Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Formulation, Characterization, and Antibacterial Study of Microsponge- Loaded Gel of Clarithromycin for Topical Drug Delivery

Author(s): Mohit Kumar Tomar, Shilpa Pahwa*, Lalit Kumar Tyagi, Chitra Gupta, Preeti Maan and Vandana Arora Sethi

Volume 12, Issue 2, 2022

Published on: 05 July, 2022

Page: [122 - 134] Pages: 13

DOI: 10.2174/2210303112666220412134241

Price: $65

Abstract

Background: Microsponge drug delivery systems comprise spherical and porous microspheres for prolonged topical drug delivery. These systems considerably reduce the undesirable side effects, offering improved patient compliance and reduced dosing frequency.

Objective: The present study focused on developing topical controlled release preparations of microsponges-loaded gel of clarithromycin to cure bacterial skin infections.

Materials and Methods: Four batches of microsponges (F1, F2, F3, and F4) of clarithromycin (CLR) containing fixed amounts of clarithromycin (100 mg), dichloromethane (5 ml), polyvinyl alcohol (5 % w/v) and distilled water (25 ml) with varying polymer concentrations were prepared by the quasi-emulsion solvent diffusion method and evaluated for % Production Yield, % drug content, % encapsulation efficiency, particle size, polydispersity index (PDI) and % drug release characteristics. The selected microsponge formulation (F3) was incorporated in Carpopol 934 gel for topical application. The prepared gel (CLRMS-F3 Gel) was evaluated for physical characteristics, pH, spreadability, viscosity, and in vitro drug release. Furthermore, the gel formulation was compared with pure clarithromycin gel for antibacterial activity against the gram-positive (S. aureus) and gram-negative strain (E. coli.) using the cup and plate method.

Results and Discussion: The F3 microsponge formulation exhibited a production yield of 83.75%, drug content (21.5 ± 0.50 %), and encapsulation efficiency of 86.04 ± 2.30%. Their particle size was satisfactory (3.80 ± 0.01 μm), and they were found to be spherical and porous in nature. F3 microsponges released 69.36 ± 1.27% of the drug over a period of 8 hrs and were incorporated into the gel formulations. The gel prepared using F3 microsponges was transparent, homogenous, and exhibited a pH of 6.8 ± 0.02, spreadability of 9.92 ± 0.44 g/cm, and viscosity of 35370.17 ± 493.09 centipoises. The CLRMS-F3 gel released 82.13 ± 0.47% drug in 12 hrs using a zero-order kinetic. The antibacterial activity studies revealed a higher potency against both S. aureus and E. coli of the prepared CLRMS-F3 gel compared to pure CLR gel and azithromycin standard.

Conclusion: Based on the above study, it may be concluded that microsponges’ gel formulation can be potentially useful in improving topical drug delivery of antibacterial agents and can give better therapeutic efficacy.

Keywords: Microsponge, clarithromycin, carbopol 934, quasi-emulsion method, antibacterial activity, S. aureus, E. coli.

Graphical Abstract

[1]
Asija, R.; Sharma, R.; Gupta, A. Emulgel: A novel approach to topical drug delivery. J. Biomed. Pharma. Res., 2013, 3(9), 91-94.
[2]
Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Duraivel, S.; Kumar, K.P. Recent advances in novel topical drug delivery system. The Pharm. Innov. J., 2012, 1(9), 12-31.
[3]
Patil, S.S.; Dandekar, V.; Kale, A.; Barhate, D.r.S.D. Microsponges drug delivery system: An overview. Eur. J. Pharm. Med. Res., 2016, 212-221.
[4]
Christensen, M.S.; Hargens, C.W., III; Nacht, S.; Gans, E.H. Viscoelastic properties of intact human skin: Instrumentation, hydration ef-fects, and the contribution of the stratum corneum. J. Invest. Dermatol., 1977, 69(3), 282-286.
[http://dx.doi.org/10.1111/1523-1747.ep12507500] [PMID: 894063]
[5]
Sharma, P.; Kumar, R.J.; Kumar, V.S. Formulation and evaluation of gel-loaded microsponges of clarithromycin for topical delivery. J. Drug Deliv. Ther., 2019, 9(3), 29-35.
[6]
D’souza, J.I. The microsponge drug delivery system: For delivering an active ingredient by controlled time release; Pharma. Info. Net, 2008, p. 62.
[7]
Won, R. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen US Patent 4690825, 1987.
[8]
Vyas, L.K.; Tapar, K.K.; Laddha, B.H.; Lahoti, A.O.; Nema, R.K. Formulation and development of anti-blemish preparations using micro-sponge technology. J. Chem. Pharm. Res., 2010, 562-571.
[9]
Vyas, S.P.; Khar, R.K. Targeted and controlled drug delivery-Novel Carrier System; CBS Publication: New Delhi, 2002.
[10]
Charde, M.S.; Ghanawat, P.B.; Welankiwar, A.S.; Kumar, J.; Chakole, R.D. Microsponge A novel new drug delivery system: A review. Int. J. Adv.Pharm, 2013, 9(5), 63-70.
[11]
Newton, D.W. Biotechnology frontier: Targeted drug delivery. US Pharm., 1991, 50-51.
[12]
Kumar, S.P. Microsponges as the versatile tool for drug delivery system. Int. J. Res. Pharm. Chem., 2011, 1(2), 243-258.
[13]
Kaity, S.; Maiti, S.; Ghosh, A.K.; Pal, D.; Ghosh, A.; Banerjee, S. Microsponges: A novel strategy for drug delivery system. J. Adv. Pharm. Technol. Res., 2010, 1(3), 283-290.
[http://dx.doi.org/10.4103/0110-5558.72416] [PMID: 22247859]
[14]
Mahmoud, D.B.E.D.; Shukr, M.H.; ElMeshad, A.N. Gastroretentive microsponge as a promising tool for prolonging the release of miti-glinide calcium in type-2 diabetes mellitus: Optimization and pharmacokinetics study. AAPS PharmSciTech, 2018, 19(6), 2519-2532.
[http://dx.doi.org/10.1208/s12249-018-1081-5] [PMID: 29948984]
[15]
Pawar, A.P.; Gholap, A.P.; Kuchekar, A.B.; Bothiraja, C.; Mali, A.J. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J. Drug Deliv., 2015, 2015, 261068.
[http://dx.doi.org/10.1155/2015/261068] [PMID: 25789176]
[16]
Aldawsari, H.; Badr-Eldin, S.M. Microsponges as promising vehicle for drug delivery and targeting: Preparation, characterization and ap-plications. Afr. J. Pharm. Pharmacol., 2013, 17(7), 873-881.
[http://dx.doi.org/10.5897/AJPP12.1329]
[17]
Parikh, B. Microsponge as novel topical drug delivery system. J. Glob. Pharma Technol., 2010, 2(1), 17-29.
[18]
Shahzad, Y.; Saeed, S.; Ghori, M.U.; Mahmood, T.; Yousaf, A.M.; Jamshaid, M.; Sheikh, R.; Rizvi, S.A.A. Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges. Int. J. Biol. Macromol., 2018, 109, 963-970.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.089] [PMID: 29154881]
[19]
Osmani, R.A.M.; Aloorkar, N.H.; Ingale, D.J.; Kulkarni, P.K.; Hani, U.; Bhosale, R.R.; Jayachandra Dev, D. Microsponges based novel drug delivery system for augmented arthritis therapy. Saudi Pharm. J., 2015, 23(5), 562-572.
[http://dx.doi.org/10.1016/j.jsps.2015.02.020] [PMID: 26594124]
[20]
Saini, R.; Singh, S.K.; Verma, P.R.P. Evaluation of carvedilol-loaded microsponges with nanometric pores using response surface meth-odology. J. Exp. Nanosci., 2014, 9(8), 831-850.
[http://dx.doi.org/10.1080/17458080.2012.725258]
[21]
Akash, M.; Iqbal, F.; Raza, M.; Rehman, K.; Ahmed, S. Characterization of ethylcellulose and hydroxypropyl methylcellulose micro-spheres for controlled release of Flurbiprofen. J. Pharm. Drug Deliv. Res., 2013, 2(1), 1-10.
[22]
Kumar, P.M.; Ghosh, A. Development and evaluation of metronidazole loaded microsponge based gel for superficial surgical wound in-fections. J. Drug Deliv. Sci. Technol., 2015, 30, 15-29.
[http://dx.doi.org/10.1016/j.jddst.2015.09.006]
[23]
Wadhwa, G.; Kumar, S.; Mittal, V.; Rao, R. Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. J. Food Drug Anal, 2019, 27(1), 60-70.
[http://dx.doi.org/10.1016/j.jfda.2018.07.006] [PMID: 30648595]
[24]
Buttgereit, F.; Doering, G.; Schaeffler, A.; Witte, S.; Sierakowski, S.; Gromnica-Ihle, E.; Jeka, S.; Krueger, K.; Szechinski, J.; Alten, R. Effi-cacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): A double-blind, randomised controlled trial. Lancet, 2008, 371(9608), 205-214.
[http://dx.doi.org/10.1016/S0140-6736(08)60132-4] [PMID: 18207016]
[25]
Nagula, R.L.; Wairkar, S. Cellulose microsponges based gel of naringenin for atopic dermatitis: Design, optimization,in vitro and in vivo investigation. Int. J. Biol. Macromol., 2020, 164, 717-725.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.168] [PMID: 32698069]
[26]
He, Y.; Majid, K.; Maqbool, M.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Mehmood, Y.; Aleem, A.; Arshad, M.S.; Younus, A.; Nirwan, J.S.; Ghori, M.U.; Rizvi, S.A.A.; Shahzad, Y.; Yasser, S. Formulation and characterization of lornoxicam-loaded cellulosic-microsponge gel for possible applications in arthritis. Saudi Pharm. J., 2020, 28(8), 994-1003.
[http://dx.doi.org/10.1016/j.jsps.2020.06.021] [PMID: 32792844]
[27]
Devi, N.; Kumar, S.; Prasad, M.; Rao, R. Eudragit RS100 based microsponges for dermal delivery of clobetasol propionate in psoriasis management. J. Drug Deliv. Sci. Technol., 2019, 55, 101347.
[http://dx.doi.org/10.1016/j.jddst.2019.101347]
[28]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[29]
Marwa, H.S.; Ghada, F.M. Evaluation of topical gel bases formulated with various essential oils for antibacterial activity against methicillin resistant Staphylococcus aureus. Trop. J. Pharm. Res., 2013, 12(6), 877-884.
[30]
Rajurkar, V.G.; Tambe, A.B.; Deshmukh, V.K. Topical anti-inflammatory gels of naproxen entrapped in eudragit based microsponge de-livery system. J. Advanced Chem. Eng., 2015, 5(2), 1-6.
[31]
Ravindra, T.J.; Pratibha, R.P.; Payal, H.P. Formulation and evaluation of semisolid preparation (ointment, gel and cream) of thiocolchico-side. J. Pharm. Biomed. Sci., 2011, 8, 1-6.
[32]
Mohanta, G.P.; Jamal, M.; Umdevi, S. Formulation and evaluation of a polyherbal wound healing cream. Indian Drugs, 2007, 44, 281-81.
[33]
Sumathi, S.; Banupriya, S.J.; Akhila, V.; Padma, P.R. Characterization, antimicrobial, and metabolic activity of green and chemically syn-thesized zinc oxide nanoparticles. Asian J. Pharm. Clin. Res., 2019, 12, 11-17.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i11.34819]
[34]
Yadav, E.; Rao, R.; Kumar, S.; Mahant, S.; Prakriti, V. Microsponge based gel of tea tree oil for dermatological microbial infections. Nat. Prod. J., 2018, 8, 1-12.
[35]
Moin, A.; Deb, T.K.; Osmani, R.A.M.; Bhosale, R.R.; Hani, U. Fabrication, characterization, and evaluation of microsponge delivery sys-tem for facilitated fungal therapy. J. Basic Clin. Pharm., 2016, 7(2), 39-48.
[http://dx.doi.org/10.4103/0976-0105.177705] [PMID: 27057125]
[36]
Pandit, A.P.; Patel, S.A.; Bhanushali, V.P.; Kulkarni, V.S.; Kakad, V.D. Nebivolol-loaded 605 microsponge gel for healing of diabetic wound. AAPS PharmSciTech, 2017, 18(3), 846-854.
[http://dx.doi.org/10.1208/s12249-016-0574-3] [PMID: 27357423]
[37]
Morsi, N.; Ghorab, D.; Refai, H.; Teba, H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int. J. Pharm., 2016, 506(1-2), 57-67.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.021] [PMID: 27091293]
[38]
Obiedallah, M.M.; Abdel-Mageed, A.M.; Elfaham, T.H. Ocular administration of acetazolamide microsponges in situ gel formulations. Saudi Pharm. J., 2018, 26(7), 909-920.
[http://dx.doi.org/10.1016/j.jsps.2018.01.005] [PMID: 30416345]
[39]
Mohammadi, G.; Nokhodchi, A.; Barzegar-Jalali, M.; Lotfipour, F.; Adibkia, K.; Ehyaei, N.; Valizadeh, H. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf. B Biointerfaces, 2011, 88(1), 39-44.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.050] [PMID: 21752610]
[40]
Tripathi, P.K.; Gorain, B.; Choudhury, H.; Srivastava, A.; Kesharwani, P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon, 2019, 5(3), e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[41]
Jelvehgari, M.; Hassanzadeh, D.; Kiafar, F.; Delf Loveym, B.; Amiri, S. Preparation and determination of drug-polymer interaction and in-vitro release of mefenamic acid microspheres made of celluloseacetate phthalate and/or ethylcellulose polymers. Iran. J. Pharm. Res., 2011, 10(3), 457-467.
[PMID: 24250377]
[42]
Jelvehgari, M.; Nokhodchi, A.; Rezapour, M.; Valizadeh, H. Effect of formulation and processing variables on the characteristics of tolmetin microspheres prepared by double emulsion solvent diffusion method. Indian J. Pharm. Sci., 2010, 72(1), 72-78.
[http://dx.doi.org/10.4103/0250-474X.62251] [PMID: 20582193]
[43]
Shinde, U.; Pokharkar, S.; Modani, S. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J. Pharm. Sci., 2012, 74(3), 237-247.
[http://dx.doi.org/10.4103/0250-474X.106066] [PMID: 23439454]
[44]
Bousmina, M. Rheology of polymer blends: Linear model for viscoelastic emulsions Rheol. Acta, 1999, 38(1), 73-83.
[http://dx.doi.org/10.1007/s003970050157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy