-403.
[http://dx.doi.org/10.1016/j.cej.2016.12.092]
[5]
Fu, S. Amphibious superamphiphilic fabrics with self-healing underwater superoleophilicity. Mater. Horiz., 2019, 6(1), 122-129.
[http://dx.doi.org/10.1039/C8MH00898A]
[6]
Zhu, H. Sprayed superamphiphilic copper foams for long term recoverable oil-water separation. Surf. Coat. Tech., 2018, 334, 394-401.
[http://dx.doi.org/10.1016/j.surfcoat.2017.11.068]
[7]
Wang, R. Light-induced amphiphilic surfaces. Nature, 1997, 388(6641), 431-432.
[http://dx.doi.org/10.1038/41233]
[8]
Wang, B.; Liang, W.; Guo, Z.; Liu, W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chem. Soc. Rev., 2015, 44(1), 336-361.
[http://dx.doi.org/10.1039/C4CS00220B] [PMID: 25311259]
[9]
Shi, Z.; Zhang, W.; Zhang, F.; Liu, X.; Wang, D.; Jin, J.; Jiang, L. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater., 2013, 25(17), 2422-2427.
[http://dx.doi.org/10.1002/adma.201204873] [PMID: 23494957]
[10]
Poynor, A.; Hong, L.; Robinson, I.K.; Granick, S.; Zhang, Z.; Fenter, P.A. How water meets a hydrophobic surface. Phys. Rev. Lett., 2006, 97(26), 266101.
[http://dx.doi.org/10.1103/PhysRevLett.97.266101] [PMID: 17280430]
[11]
Liu, M.; Wang, S.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater., 2017, 2(7), 1-17.
[http://dx.doi.org/10.1038/natrevmats.2017.36]
[12]
Pan, Z. Anti-fouling TiO2 nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size. J. Membr. Sci., 2019, 572, 596-606.
[http://dx.doi.org/10.1016/j.memsci.2018.11.056]
[13]
Chen, Y. UV-driven antifouling paper fiber membranes for efficient oil-water separation. Ind. Eng. Chem. Res., 2019, 58(13), 5186-5194.
[http://dx.doi.org/10.1021/acs.iecr.8b05930]
[14]
Chen, Y. One-step facile fabrication of visible light driven antifouling carbon cloth fibers membrane for efficient oil-water separation. Separ. Purif. Tech., 2019, 228, 115769.
[http://dx.doi.org/10.1016/j.seppur.2019.115769]
[15]
Jiang, Z. Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning. Compos., Part B Eng., 2015, 77, 311-318.
[http://dx.doi.org/10.1016/j.compositesb.2015.03.067]
[16]
Vane, L.M. A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol., 2005, 80(6), 603-629.
[17]
Wee, S.L.; Tye, C.T.; Bhatia, S. Process optimization studies for the dehydration of alcohol-water system by inorganic membrane based pervaporation separation using design of experiments (DOE). Separ. Purif. Tech., 2010, 71(2), 192-199.
[http://dx.doi.org/10.1016/j.seppur.2009.11.021]
[18]
Liu, G. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chem. Eng. J., 2011, 174(2-3), 495-503.
[http://dx.doi.org/10.1016/j.cej.2011.06.004]
[19]
Zhan, X. Mixed matrix membranes with HF acid etched ZSM-5 for ethanol/water separation: Preparation and pervaporation performance. Appl. Surf. Sci., 2012, 259, 547-556.
[http://dx.doi.org/10.1016/j.apsusc.2012.05.167]
[20]
Wang, N. Tuning properties of silicalite-1 for enhanced ethanol/water pervaporation separation in its PDMS hybrid membrane. Microporous Mesoporous Mater., 2015, 201, 35-42.
[http://dx.doi.org/10.1016/j.micromeso.2014.09.010]
[21]
Lue, S.J. Water diffusivity suppression and ethanol-over-water diffusion selectivity enhancement for ethanol/water mixtures in polydimethylsiloxane-zeolite membranes. J. Membr. Sci., 2012, 415, 635-643.
[http://dx.doi.org/10.1016/j.memsci.2012.05.044]
[22]
Shah, D. Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: Mechanisms and experimental results. J. Membr. Sci., 2000, 179(1-2), 185-205.
[http://dx.doi.org/10.1016/S0376-7388(00)00515-9]
[23]
Okamoto, K-i. Zeolite NaA membrane: Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind. Eng. Chem. Res., 2001, 40(1), 163-175.
[http://dx.doi.org/10.1021/ie0006007]
[24]
Li, Y. Pervaporation and vapor permeation dehydration of Fischer-Tropsch mixed-alcohols by LTA zeolite membranes. Separ. Purif. Tech., 2007, 57(1), 140-146.
[http://dx.doi.org/10.1016/j.seppur.2007.03.027]
[25]
Hsu, Y. On the size range of active nucleation cavities on a heating surface. J. Heat Transfer, 1962, 84(3), 207-213.
[http://dx.doi.org/10.1115/1.3684339]
[26]
Maracy, M.; Winterton, R. Hysteresis and contact angle effects in transition pool boiling of water. Int. J. Heat Mass Transf., 1988, 31(7), 1443-1449.
[http://dx.doi.org/10.1016/0017-9310(88)90253-0]
[27]
Liaw, S-P.; Dhir, V. Void fraction measurements during saturated pool boiling of water on partially wetted vertical surfaces. J. Heat Trans-Trans. Asme, 1989, 111, 731-738.
[http://dx.doi.org/10.1115/1.3250744]
[28]
Dhir, V.; Liaw, S. Framework for a unified model for nucleate and transition pool boiling. J. Heat Transfer, 1989, 111(3), 739-746.
[http://dx.doi.org/10.1115/1.3250745]
[29]
Kim, S. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl. Phys. Lett., 2006, 89(15), 153107.
[http://dx.doi.org/10.1063/1.2360892]
[30]
Forrest, E. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transf., 2010, 53(1-3), 58-67.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.008]
[31]
Chen, R.; Lu, M.C.; Srinivasan, V.; Wang, Z.; Cho, H.H.; Majumdar, A. Nanowires for enhanced boiling heat transfer. Nano Lett., 2009, 9(2), 548-553.
[http://dx.doi.org/10.1021/nl8026857] [PMID: 19152275]
[32]
Hsu, C-C.; Chen, P-H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int. J. Heat Mass Transf., 2012, 55(13-14), 3713-3719.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.003]
[33]
Liao, Y.; Tian, M.; Wang, R. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure. J. Membr. Sci., 2017, 543, 123-132.
[http://dx.doi.org/10.1016/j.memsci.2017.08.056]
[34]
Fox, H.; Zisman, W. The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene. J. Colloid Sci., 1950, 5(6), 514-531.
[http://dx.doi.org/10.1016/0095-8522(50)90044-4]
[35]
Salehi, S.; Jahanshahi, M.; Peyravi, M. Poly (vinylidene difluoride) membrane assisted by modified ZnO/ZIF nanoparticles for membrane distillation. Chem. Eng. Technol., 2018, 41(10), 1994-2004.
[http://dx.doi.org/10.1002/ceat.201700496]
[36]
Kodolov, V.I.; Zaikov, G.E.; Haghi, A. Nanostructures, nanomaterials, and nanotechnologies to nanoindustry; Apple Academic Press, 2019.
[37]
Scheller, P.R. Applications of Interfacial Phenomena in Process Metallurgy. Treatise on Process Metallurgy; Elsevier, 2014, pp. 119-139.
[http://dx.doi.org/10.1016/B978-0-08-096984-8.00022-7]
[38]
Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936, 28(8), 988-994.
[http://dx.doi.org/10.1021/ie50320a024]
[39]
Drelich, J.; Chibowski, E. Superhydrophilic and superwetting surfaces: Definition and mechanisms of control. Langmuir, 2010, 26(24), 18621-18623.
[http://dx.doi.org/10.1021/la1039893] [PMID: 21090661]
[40]
Wang, R. Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater., 1998, 10(2), 135-138.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:2<135:AID-ADMA135>3.0.CO;2-M]
[41]
Feng, X.; Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater., 2006, 18(23), 3063-3078.
[http://dx.doi.org/10.1002/adma.200501961]
[42]
Bisheh, M.G. Static and dynamic filtration of nickel and lead ions by adsorptive membrane induced by POP via layer by layer technique. Chem. Eng. Res. Des., 2020, 153, 829-838.
[http://dx.doi.org/10.1016/j.cherd.2019.11.033]
[43]
Dudchenko, A.V.; Rolf, J.; Shi, L.; Olivas, L.; Duan, W.; Jassby, D. Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: An experimental and theoretical study. ACS Nano, 2015, 9(10), 9930-9941.
[http://dx.doi.org/10.1021/acsnano.5b04880] [PMID: 26422748]
[44]
Yang, H-C.; Xie, Y.; Chan, H.; Narayanan, B.; Chen, L.; Waldman, R.Z.; Sankaranarayanan, S.K.R.S.; Elam, J.W.; Darling, S.B. Crude-oil-repellent membranes by atomic layer deposition: Oxide interface engineering. ACS Nano, 2018, 12(8), 8678-8685.
[http://dx.doi.org/10.1021/acsnano.8b04632] [PMID: 30107114]
[45]
Peng, Y.; Guo, Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(41), 15749-15770.
[http://dx.doi.org/10.1039/C6TA06922C]
[46]
Huang, Y. Coordinated silicon elastomer coating@ fabrics with oil/water separation capabilities, outstanding durability and ultra-fast room-temperature self-healing ability. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(35), 17156-17163.
[http://dx.doi.org/10.1039/C8TA02893A]
[47]
Wang, N. Electrostatic assembly of superwetting porous nanofibrous membrane toward oil-in-water microemulsion separation. Chem. Eng. J., 2018, 354, 463-472.
[http://dx.doi.org/10.1016/j.cej.2018.08.019]
[48]
Klaysom, C.; Cath, T.Y.; Depuydt, T.; Vankelecom, I.F. Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply. Chem. Soc. Rev., 2013, 42(16), 6959-6989.
[http://dx.doi.org/10.1039/c3cs60051c] [PMID: 23778699]
[49]
McSweeney, D.J.; Maidannyk, V.; Montgomery, S.; O’Mahony, J.A.; McCarthy, N.A. The influence of composition and manufacturing approach on the physical and rehydration properties of milk protein concentrate powders. Foods, 2020, 9(2), 236.
[http://dx.doi.org/10.3390/foods9020236] [PMID: 32098298]
[50]
Rastogi, N.K. Opportunities and challenges in application of forward osmosis in food processing. Crit. Rev. Food Sci. Nutr., 2016, 56(2), 266-291.
[http://dx.doi.org/10.1080/10408398.2012.724734] [PMID: 25036521]
[51]
Barros, A.I.; Nunes, F.M.; Gonçalves, B.; Bennett, R.N.; Silva, A.P. Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem., 2011, 128(1), 165-172.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.013] [PMID: 25214344]
[52]
Kechinski, C.P.; Guimarães, P.V.; Noreña, C.P.; Tessaro, I.C.; Marczak, L.D. Degradation kinetics of anthocyanin in blueberry juice during thermal treatment. J. Food Sci., 2010, 75(2), C173-C176.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01479.x] [PMID: 20492222]
[53]
Provesi, J.G.; Dias, C.O.; Amante, E.R. Changes in carotenoids during processing and storage of pumpkin puree. Food Chem., 2011, 128(1), 195-202.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.027] [PMID: 25214348]
[54]
Singh, H. Heat stability of milk. Int. J. Dairy Technol., 2004, 57((2-3)), 111-119.
[http://dx.doi.org/10.1111/j.1471-0307.2004.00143.x]
[55]
Mulder, M.; Mulder, J. Basic principles of membrane technology; Springer Science & Business Media, 1996.
[http://dx.doi.org/10.1007/978-94-009-1766-8]
[56]
Council, N.R. Water reuse: Potential for expanding the nation’s water supply through reuse of municipal wastewater; National Academies Press, 2012.
[57]
Selatile, M.K. Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Advances, 2018, 8(66), 37915-37938.
[http://dx.doi.org/10.1039/C8RA07489E]
[58]
Bylund, G. Tetra pak processing handbook. Dairy Ind. Int., 2015, 80.
[59]
Muller, L.L.; Harper, W.J. Effects on membrane processing of pretreatments of whey. J. Agric. Food Chem., 1979, 27(4), 662-664.
[http://dx.doi.org/10.1021/jf60224a035]
[60]
Dova, M.I.; Petrotos, K.B.; Lazarides, H.N. On the direct osmotic concentration of liquid foods. Part I: Impact of process parameters on process performance. J. Food Eng., 2007, 78(2), 422-430.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.10.010]
[61]
Lim, T.H.; Dunkley, W.; Merson, R. Role of protein in reverse osmosis of cottage cheese whey. J. Dairy Sci., 1971, 54(3), 306-311.
[http://dx.doi.org/10.3168/jds.S0022-0302(71)85834-4]
[62]
Van Boxtel, A.; Otten, Z.; Van der Linden, H. Evaluation of process models for fouling control of reverse osmosis of cheese whey. J. Membr. Sci., 1991, 58(1), 89-111.
[http://dx.doi.org/10.1016/S0376-7388(00)80639-0]
[63]
Nayak, C.A.; Rastogi, N.K. Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy. Separ. Purif. Tech., 2010, 71(2), 144-151.
[http://dx.doi.org/10.1016/j.seppur.2009.11.013]
[64]
Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci., 2006, 281(1-2), 70-87.
[http://dx.doi.org/10.1016/j.memsci.2006.05.048]
[65]
Petrotos, K.B.; Lazarides, H.N. Osmotic concentration of liquid foods. J. Food Eng., 2001, 49(2-3), 201-206.
[http://dx.doi.org/10.1016/S0260-8774(00)00222-3]
[66]
Alsvik, I.L.; Hägg, M-B. Pressure retarded osmosis and forward osmosis membranes: Materials and methods. Polymers (Basel), 2013, 5(1), 303-327.
[http://dx.doi.org/10.3390/polym5010303]
[67]
Huang, Z-M. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[68]
Jiang, L.; Zhao, Y.; Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed., 2004, 43(33), 4338-4341.
[http://dx.doi.org/10.1002/anie.200460333] [PMID: 15368387]
[69]
Rim, N.G.; Shin, C.S.; Shin, H. Current approaches to electrospun nanofibers for tissue engineering. Biomed. Mater., 2013, 8(1), 014102.
[http://dx.doi.org/10.1088/1748-6041/8/1/014102] [PMID: 23472258]
[70]
Lim, H.S.; Baek, J.H.; Park, K.; Shin, H.S.; Kim, J.; Cho, J.H. Multifunctional hybrid fabrics with thermally stable superhydrophobicity. Adv. Mater., 2010, 22(19), 2138-2141.
[http://dx.doi.org/10.1002/adma.200903074] [PMID: 20349429]
[71]
Burger, C.; Hsiao, B.S.; Chu, B. Nanofibrous materials and their applications. Annu. Rev. Mater. Res., 2006, 36, 333-368.
[http://dx.doi.org/10.1146/annurev.matsci.36.011205.123537]
[72]
Lim, H.S.; Park, S.H.; Koo, S.H.; Kwark, Y.J.; Thomas, E.L.; Jeong, Y.; Cho, J.H. Superamphiphilic Janus fabric. Langmuir, 2010, 26(24), 19159-19162.
[http://dx.doi.org/10.1021/la103829c] [PMID: 21073162]
[73]
Di Palma, P. Self-assembled colloidal photonic crystal on the fiber optic tip as a sensing probe. IEEE Photonics J., 2017, 9(2), 1-11.
[http://dx.doi.org/10.1109/JPHOT.2017.2689075]
[74]
Gurauskis, J. Processing of thin film ceramic membranes for oxygen separation. J. Eur. Ceram. Soc., 2012, 32(3), 649-655.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2011.10.009]
[75]
Othman, M.; Kim, J. Permeability and separability of oxygen across perovskite− alumina membrane prepared from a sol− gel procedure. Ind. Eng. Chem. Res., 2008, 47(9), 3000-3007.
[http://dx.doi.org/10.1021/ie0716215]
[76]
Krebs, F.C. Large area plastic solar cell modules. Mater. Sci. Eng. B, 2007, 138(2), 106-111.
[http://dx.doi.org/10.1016/j.mseb.2006.06.008]
[77]
Iler, R. Multilayers of colloidal particles. J. Colloid Interface Sci., 1966, 21(6), 569-594.
[http://dx.doi.org/10.1016/0095-8522(66)90018-3]
[78]
Erokhin, V.; Ram, M.K.; Yavuz, Ö. The new frontiers of organic and composite nanotechnology; Elsevier, 2011.
[79]
Keeney, M.; Jiang, X.Y.; Yamane, M.; Lee, M.; Goodman, S.; Yang, F. Nanocoating for biomolecule delivery using layer-by-layer self-assembly. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(45), 8757-8770.
[http://dx.doi.org/10.1039/C5TB00450K] [PMID: 27099754]
[80]
Wang, M. Durable superwetting materials through layer-by-layer assembly: Multiple separations towards water/oil mixtures, water-in-oil and oil-in-water emulsions. Colloids Surf. A Physicochem. Eng. Asp., 2019, 571, 142-150.
[http://dx.doi.org/10.1016/j.colsurfa.2019.03.079]
[81]
Lalia, B.S. A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 2013, 326, 77-95.
[http://dx.doi.org/10.1016/j.desal.2013.06.016]
[82]
Tao, M.; Xue, L.; Liu, F.; Jiang, L. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv. Mater., 2014, 26(18), 2943-2948.
[http://dx.doi.org/10.1002/adma.201305112] [PMID: 24677285]
[83]
Cao, G. A dually prewetted membrane for continuous filtration of water-in-light oil, oil-in-water, and water-in-heavy oil multiphase emulsion mixtures. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(18), 11305-11313.
[http://dx.doi.org/10.1039/C9TA01889A]
[84]
Li, Y. Facile way in fabricating a cotton fabric membrane for switchable oil/water separation and water purification. Appl. Surf. Sci., 2018, 441, 500-507.
[http://dx.doi.org/10.1016/j.apsusc.2018.02.060]
[85]
Kim, T.I.; Tahk, D.; Lee, H.H. Wettability-controllable super water- and moderately oil-repellent surface fabricated by wet chemical etching. Langmuir, 2009, 25(11), 6576-6579.
[http://dx.doi.org/10.1021/la900106s] [PMID: 19402686]
[86]
Li, Q.; Kako, T.; Ye, J. PbS/CdS nanocrystal-sensitized titanate network films: Enhanced photocatalytic activities and super-amphiphilicity. J. Mater. Chem., 2010, 20(45), 10187-10192.
[http://dx.doi.org/10.1039/c0jm02111c]
[87]
Shibuichi, S.; Yamamoto, T.; Onda, T.; Tsujii, K. Super water-and oil-repellent surfaces resulting from fractal structure. J. Colloid Interface Sci., 1998, 208(1), 287-294.
[http://dx.doi.org/10.1006/jcis.1998.5813] [PMID: 9820776]
[88]
Zimmermann, J.; Rabe, M.; Artus, G.R.J.; Seeger, S. Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter, 2008, 4(3), 450-452.
[http://dx.doi.org/10.1039/b717734h] [PMID: 32907202]
[89]
Olveira, S.; Stojanovic, A.; Seeger, S. Superhydrophilic and superamphiphilic coatings. In: Functional Polymer Coatings: Principles, Methods, and Applications; Wu, L.; Baghdachi, L., Eds.; Wiley,, 2015, 12, p. 96.
[http://dx.doi.org/10.1002/9781118883051.ch3]
[90]
Ayazi, S.; Ghorbani, M.; Abedini, R. Multifunctional composite membranes incorporated by SiO2@ CuFe2O4 nanocomposite for high dye removal, antibacterial and antifouling properties. Chem. Eng. Res. Des., 2021, 169, 214-228.
[http://dx.doi.org/10.1016/j.cherd.2021.03.025]
[91]
Lashkenrai, A.S. Direct filtration procedure to attain antibacterial TFC membrane: A facile developing route of membrane surface properties and fouling resistance. Chem. Eng. Res. Des., 2019, 149, 158-168.
[http://dx.doi.org/10.1016/j.cherd.2019.07.003]
[92]
Morra, M. On the molecular basis of fouling resistance. J. Biomater. Sci. Polym. Ed., 2000, 11(6), 547-569.
[http://dx.doi.org/10.1163/156856200743869] [PMID: 10981673]
[93]
Tiraferri, A.; Kang, Y.; Giannelis, E.P.; Elimelech, M. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: Fouling behavior and antifouling mechanisms. Environ. Sci. Technol., 2012, 46(20), 11135-11144.
[http://dx.doi.org/10.1021/es3028617] [PMID: 23002900]
[94]
Tiraferri, A.; Kang, Y.; Giannelis, E.P.; Elimelech, M. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl. Mater. Interfaces, 2012, 4(9), 5044-5053.
[http://dx.doi.org/10.1021/am301532g] [PMID: 22948042]
[95]
Wang, W.; Lin, J.; Cheng, J.; Cui, Z.; Si, J.; Wang, Q.; Peng, X.; Turng, L.S. Dual super-amphiphilic modified cellulose acetate nanofiber membranes with highly efficient oil/water separation and excellent antifouling properties. J. Hazard. Mater., 2020, 385, 121582.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121582] [PMID: 31818654]
[96]
Lei, Z. MnO2-x nanowires on carbon cloth based superamphiphilic and under-oil superhydrophilic filtration membrane for oil/water separation with robust anti-oil fouling performance. Compos., Part B Eng., 2020, 199, 108286.
[http://dx.doi.org/10.1016/j.compositesb.2020.108286]
[97]
Yang, W. Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chem. Eng. J., 2017, 327, 849-854.
[http://dx.doi.org/10.1016/j.cej.2017.06.159]
[98]
Cai, Y. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J. Membr. Sci., 2018, 555, 69-77.
[http://dx.doi.org/10.1016/j.memsci.2018.03.042]
[99]
Yang, H.C.; Hou, J.; Chen, V.; Xu, Z.K. Janus membranes: Exploring duality for advanced separation. Angew. Chem. Int. Ed. Engl., 2016, 55(43), 13398-13407.
[http://dx.doi.org/10.1002/anie.201601589] [PMID: 27357604]
[100]
Luo, Z-Y. The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni (OH) 2 core-shell nanoparticles for oil/water separation. Appl. Surf. Sci., 2017, 409, 431-437.
[http://dx.doi.org/10.1016/j.apsusc.2017.03.078]
[101]
Rosen, R.K.; VanderLende, D.D. Highly soluble olefin polymerization catalyst activator. US6121185A Patents, 1999.
[102]
Ju, H. Crosslinked poly (ethylene oxide) fouling resistant coating materials for oil/water separation. J. Membr. Sci., 2008, 307(2), 260-267.
[http://dx.doi.org/10.1016/j.memsci.2007.09.028]
[103]
Kasemset, S. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. J. Membr. Sci., 2013, 425, 208-216.
[http://dx.doi.org/10.1016/j.memsci.2012.08.049]
[104]
Yang, C. Preparation and application in oil-water separation of ZrO2/α-Al2O3 MF membrane. J. Membr. Sci., 1998, 142(2), 235-243.
[http://dx.doi.org/10.1016/S0376-7388(97)00336-0]
[105]
Shi, H. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J. Membr. Sci., 2016, 506, 60-70.
[http://dx.doi.org/10.1016/j.memsci.2016.01.053]
[106]
Sun, T.; Feng, L.; Gao, X.; Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res., 2005, 38(8), 644-652.
[http://dx.doi.org/10.1021/ar040224c] [PMID: 16104687]
[107]
Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Acc. Chem. Res., 2010, 43(3), 368-377.
[http://dx.doi.org/10.1021/ar900205g] [PMID: 19954162]
[108]
Lin, L.; Liu, M.; Chen, L.; Chen, P.; Ma, J.; Han, D.; Jiang, L. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv. Mater., 2010, 22(43), 4826-4830.
[http://dx.doi.org/10.1002/adma.201002192] [PMID: 20809515]
[109]
Ji, J. Biomimetic hierarchical TiO2@ CuO nanowire arrays-coated copper meshes with superwetting and self-cleaning properties for efficient oil/water separation. ACS Sustain. Chem. Eng., 2018, 7(2), 2569-2577.
[http://dx.doi.org/10.1021/acssuschemeng.8b05570]
[110]
Wang, S. Wettability switchable metal-organic framework membranes for pervaporation of water/ethanol mixtures. Inorg. Chem. Commun., 2017, 82, 64-67.
[http://dx.doi.org/10.1016/j.inoche.2017.05.016]
[111]
You, H. Surface wettability switching of a zeolitic imidazolate framework‐deposited membrane for selective efficient oil/water emulsion separation. Colloids Surf. A Physicochem. Eng. Asp., 2021, 614, 126204.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126204]
[112]
Dhumal, P.S. Graphene-bentonite supported free-standing, flexible membrane with switchable wettability for selective oil-water separation. Separ. Purif. Tech., 2021, 266, 118569.
[http://dx.doi.org/10.1016/j.seppur.2021.118569]
[113]
Zhang, X. Wettability switchable membranes for separating both oil-in-water and water-in-oil emulsions. J. Membr. Sci., 2021, 624, 118976.
[http://dx.doi.org/10.1016/j.memsci.2020.118976]
[114]
Bao, Z. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. J. Membr. Sci., 2020, 598, 117804.
[http://dx.doi.org/10.1016/j.memsci.2019.117804]
[115]
Nayak, K.; Tripathi, B.P. Molecularly grafted PVDF membranes with in-air superamphiphilicity and underwater superoleophobicity for oil/water separation. Separ. Purif. Tech., 2021, 259, 118068.
[http://dx.doi.org/10.1016/j.seppur.2020.118068]
[116]
Forbes, P. Self-cleaning materials. Sci. Am., 2008, 299(2), 88-95.
[http://dx.doi.org/10.1038/scientificamerican0808-88] [PMID: 18666684]
[117]
Yamasaki, S. Development of the organic-inorganic hybrid super-hydrophilic layer. Fujifilm Res. Develop., 2010, (55), 29-32.
[118]
Zorba, V.; Chen, X.; Mao, S.S. Superhydrophilic TiO 2 surface without photocatalytic activation. Appl. Phys. Lett., 2010, 96(9), 093702.
[http://dx.doi.org/10.1063/1.3291667]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy