Abstract
Background: High Content Image (HCI), an automatic imaging and analysis system, provides a fast drug screening method by detecting the subcellular distribution of protein in intact cells.
Objective: This study established the first standardized HCI platform for lipopolysaccharide (LPS)-induced RAW264.7 macrophages to screen anti-inflammatory compounds by measuring nuclear factor-κB (NF-κB) nuclear translocation.
Methods: The influence of the cell passages, cell density, LPS induction time and concentration, antibody dilution, serum, dimethyl sulfoxide, and analysis parameters on NF-κB nuclear translocation and HCI data quality was optimized. The BAY-11-7085, the positive control for inhibiting NF-κB, and the Western blot assay were separately employed to verify the stability and reliability of the platform. Lastly, the effect of BHA on NO release, iNOS expression, IL-1β, IL-6, and TNF-α mRNA in LPS-induced RAW264.7 cells was detected.
Results: The optimal conditions for measuring NF-κB translocation in LPS-induced RAW264.7 cells by HCI were established. Cells that do not exceed 22 passages were seeded at a density of 10 k cells/well and pretreated with compounds following 200 ng/mL LPS for 40 min. Parameters including the nuclear area of 65 μm2, cell area of 80 μm2, collar of 0.9 μm, and sensitivity of 25% were recommended for image segmentation algorithms in the analysis workstation. Benzoylhypaconine from aconite was screened for the first time as an anti-inflammatory candidate by the established HCI platform. The inhibitory effect of benzoylhypaconine on NF-κB translocation was verified by Western blot. Furthermore, benzoylhypaconine reduced the release of NO, inhibited the expression of iNOS, and decreased the mRNA levels of IL-1β, IL-6, and TNF-α.
Conclusion: The established HCI platform could be applied to screen anti-inflammatory compounds by measuring the NF-κB nuclear translocation in LPS-induced RAW264.7 cells.
Keywords: High content image, lipopolysaccharide, RAW264.7 macrophages, nuclear factor-κB nuclear translocation, anti-inflammation, BAY 11-7085, benzoylhypaconine.
Graphical Abstract
[http://dx.doi.org/10.2174/1381612824666180327165604] [PMID: 29589535]
[http://dx.doi.org/10.2174/138955711793564079] [PMID: 21034406]
[http://dx.doi.org/10.1016/j.acthis.2021.151709] [PMID: 33711726]
[http://dx.doi.org/10.1016/j.bcp.2020.113949] [PMID: 32251678]
[http://dx.doi.org/10.1007/s10753-016-0447-7] [PMID: 27718095]
[http://dx.doi.org/10.1007/s10753-016-0393-4] [PMID: 27317418]
[http://dx.doi.org/10.1038/326711a0] [PMID: 3031512]
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.007] [PMID: 29305014]
[http://dx.doi.org/10.1016/j.cell.2016.12.012] [PMID: 28086098]
[http://dx.doi.org/10.1038/34956] [PMID: 9450761]
[http://dx.doi.org/10.1136/gut.43.6.856] [PMID: 9824616]
[http://dx.doi.org/10.1152/physrev.00040.2009] [PMID: 20393192]
[http://dx.doi.org/10.1038/sj.onc.1209954] [PMID: 17072321]
[http://dx.doi.org/10.1016/j.bcp.2006.04.011] [PMID: 16723122]
[http://dx.doi.org/10.1007/BF02829954] [PMID: 18850206]
[http://dx.doi.org/10.1038/nbt1186] [PMID: 16465162]
[http://dx.doi.org/10.1186/1471-2105-8-340] [PMID: 17868449]
[http://dx.doi.org/10.1016/j.cell.2015.11.007] [PMID: 26638068]
[http://dx.doi.org/10.1016/j.biocel.2015.01.020] [PMID: 25668473]
[http://dx.doi.org/10.3109/08982104.2014.987785] [PMID: 25547801]
[http://dx.doi.org/10.1371/journal.pone.0199966] [PMID: 29953522]
[http://dx.doi.org/10.1021/acschembio.7b01060] [PMID: 29553248]
[http://dx.doi.org/10.1016/0092-8674(78)90101-0] [PMID: 212198]
[http://dx.doi.org/10.1016/j.bcp.2019.113639] [PMID: 31536727]
[http://dx.doi.org/10.1016/j.bcp.2017.07.010] [PMID: 28711625]
[http://dx.doi.org/10.1016/j.carbpol.2019.115674] [PMID: 31887864]
[http://dx.doi.org/10.1016/j.carbpol.2020.116358] [PMID: 32507213]
[http://dx.doi.org/10.1084/jem.167.6.1939] [PMID: 3290382]
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.023] [PMID: 28254693]
[http://dx.doi.org/10.1016/j.jep.2017.02.013] [PMID: 28192201]
[http://dx.doi.org/10.1016/j.taap.2018.04.016] [PMID: 29678448]
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.048] [PMID: 26783639]
[http://dx.doi.org/10.1016/j.jep.2014.02.051] [PMID: 24607509]
[PMID: 1373797]
[http://dx.doi.org/10.1016/j.tiv.2010.10.011] [PMID: 20969947]
[http://dx.doi.org/10.1016/j.drudis.2020.06.001] [PMID: 32561299]
[http://dx.doi.org/10.1038/nprot.2016.105] [PMID: 27560178]
[http://dx.doi.org/10.1016/j.neunet.2020.09.007] [PMID: 32977280]
[http://dx.doi.org/10.1002/cpcb.100] [PMID: 31876395]
[http://dx.doi.org/10.15252/msb.20145644] [PMID: 26148352]
[http://dx.doi.org/10.1186/s12953-015-0073-6] [PMID: 25969670]
[http://dx.doi.org/10.1016/j.bbrc.2009.10.066] [PMID: 19850013]
[http://dx.doi.org/10.1016/S0254-6272(13)60030-8] [PMID: 23297548]
[http://dx.doi.org/10.1111/jphp.12310] [PMID: 25244533]
[http://dx.doi.org/10.1002/jssc.201800149] [PMID: 29974648]
[http://dx.doi.org/10.1155/2020/1942849] [PMID: 33029492]
[http://dx.doi.org/10.1093/chromsci/bmv245] [PMID: 27048641]
[http://dx.doi.org/10.1002/bmc.3758] [PMID: 27183898]
[http://dx.doi.org/10.1002/bmc.3102] [PMID: 24343604]
[http://dx.doi.org/10.1016/j.jpba.2015.06.021] [PMID: 26142559]
[PMID: 14726604]
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[http://dx.doi.org/10.1073/pnas.87.24.10043] [PMID: 1702214]
[http://dx.doi.org/10.1038/bjp.2008.79] [PMID: 18332856]
[PMID: 30895830]
[http://dx.doi.org/10.1007/s00216-013-7153-1] [PMID: 23831827]
[http://dx.doi.org/10.1248/bpb1978.3.514] [PMID: 7205533]