Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Hyperthermia-sensitive Liposomes Containing Brucea Javanica Oil for Synergistic Photothermal-/Chemo-Therapy in Breast Cancer Treatment

Author(s): Yan Huang*, Qianying Zhang, Peipei Feng, Weihuan Li, Xiuru Li, Yongjie Li and Di Zhang

Volume 20, Issue 2, 2023

Published on: 22 June, 2022

Page: [192 - 200] Pages: 9

DOI: 10.2174/1567201819666220411115632

Price: $65

Abstract

Introduction: High mortality and limited therapeutic efficacy of clinical treatment make breast cancer a stubborn disease in women. The hypovascular issue is the main challenge needed to be overcome in breast cancer treatment.

Methods: For this purpose, hyperthermia-sensitive liposomes containing indocyanine green (ICG) and brucea javanica oil (BJO) (LP(BJO/ICG)) were constructed for near-infrared (NIR) laser-induced photothermal- /chemo-antitumor therapy. ICG, an FDA-approved photothermal agent, was employed in this study to perform photothermal therapy (PTT) effect as well as relieve hypovascular conditions in breast cancer tissue.

Results: BJO triggered release from the hyperthermia-sensitive LP (BJO/ICG) due to disassembly of liposomes under the PTT effect caused by ICG under NIR laser irradiation. It was found that mice in LP (BJO/ICG) group showed the slowest tumor growth under NIR laser irradiation, illustrating the strongest antitumor effect among all groups.

Conclusion: This responsive-release drug delivery platform can be a promising candidate for the treatment of breast cancer.

Keywords: Brucea javanica oil, ICG, hyperthermia-sensitive, liposomes, breast cancer, near-infrared.

Graphical Abstract

[1]
Jeong, S.C.; Kim, D.S.; Jin, S.G.; Youn, Y.S.; Oh, K.T.; Li, D.X.; Yong, C.S.; Oh Kim, J.; Kim, K.S.; Choi, H.G. Development of a novel celecoxib-loaded nanosuspension using a wet media milling process. Pharmazie, 2018, 73(9), 498-502.
[PMID: 30223931]
[2]
Chakma, S.; Khadka, P.; Jo, K.; Kim, H.; Ro, J.; Park, K.; Karki, S.; Barua, S.; Lee, J. Solubility enhancement of celecoxib using solidified Tween 80 for the formulation of tablet dosage forms. J. Pharm. Investig., 2015, 45(5), 449-460.
[http://dx.doi.org/10.1007/s40005-015-0192-1]
[3]
Ilie, A-R.; Griffin, B.T.; Brandl, M.; Bauer-Brandl, A.; Jacobsen, A.C.; Vertzoni, M.; Kuentz, M.; Kolakovic, R.; Holm, R. Exploring impact of supersaturated lipid-based drug delivery systems of celecoxib on in vitro permeation across Permeapad membrane and in vivo absorption. Eur. J. Pharm., 2020, 152, 105452.
[http://dx.doi.org/10.1016/j.ejps.2020.105452] [PMID: 32622980]
[4]
Ha, E-S.; Ok, J.; Noh, J.; Jeong, H.Y.; Choo, G.H.; Jung, Y.S.; Baek, I.H.; Kim, J.S.; Cho, W.; Hwang, S.J.; Kim, M.S. Fabrication and evaluation of celecoxib microparticle surface modified by hydrophilic cellulose and surfactant. Int. J. Biol., 2015, 72, 1473-1478.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.063] [PMID: 25451745]
[5]
Nasr, M. Influence of microcrystal formulation on in vivo absorption of celecoxib in rats. AAPS PharmSciTech, 2013, 14(2), 719-726.
[http://dx.doi.org/10.1208/s12249-013-9957-x] [PMID: 23543607]
[6]
Song, W.H.; Park, J.H.; Yeom, D.W.; Ahn, B.K.; Lee, K.M.; Lee, S.G.; Woo, H.S.; Choi, Y.W. Enhanced dissolution of celecoxib by supersaturating self-emulsifying drug delivery system (S-SEDDS) formulation. Arch. Pharm. Res., 2013, 36(1), 69-78.
[http://dx.doi.org/10.1007/s12272-013-0011-z] [PMID: 23325487]
[7]
Mushtaq, A.; Baseer, A.; Zaidi, S.S. Fluconazole-loaded thermosensitive system: In vitro release, pharmacokinetics and safety study. J. Drug Deliv. Sci. Technol., 2021, 102972.
[8]
Din, F.U.; Jin, S.G.; Choi, H.G. Particle and gel characterization of irinotecan-loaded double-reverse thermosensitive hydrogel. Polymers (Basel), 2021, 13(4), 551.
[http://dx.doi.org/10.3390/polym13040551] [PMID: 33668441]
[9]
Ud Din, F.; Choi, J.Y.; Kim, D.W.; Mustapha, O.; Kim, D.S.; Thapa, R.K.; Ku, S.K.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; Kim, J.O.; Choi, H.G. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv., 2017, 24(1), 502-510.
[http://dx.doi.org/10.1080/10717544.2016.1272651] [PMID: 28181835]
[10]
Rabia, S.; Khaleeq, N.; Batool, S.; Dar, M.J.; Kim, D.W.; Din, F.U.; Khan, G.M. Rifampicin-loaded nanotransferosomal gel for treatment of cutaneous leishmaniasis: Passive targeting via topical route. Nanomedicine (Lond.), 2020, 15(2), 183-203.
[http://dx.doi.org/10.2217/nnm-2019-0320] [PMID: 31916472]
[11]
Ban, E.; Park, M.; Jeong, S.; Kwon, T.; Kim, E.H.; Jung, K.; Kim, A. Poloxamer-based thermoreversible gel for topical delivery of emodin: Influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules, 2017, 22(2), 246.
[http://dx.doi.org/10.3390/molecules22020246] [PMID: 28178225]
[12]
ud Din, F.; Kim, D.W.; Choi, J.Y. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater., 2017, 54, 239-248.
[13]
Gholizadeh, H.; Messerotti, E.; Pozzoli, M.; Cheng, S.; Traini, D.; Young, P.; Kourmatzis, A.; Caramella, C.; Ong, H.X. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds. AAPS PharmSciTech, 2019, 20(7), 299.
[http://dx.doi.org/10.1208/s12249-019-1517-6] [PMID: 31482286]
[14]
Raymond, J.; Metcalfe, A.; Salazkin, I.; Schwarz, A. Temporary vascular occlusion with poloxamer 407. Biomaterials, 2004, 25(18), 3983-3989.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.085] [PMID: 15046888]
[15]
Xuan, J-J.; Yan, Y-D.; Oh, D.H. Development of thermo-sensitive injectable hydrogel with sustained release of doxorubicin: Rheological characterization and in vivo evaluation in rats. Drug Deliv., 2011, 18(5), 305-311.
[16]
Sabir, F.; Asad, M.I.; Qindeel, M. Polymeric nanogels as versatile nanoplatforms for biomedical applications. J. Nanomater., 2019, 2019, 1526186.
[17]
Yuan, Y.; Cui, Y.; Zhang, L.; Zhu, H.P.; Guo, Y.S.; Zhong, B.; Hu, X.; Zhang, L.; Wang, X.H.; Chen, L. Thermosensitive and mucoadhesive in situ gel based on poloxamer as new carrier for rectal administration of nimesulide. Int. J. Pharm., 2012, 430(1-2), 114-119.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.054] [PMID: 22503953]
[18]
Xing, R.; Mustapha, O.; Ali, T. Development, characterization, and evaluation of SLN-loaded thermoresponsive hydrogel system of topotecan as biological macromolecule for colorectal delivery. BioMed Res. Int., 2021, 2021, 9968602.
[19]
Fakhar-Ud-Din. Khan, G.M. Development and characterisation of levosulpiride-loaded suppositories with improved bioavailability in vivo. Pharm. Dev. Technol., 2019, 24(1), 63-69.
[http://dx.doi.org/10.1080/10837450.2017.1419256] [PMID: 29251521]
[20]
Choi, H-G.; Oh, Y-K.; Kim, C-K. In situ gelling and mucoadhesive liquid suppository containing acetaminophen: Enhanced bioavailability. Int. J. Pharm., 1998, 165(1), 23-32.
[http://dx.doi.org/10.1016/S0378-5173(97)00385-2]
[21]
Ud Din, F.; Rashid, R.; Mustapha, O. Development of a novel solid lipid nanoparticles-loaded dual-reverse thermosensitive nanomicelle for intramuscular administration with sustained release and reduced toxicity. RSC Advances, 2015, 5(54), 43687-43694.
[22]
Batool, S.; Zahid, F.; Ud-Din, F.; Naz, S.S.; Dar, M.J.; Khan, M.W.; Zeb, A.; Khan, G.M. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: In vitro and in vivo analyses. Drug Dev. Ind. Pharm., 2021, 47(3), 440-453.
[http://dx.doi.org/10.1080/03639045.2021.1890768] [PMID: 33615936]
[23]
Seo, Y.G.; Kim, D-W.; Yeo, W.H.; Ramasamy, T.; Oh, Y.K.; Park, Y.J.; Kim, J.A.; Oh, D.H.; Ku, S.K.; Kim, J.K.; Yong, C.S.; Kim, J.O.; Choi, H.G. Docetaxel-loaded thermosensitive and bioadhesive nanomicelles as a rectal drug delivery system for enhanced chemotherapeutic effect. Pharm. Res., 2013, 30(7), 1860-1870.
[http://dx.doi.org/10.1007/s11095-013-1029-0] [PMID: 23549753]
[24]
Kim, J.S.; Din, F.U.; Lee, S.M.; Kim, D.S.; Woo, M.R.; Cheon, S.; Ji, S.H.; Kim, J.O.; Youn, Y.S.; Oh, K.T.; Lim, S.J.; Jin, S.G.; Choi, H.G. Comparison of three different aqueous microenvironments for enhancing oral bioavailability of sildenafil: Solid self-nanoemulsifying drug delivery system, amorphous microspheres and crystalline microspheres. Int. J. Nanomedicine, 2021, 16, 5797-5810.
[http://dx.doi.org/10.2147/IJN.S324206] [PMID: 34465992]
[25]
Khaleeq, N.; Din, F-U.; Khan, A.S.; Rabia, S.; Dar, J.; Khan, G.M. Development of levosulpiride-loaded solid lipid nanoparticles and their in vitro and in vivo comparison with commercial product. J. Microencapsul., 2020, 37(2), 160-169.
[http://dx.doi.org/10.1080/02652048.2020.1713242] [PMID: 31916886]
[26]
Kim, J.S.; Ud Din, F.; Lee, S.M.; Kim, D.S.; Choi, Y.J.; Woo, M.R.; Kim, J.O.; Youn, Y.S.; Jin, S.G.; Choi, H.G. Comparative study between high-pressure homogenisation and shirasu porous glass membrane technique in sildenafil base-loaded solid SNEDDS: Effects on physicochemical properties and in vivo characteristics. Int. J. Pharm., 2021, 592, 120039.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120039] [PMID: 33152479]
[27]
Khan, A.S.; Ud Din, F.; Ali, Z.; Bibi, M.; Zahid, F.; Zeb, A. Mujeeb-Ur-Rehman; Khan, G.M. Development, in vitro and in vivo evaluation of miltefosine loaded nanostructured lipid carriers for the treatment of cutaneous leishmaniasis. Int. J. Pharm., 2021, 593, 120109.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120109] [PMID: 33253802]
[28]
Yu, G.; Ali, Z.; Sajjad Khan, A.; Ullah, K.; Jamshaid, H.; Zeb, A.; Imran, M.; Sarwar, S.; Choi, H.G.; Ud Din, F. Preparation, pharmacokinetics, and antitumor potential of miltefosine-loaded nanostructured lipid carriers. Int. J. Nanomedicine, 2021, 16, 3255-3273.
[http://dx.doi.org/10.2147/IJN.S299443] [PMID: 34012260]
[29]
Zhang, Z.; Pan, Y.; Zhao, Y.; Ren, M.; Li, Y.; Lu, G.; Wu, K.; He, S. Topotecan-loaded thermosensitive nanocargo for tumor therapy: In vitro and in vivo analyses. Int. J. Pharm., 2021, 606, 120871.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120871] [PMID: 34246742]
[30]
Yeo, W.H.; Ramasamy, T.; Kim, D-W.; Cho, H.J.; Kim, Y.I.; Cho, K.H.; Yong, C.S.; Kim, J.O.; Choi, H.G. Docetaxel-loaded thermosensitive liquid suppository: Optimization of rheological properties. Arch. Pharm. Res., 2013, 36(12), 1480-1486.
[http://dx.doi.org/10.1007/s12272-013-0175-6] [PMID: 23771501]
[31]
Yong, C.S.; Choi, J.S.; Quan, Q-Z.; Rhee, J.D.; Kim, C.K.; Lim, S.J.; Kim, K.M.; Oh, P.S.; Choi, H.G. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int. J. Pharm., 2001, 226(1-2), 195-205.
[http://dx.doi.org/10.1016/S0378-5173(01)00809-2] [PMID: 11532582]
[32]
Bhattarai, N.; Ramay, H.R.; Gunn, J.; Matsen, F.A.; Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release, 2005, 103(3), 609-624.
[http://dx.doi.org/10.1016/j.jconrel.2004.12.019] [PMID: 15820408]
[33]
Choi, H-G.; Kim, D-D.; Jun, H.W.; Yoo, B.K.; Yong, C.S. Improvement of dissolution and bioavailability of nitrendipine by inclusion in hydroxypropyl-β-cyclodextrin. Drug Dev. Ind. Pharm., 2003, 29(10), 1085-1094.
[http://dx.doi.org/10.1081/DDC-120025866] [PMID: 14677769]
[34]
Miyazaki, S.; Suisha, F.; Kawasaki, N.; Shirakawa, M.; Yamatoya, K.; Attwood, D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J. Control. Release, 1998, 56(1-3), 75-83.
[http://dx.doi.org/10.1016/S0168-3659(98)00079-0] [PMID: 9801431]
[35]
Din, F.; Zeb, A.; Shah, K.U. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J. Drug Deliv. Sci. Technol., 2019, 51, 583-590.
[http://dx.doi.org/10.1016/j.jddst.2019.02.026]
[36]
ud Din, F.; Mustapha, O.; Kim, D.W. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur. J. Pharm. Biopharm., 2015, 94, 64-72.
[37]
Khan, A.U.; Jamshaid, H.; Ud Din, F.; Zeb, A.; Khan, G.M. Designing, optimization and characterization of Trifluralin transfersomal gel to passively target cutaneous leishmaniasis. J. Pharm. Sci., 2022, 111(6), 1798-1811.
[http://dx.doi.org/10.1016/j.xphs.2022.01.010] [PMID: 35081406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy