Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

A Comprehensive Review on Recent Advances and Considerations for the Selection of Cell-based In-vitro Techniques for the Assessment of Permeability of Drug Molecules

Author(s): Rajat Garg and Anuj Garg*

Volume 20, Issue 5, 2023

Published on: 26 August, 2022

Page: [526 - 544] Pages: 19

DOI: 10.2174/1567201819666220411115108

Price: $65

Abstract

Objective: The main focus of this article is to analyze numerous in-vitro methods and their modifications currently used to assess the absorption or permeability of drug molecules from different formulations.

Methods: In the literature, no single method can be applied as a gold standard for measuring the exact permeability of each drug molecule. Various in-vitro methods, including tissue and cell-based models, are reported to assess the absorption of drugs. Caco2 cell is a widely used model for absorption studies but sometimes provides inaccurate results. Alternative methods like Madin-Darby canine kidney, IEC- 18, TC-7, 2/4/A1, and IPEC-J2 cell lines are also used. In this study, the merits and demerits of each method have been described, along with the factors affecting the results of absorption studies. The selection of an appropriate method is critical in accurately assessing the permeability and absorption of drugs by mechanisms like vesicular and active transport. This review article aims to provide in-depth knowledge regarding the different in-vitro methods, strategies, and selection of appropriate in-vitro models to predict intestinal absorption.

Conclusion: A flow chart diagram for decision-making in selecting an appropriate in-vitro permeability model for formulation has been proposed for estimating permeability.

Keywords: Absorption, in-vitro, tissue-based, cell-based, permeability, correlation.

Graphical Abstract

[1]
Dahlgren, D.; Lennernäs, H. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches. Pharmaceutics, 2019, 11(8), 411.
[http://dx.doi.org/10.3390/pharmaceutics11080411] [PMID: 31412551]
[2]
Lin, L.; Wong, H. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models. Pharmaceutics, 2017, 9(4), 41.
[http://dx.doi.org/10.3390/pharmaceutics9040041] [PMID: 28954416]
[3]
Sun, D.; Yu, L.X.; Hussain, M.A.; Wall, D.A.; Smith, R.L.; Amidon, G.L. In vitro testing of drug absorption for drug ‘developability’ assessment: Forming an interface between in vitro preclinical data and clinical outcome. Curr. Opin. Drug Discov. Devel., 2004, 7(1), 75-85.
[PMID: 14982151]
[4]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[5]
Dahan, A.; Amidon, G.L. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: The role of efflux transport in the oral absorption of BCS class III drugs. Mol. Pharm., 2009, 6(1), 19-28.
[http://dx.doi.org/10.1021/mp800088f] [PMID: 19248230]
[6]
Genina, N.; Hadi, B.; Löbmann, K. Hot melt extrusion as solvent-free technique for a continuous manufacturing of drug-loaded mesoporous silica. J. Pharm. Sci., 2018, 107(1), 149-155.
[http://dx.doi.org/10.1016/j.xphs.2017.05.039] [PMID: 28603020]
[7]
Dahan, A.; Miller, J.M.; Hilfinger, J.M.; Yamashita, S.; Yu, L.X.; Lennernäs, H.; Amidon, G.L. High-permeability criterion for BCS classification: Segmental/pH dependent permeability considerations. Mol. Pharm., 2010, 7(5), 1827-1834.
[http://dx.doi.org/10.1021/mp100175a] [PMID: 20701326]
[8]
Lennernäs, H.; Abrahamsson, B. The use of biopharmaceutic classification of drugs in drug discovery and development: Current status and future extension. J. Pharm. Pharmacol., 2010, 57(3), 273-285.
[http://dx.doi.org/10.1211/0022357055263] [PMID: 15807982]
[9]
Löbenberg, R.; Amidon, G.L. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm., 2000, 50(1), 3-12.
[http://dx.doi.org/10.1016/S0939-6411(00)00091-6] [PMID: 10840189]
[10]
Martinez, M.N.; Amidon, G.L. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J. Clin. Pharmacol., 2002, 42(6), 620-643.
[http://dx.doi.org/10.1177/00970002042006005] [PMID: 12043951]
[11]
Dahan, A.; Miller, J.M. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J., 2012, 14(2), 244-251.
[http://dx.doi.org/10.1208/s12248-012-9337-6] [PMID: 22391790]
[12]
Friend, D.R. Drug delivery to the small intestine. Curr. Gastroenterol. Rep., 2004, 6(5), 371-376.
[http://dx.doi.org/10.1007/s11894-004-0052-z] [PMID: 15341712]
[13]
Singh, N.; Ecker, G. Insights into the structure, function, and ligand discovery of the large neutral amino acid transporter 1, LAT1. Int. J. Mol. Sci., 2018, 19(5), 1278.
[http://dx.doi.org/10.3390/ijms19051278] [PMID: 29695141]
[14]
Zhang, L.; Sui, C.; Yang, W.; Luo, Q. Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy. Asian J. Pharm. Sci., 2020, 15(2), 192-206.
[http://dx.doi.org/10.1016/j.ajps.2019.12.002] [PMID: 32373199]
[15]
Cercós-Fortea, T.; Polache, A.; Nácher, A.; Cejudo-Ferragud, E.; Casabó, V.G.; Merino, M. Influence of leucine on intestinal baclofen absorption as a model compound of neutral α-aminoacids. Biopharm. Drug Dispos., 1995, 16(7), 563-577.
[http://dx.doi.org/10.1002/bdd.2510160705] [PMID: 8785380]
[16]
Tsuji, A.; Tamai, I. Carrier-mediated intestinal transport of drugs. Pharm. Res., 1996, 13(7), 963-977.
[17]
Yang, N.J.; Hinner, M.J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol. Biol., 2015, 1266, 29-53.
[http://dx.doi.org/10.1007/978-1-4939-2272-7_3] [PMID: 25560066]
[18]
Nagar, S.; Korzekwa, R.C.; Korzekwa, K. Continuous intestinal absorption model based on the convection-diffusion equation. Mol. Pharm., 2017, 14(9), 3069-3086.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00286] [PMID: 28712300]
[19]
Nunes, R.; Silva, C.; Chaves, L. Tissue-based in vitro and ex vivo models for intestinal permeability studies.Concepts and Models for Drug Permeability Studies Elsevier; Sarmento, B., Ed.; , 2016, pp. 203-236.
[http://dx.doi.org/10.1016/B978-0-08-100094-6.00013-4]
[20]
Dokoumetzidis, A.; Kalantzi, L.; Fotaki, N. Predictive models for oral drug absorption: From in silico methods to integrated dynamical models. Expert Opin. Drug Metab. Toxicol., 2007, 3(4), 491-505.
[http://dx.doi.org/10.1517/17425255.3.4.491] [PMID: 17696801]
[21]
Van Den Abeele, J.; Brouwers, J.; Mattheus, R.; Tack, J.; Augustijns, P. Gastrointestinal behavior of weakly acidic BCS class II Drugs in man-case study of diclofenac potassium. J. Pharm. Sci., 2016, 105(2), 687-696.
[http://dx.doi.org/10.1002/jps.24647] [PMID: 26375734]
[22]
Salphati, L.; Childers, K.; Pan, L.; Tsutsui, K.; Takahashi, L. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J. Pharm. Pharmacol., 2010, 53(7), 1007-1013.
[http://dx.doi.org/10.1211/0022357011776252] [PMID: 11480535]
[23]
Agoram, B.; Woltosz, W.S.; Bolger, M.B. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev., 2001, 50(Suppl. 1), S41-S67.
[http://dx.doi.org/10.1016/S0169-409X(01)00179-X] [PMID: 11576695]
[24]
Bahadur, S.; Pathak, K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin. Drug Deliv., 2012, 9(1), 19-31.
[http://dx.doi.org/10.1517/17425247.2012.636801] [PMID: 22171740]
[25]
Dahan, A.; Miller, J.M.; Amidon, G.L. Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs. AAPS J., 2009, 11(4), 740-746.
[http://dx.doi.org/10.1208/s12248-009-9144-x] [PMID: 19876745]
[26]
Buckley, S.T.; Fischer, S.M.; Fricker, G.; Brandl, M. In vitro models to evaluate the permeability of poorly soluble drug entities: Challenges and perspectives. Eur. J. Pharm. Sci., 2012, 45(3), 235-250.
[http://dx.doi.org/10.1016/j.ejps.2011.12.007] [PMID: 22178532]
[27]
Testa, B.; Crivori, P.; Reist, M.; Carrupt, P.A. The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples. Perspect. Drug Discov. Des., 2000, 19(1), 179-211.
[http://dx.doi.org/10.1023/A:1008741731244]
[28]
Balimane, P.V.; Chong, S.; Morrison, R.A. Current methodologies used for evaluation of intestinal permeability and absorption. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 301-312.
[http://dx.doi.org/10.1016/S1056-8719(00)00113-1] [PMID: 11274897]
[29]
Günzel, D.; Yu, A.S.L. Claudins and the modulation of tight junction permeability. Physiol. Rev., 2013, 93(2), 525-569.
[http://dx.doi.org/10.1152/physrev.00019.2012] [PMID: 23589827]
[30]
Hämäläinen, M.D.; Frostell-Karlsson, A. Predicting the intestinal absorption potential of hits and leads. Drug Discov. Today. Technol., 2004, 1(4), 397-405.
[http://dx.doi.org/10.1016/j.ddtec.2004.09.004] [PMID: 24981620]
[31]
Egan, W.J.; Lauri, G. Prediction of intestinal permeability. Adv. Drug Deliv. Rev., 2002, 54(3), 273-289.
[http://dx.doi.org/10.1016/S0169-409X(02)00004-2] [PMID: 11922948]
[32]
Yang, Y.; Zhao, Y.; Yu, A.; Sun, D.; Yu, L.X. Oral drug absorption In: Developing Solid Oral Dosage Forms Elsevier; , 2017; pp. 331-354.
[33]
Fagerholm, U. Prediction of human pharmacokinetics - gastrointestinal absorption. J. Pharm. Pharmacol., 2010, 59(7), 905-916.
[http://dx.doi.org/10.1211/jpp.59.7.0001] [PMID: 17637184]
[34]
DeSesso, J.M.; Jacobson, C.F. Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem. Toxicol., 2001, 39(3), 209-228.
[http://dx.doi.org/10.1016/S0278-6915(00)00136-8] [PMID: 11278053]
[35]
Ungell, A.L. Transport studies using intestinal tissue ex vivo. In: Cell Culture Models of Biological Barriers; CRC Press: London, 2002; pp. 190-124.
[http://dx.doi.org/10.1201/9780203219935.ch11]
[36]
Deferme, S.; Annaert, P.; Augustijns, P. In vitro screening models to assess intestinal drug absorption and metabolism. In: Drug Absorption Studies Boston; Springer US: MA, 2008; pp. 182-15.
[http://dx.doi.org/10.1007/978-0-387-74901-3_8]
[37]
Van Spaendonk, H.; Ceuleers, H.; Witters, L.; Patteet, E.; Joossens, J.; Augustyns, K.; Lambeir, A.M.; De Meester, I.; De Man, J.G.; De Winter, B.Y. Regulation of intestinal permeability: The role of proteases. World J. Gastroenterol., 2017, 23(12), 2106-2123.
[http://dx.doi.org/10.3748/wjg.v23.i12.2106] [PMID: 28405139]
[38]
Antunes, F.; Andrade, F.; Ferreira, D.; Morck Nielsen, H.; Sarmento, B. Models to predict intestinal absorption of therapeutic peptides and proteins. Curr. Drug Metab., 2013, 14(1), 4-20.
[http://dx.doi.org/10.2174/138920013804545160] [PMID: 21933113]
[39]
Westerhout, J.; Steeg, E.; Grossouw, D.; Zeijdner, E.E.; Krul, C.A.M.; Verwei, M.; Wortelboer, H.M. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharm. Sci., 2014, 63, 167-177.
[http://dx.doi.org/10.1016/j.ejps.2014.07.003] [PMID: 25046168]
[40]
van de Kerkhof, E.; de Graaf, I.; Groothuis, G. In vitro methods to study intestinal drug metabolism. Curr. Drug Metab., 2007, 8(7), 658-675.
[http://dx.doi.org/10.2174/138920007782109742] [PMID: 17979654]
[41]
Agu, R.U.; Ugwoke, M.I. In situ and ex vivo nasal models for preclinical drug development studies. In: Drug Absorption Studies; Springer: Boston, MA, 2008; pp. 112-134.
[42]
Westerhout, J.; Wortelboer, H.; Verhoeckx, K. Using chamber. In: The Impact of Food Bioactives on Health; Springer: Cham, 2015; pp. 263-273.
[43]
Campbell, C.R.; Voyles, J.; Cook, D.I.; Dinudom, A. Frog skin epithelium: Electrolyte transport and chytridiomycosis. Int. J. Biochem. Cell Biol., 2012, 44(3), 431-434.
[http://dx.doi.org/10.1016/j.biocel.2011.12.002] [PMID: 22182598]
[44]
Clarke, L.L. A guide to Ussing chamber studies of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(6), G1151-G1166.
[http://dx.doi.org/10.1152/ajpgi.90649.2008] [PMID: 19342508]
[45]
Thomson, A.; Smart, K.; Somerville, M.S.; Lauder, S.N.; Appanna, G.; Horwood, J.; Sunder Raj, L.; Srivastava, B.; Durai, D.; Scurr, M.J.; Keita, Å.V.; Gallimore, A.M.; Godkin, A. The Ussing chamber system for measuring intestinal permeability in health and disease. BMC Gastroenterol., 2019, 19(1), 98.
[http://dx.doi.org/10.1186/s12876-019-1002-4] [PMID: 31221083]
[46]
Annaert, P.; Brouwers, J.; Bijnens, A.; Lammert, F.; Tack, J.; Augustijns, P. Ex vivo permeability experiments in excised rat intestinal tissue and in vitro solubility measurements in aspirated human intestinal fluids support age-dependent oral drug absorption. Eur. J. Pharm. Sci., 2010, 39(1-3), 15-22.
[http://dx.doi.org/10.1016/j.ejps.2009.10.005] [PMID: 19837159]
[47]
Fleth-James, J. Suitability of in vitro, in silico and in vivo methods to predict intestinal absorption in drug development. PhD Thesis, Freie Universität Berlin, 2017.
[48]
Sjöberg, Å.; Lutz, M.; Tannergren, C.; Wingolf, C.; Borde, A.; Ungell, A.L. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur. J. Pharm. Sci., 2013, 48(1-2), 166-180.
[http://dx.doi.org/10.1016/j.ejps.2012.10.007] [PMID: 23103351]
[49]
Zakelj, S.; Sturm, K.; Kristl, A. Ciprofloxacin permeability and its active secretion through rat small intestine in vitro. Int. J. Pharm., 2006, 313(1-2), 175-180.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.004] [PMID: 16529884]
[50]
Arnold, Y.; Thorens, J.; Bernard, S.; Kalia, Y. Drug transport across porcine intestine using an ussing chamber system: Regional differences and the effect of P-glycoprotein and CYP3A4 activity on drug absorption. Pharmaceutics, 2019, 11(3), 139.
[http://dx.doi.org/10.3390/pharmaceutics11030139] [PMID: 30901927]
[51]
Speer, J.E.; Gunasekara, D.B.; Wang, Y.; Fallon, J.K.; Attayek, P.J.; Smith, P.C.; Sims, C.E.; Allbritton, N.L. Molecular transport through primary human small intestinal monolayers by culture on a collagen scaffold with a gradient of chemical cross-linking. J. Biol. Eng., 2019, 13(1), 36.
[http://dx.doi.org/10.1186/s13036-019-0165-4] [PMID: 31061676]
[52]
Fortuna, A.; Alves, G.; Falcão, A.; Soares-da-Silva, P. Evaluation of the permeability and P-glycoprotein efflux of carbamazepine and several derivatives across mouse small intestine by the Ussing chamber technique. Epilepsia, 2012, 53(3), 529-538.
[http://dx.doi.org/10.1111/j.1528-1167.2012.03409.x] [PMID: 22372629]
[53]
Löscher, W.; Langer, O. Imaging of P-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy. Curr. Top. Med. Chem., 2010, 10(17), 1785-1791.
[http://dx.doi.org/10.2174/156802610792928095] [PMID: 20645916]
[54]
Song, I.S.; Choi, Y.A.; Choi, M.K. Comparison of gastrointestinal permeability of caffeine, propranolol, atenolol, ofloxacin, and quinidine measured using Ussing chamber system and Caco2 cell monolayer. Mass Spectrom. Lett., 2017, 8(2), 34-38.
[55]
Guo, P.; Li, N.; Fan, L.; Lu, J.; Liu, B.; Zhang, B.; Wu, Y.; Liu, Z.; Li, J.; Pi, J.; Qi, D. Study of penetration mechanism of labrasol on rabbit cornea by Ussing chamber, RT-PCR assay, Western blot and immunohistochemistry. Asian J. Pharm. Sci., 2019, 14(3), 329-339.
[http://dx.doi.org/10.1016/j.ajps.2018.05.005] [PMID: 32104463]
[56]
Mendes, C.; Meirelles, G.C.; Silva, M.A.S.; Ponchel, G. Intestinal permeability determinants of norfloxacin in Ussing chamber model. Eur. J. Pharm. Sci., 2018, 121, 236-242.
[http://dx.doi.org/10.1016/j.ejps.2018.05.030] [PMID: 29860116]
[57]
Mateus, R.; Moore, D.J.; Hadgraft, J.; Lane, M.E. Percutaneous absorption of salicylic acid – in vitro and in vivo studies. Int. J. Pharm., 2014, 475(1-2), 471-474.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.061] [PMID: 25178827]
[58]
Dezani, A.B.; Pereira, T.M.; Caffaro, A.M.; Reis, J.M.; Serra, C.H.R. Determination of lamivudine and zidovudine permeability using a different ex vivo method in Franz cells. J. Pharmacol. Toxicol. Methods, 2013, 67(3), 194-202.
[http://dx.doi.org/10.1016/j.vascn.2013.01.005] [PMID: 23337245]
[59]
Pretorius, E.; Bouic, P.J.D. Permeation of four oral drugs through human intestinal mucosa. AAPS PharmSciTech, 2009, 10(1), 270-275.
[http://dx.doi.org/10.1208/s12249-009-9207-4] [PMID: 19280345]
[60]
Reis, J.M.; Dezani, A.B.; Pereira, T.M.; Avdeef, A.; Serra, C.H.R. Lamivudine permeability study: A comparison between PAMPA, ex vivo and in situ Single-pass Intestinal Perfusion (SPIP) in rat jejunum. Eur. J. Pharm. Sci., 2013, 48(4-5), 781-789.
[http://dx.doi.org/10.1016/j.ejps.2012.12.025] [PMID: 23298578]
[61]
Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Boselli, C.; Caramella, C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: In vitro (Caco2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech, 2010, 11(1), 362-371.
[http://dx.doi.org/10.1208/s12249-010-9390-3] [PMID: 20232266]
[62]
Dai, X.L.; Li, S.; Chen, J.M.; Lu, T.B. Improving the membrane permeability of 5-fluorouracil via cocrystallization. Cryst. Growth Des., 2016, 16(8), 4430-4438.
[http://dx.doi.org/10.1021/acs.cgd.6b00552]
[63]
Pizarro, D.; Posada, G.; Mahalanabis, D.; Sandí, L. Comparison of efficacy of a glucose/glycine/glycylglycine electrolyte solution versus the standard WHO/ORS in diarrheic dehydrated children. J. Pediatr. Gastroenterol. Nutr., 1988, 7(6), 882-888.
[http://dx.doi.org/10.1097/00005176-198811000-00016] [PMID: 3199275]
[64]
Alam, M.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Everted gut sac model as a tool in pharmaceutical research: Limitations and applications. J. Pharm. Pharmacol., 2012, 64(3), 326-336.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01391.x] [PMID: 22309264]
[65]
Bohets, H.; Annaert, P.; Mannens, G.; van Beijsterveldt, L.; Anciaux, K.; Verboven, P.; Meuldermans, W.; Lavrijsen, K. Strategies for absorption screening in drug discovery and development. Curr. Top. Med. Chem., 2001, 1(5), 367-383.
[http://dx.doi.org/10.2174/1568026013394886] [PMID: 11899103]
[66]
Volpe, D.A. Application of method suitability for drug permeability classification. AAPS J., 2010, 12(4), 670-678.
[http://dx.doi.org/10.1208/s12248-010-9227-8] [PMID: 20811966]
[67]
Liu, W.; Pan, H.; Zhang, C.; Zhao, L.; Zhao, R.; Zhu, Y.; Pan, W. Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. Int. J. Mol. Sci., 2016, 17(7), 1171.
[http://dx.doi.org/10.3390/ijms17071171] [PMID: 27455239]
[68]
Dai, C.; Zhang, W.; He, R.; Xiong, F.; Ma, H. Protein breakdown and release of antioxidant peptides during simulated gastrointestinal digestion and the absorption by everted intestinal sac of rapeseed proteins. Lebensm. Wiss. Technol., 2017, 86, 424-429.
[http://dx.doi.org/10.1016/j.lwt.2017.08.026]
[69]
Chen, P.; Zhao, M.; Chen, Q.; Fan, L.; Gao, F.; Zhao, L. Absorption characteristics of chitobiose and chitopentaose in the human intestinal cell line Caco2 and everted gut sacs. J. Agric. Food Chem., 2019, 67(16), 4513-4523.
[http://dx.doi.org/10.1021/acs.jafc.9b01355] [PMID: 30929431]
[70]
Tambe, A.; Mokashi, P.; Pandita, N. Ex-vivo intestinal absorption study of boswellic acid, cyclodextrin complexes and poloxamer solid dispersions using everted gut sac technique. J. Pharm. Biomed. Anal., 2019, 167, 66-73.
[http://dx.doi.org/10.1016/j.jpba.2018.12.018] [PMID: 30743157]
[71]
Le Ferrec, E.; Chesne, C.; Artusson, P.; Brayden, D.; Fabre, G.; Gires, P.; Guillou, F.; Rousset, M.; Rubas, W.; Scarino, M.L. In vitro models of the intestinal barrier. The report and recommendations of ECVAM workshop 46. European Centre for the Validation of Alternative Methods. Altern. Lab. Anim., 2001, 29(6), 649-668.
[http://dx.doi.org/10.1177/026119290102900604] [PMID: 11709041]
[72]
Hidalgo, I.J. Assessing the absorption of new pharmaceuticals. Curr. Top. Med. Chem., 2001, 1(5), 385-401.
[http://dx.doi.org/10.2174/1568026013395010] [PMID: 11899104]
[73]
Dixit, P.; Jain, D.K.; Dumbwani, J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J. Pharmacol. Toxicol. Methods, 2012, 65(1), 13-17.
[http://dx.doi.org/10.1016/j.vascn.2011.11.001] [PMID: 22107724]
[74]
Li, M.; de Graaf, I.A.M.; Groothuis, G.M.M. Precision-cut intestinal slices: Alternative model for drug transport, metabolism, and toxicology research. Expert Opin. Drug Metab. Toxicol., 2016, 12(2), 175-190.
[http://dx.doi.org/10.1517/17425255.2016.1125882] [PMID: 26750630]
[75]
Leppert, P.S.; Fix, J.A. Use of everted intestinal rings for in vitro examination of oral absorption potential. J. Pharm. Sci., 1994, 83(7), 976-981.
[http://dx.doi.org/10.1002/jps.2600830712] [PMID: 7965678]
[76]
Versantvoort, C.H.; Rompelberg, C.J.; Sips, A.J. Methodologies to study human intestinal absorption. A review; Natl. Institute Public Health, 2000.
[77]
Sjögren, E.; Abrahamsson, B.; Augustijns, P.; Becker, D.; Bolger, M.B.; Brewster, M.; Brouwers, J.; Flanagan, T.; Harwood, M.; Heinen, C.; Holm, R.; Juretschke, H.P.; Kubbinga, M.; Lindahl, A.; Lukacova, V.; Münster, U.; Neuhoff, S.; Nguyen, M.A.; Peer, A.; Reppas, C.; Hodjegan, A.R.; Tannergren, C.; Weitschies, W.; Wilson, C.; Zane, P.; Lennernäs, H.; Langguth, P. In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur. J. Pharm. Sci., 2014, 57, 99-151.
[http://dx.doi.org/10.1016/j.ejps.2014.02.010] [PMID: 24637348]
[78]
Cao, X.; Yu, L.; Sun, D. Drug absorption principles.Biopharmaceutics Applications in Drug Development; Krishna, R.; Yu, L., Eds.; Springer: Boston, MA, 2008, pp. 75-100.
[79]
Jain, R.; Duvvuri, S.; Kansara, V.; Mandava, N.K.; Mitra, A.K. Intestinal absorption of novel-dipeptide prodrugs of saquinavir in rats. Int. J. Pharm., 2007, 336(2), 233-240.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.058] [PMID: 17207946]
[80]
Ruan, L.P.; Chen, S.; Yu, B.Y.; Zhu, D.N.; Cordell, G.A.; Qiu, S.X. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur. J. Med. Chem., 2006, 41(5), 605-610.
[http://dx.doi.org/10.1016/j.ejmech.2006.01.013] [PMID: 16546303]
[81]
Miyake, M.; Toguchi, H.; Nishibayashi, T.; Higaki, K.; Sugita, A.; Koganei, K.; Kamada, N.; Kitazume, M.T.; Hisamatsu, T.; Sato, T.; Okamoto, S.; Kanai, T.; Hibi, T. Establishment of novel prediction system of intestinal absorption in humans using human intestinal tissues. J. Pharm. Sci., 2013, 102(8), 2564-2571.
[http://dx.doi.org/10.1002/jps.23609] [PMID: 23686795]
[82]
Haslam, I.S.; O’Reilly, D.A.; Sherlock, D.J.; Kauser, A.; Womack, C.; Coleman, T. Pancreatoduodenectomy as a source of human small intestine for Ussing chamber investigations and comparative studies with rat tissue. Biopharm. Drug Dispos., 2011, 32(4), 210-221.
[http://dx.doi.org/10.1002/bdd.751] [PMID: 21416475]
[83]
Rozehnal, V.; Nakai, D.; Hoepner, U.; Fischer, T.; Kamiyama, E.; Takahashi, M. Human small intestinal and colonic tissue mounted in the ussing chamber as a tool for characterizing the intestinal absorption of drugs. Eur. J. Pharm. Sci., 2012, 46(5), 367e373.
[http://dx.doi.org/10.1016/j.ejps.2012.02.025]
[84]
Föger, F.; Kopf, A.; Loretz, B.; Albrecht, K.; Bernkop-Schnürch, A. Correlation of in vitro and in vivo models for the oral absorption of peptide drugs. Amino Acids, 2008, 35(1), 233-241.
[http://dx.doi.org/10.1007/s00726-007-0581-5] [PMID: 17726639]
[85]
Li, H.; Jin, H.E.; Shim, W.S.; Shim, C.K. An improved prediction of the human in vivo intestinal permeability and BCS class of drugs using the in vitro permeability ratio obtained for rat intestine using an Ussing chamber system. Drug Dev. Ind. Pharm., 2013, 39(10), 1515-1522.
[http://dx.doi.org/10.3109/03639045.2012.714787] [PMID: 22934579]
[86]
White, R.E. High-throughput screening in drug metabolism and pharmacokinetic support of drug discovery. Annu. Rev. Pharmacol. Toxicol., 2000, 40(1), 133-157.
[http://dx.doi.org/10.1146/annurev.pharmtox.40.1.133] [PMID: 10836130]
[87]
Wallon, C.; Braaf, Y.; Wolving, M.; Olaison, G.; Söderholm, J.D. Endoscopic biopsies in ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand. J. Gastroenterol., 2005, 40(5), 586-595.
[http://dx.doi.org/10.1080/00365520510012235] [PMID: 16036512]
[88]
Cardinali, A.; Rotondo, F.; Minervini, F.; Linsalata, V.; D’Antuono, I.; Debellis, L.; Ferruzzi, M.G. Assessment of verbascoside absorption in human colonic tissues using the ussing chamber model. Food Res. Int., 2013, 54(1), 132-138.
[http://dx.doi.org/10.1016/j.foodres.2013.06.017]
[89]
Sosnik, A. das Neves, J.; Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog. Polym. Sci., 2014, 39(12), 2030-2075.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.010]
[90]
Yang, F.; Chen, G.; Ma, M.; Qiu, N.; Zhu, L.; Li, J. Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco2 monolayer. Lipids Health Dis., 2018, 17(1), 32.
[http://dx.doi.org/10.1186/s12944-018-0675-y] [PMID: 29463265]
[91]
Simon-Assmann, P.; Turck, N.; Sidhoum-Jenny, M.; Gradwohl, G.; Kedinger, M. In vitro models of intestinal epithelial cell differentiation. Cell Biol. Toxicol., 2007, 23(4), 241-256.
[http://dx.doi.org/10.1007/s10565-006-0175-0] [PMID: 17171431]
[92]
Maubon, N.; Le Vee, M.; Fossati, L.; Audry, M.; Le Ferrec, E.; Bolze, S.; Fardel, O. Analysis of drug transporter expression in human intestinal Caco2 cells by real-time PCR. Fundam. Clin. Pharmacol., 2007, 21(6), 659-663.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00550.x] [PMID: 18034668]
[93]
Liu, Q.; Chen, J.; Qin, Y.; Jiang, B.; Zhang, T. Encapsulation of pterostilbene in nanoemulsions: Influence of lipid composition on physical stability, in vitro digestion, bioaccessibility, and Caco2 cell monolayer permeability. Food Funct., 2019, 10(10), 6604-6614.
[http://dx.doi.org/10.1039/C9FO01260E] [PMID: 31552977]
[94]
Pereira, C.; Costa, J.; Sarmento, B.; Araújo, F. Cell-based in vitro models for intestinal permeability studies. In: Concepts and Models for Drug Permeability Studies; Woodhead Publishing, 2016; pp. 57-81.
[http://dx.doi.org/10.1016/B978-0-08-100094-6.00005-5]
[95]
Wu, X.X.; Huang, X.L.; Chen, R.R.; Li, T.; Ye, H.J.; Xie, W.; Huang, Z.M.; Cao, G.Z. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco2 cell monolayers. Inflammation, 2019, 42(6), 2215-2225.
[http://dx.doi.org/10.1007/s10753-019-01085-z] [PMID: 31473900]
[96]
Patel, M.; Mundada, V.; Sawant, K. Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: Elucidation of transport mechanism, permeability across Caco2 cell line and in vivo pharmacokinetic studies. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 144-153.
[http://dx.doi.org/10.1080/21691401.2018.1546186] [PMID: 30669881]
[97]
Fratter, A.; Pellizzato, M. Novel micellar system for vitamin D3 oral delivery: Assessment of enteric absorption through a digestion-like in vitro model. J. Drug Deliv. Sci. Technol., 2020, 59, 101840.
[http://dx.doi.org/10.1016/j.jddst.2020.101840]
[98]
Wang, J.; Tan, J.; Luo, J.; Huang, P.; Zhou, W.; Chen, L.; Long, L.; Zhang, L.; Zhu, B.; Yang, L.; Deng, D.Y.B. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J. Nanobiotechnology, 2017, 15(1), 18.
[http://dx.doi.org/10.1186/s12951-017-0251-z] [PMID: 28249594]
[99]
Fowler, R.; Vllasaliu, D.; Falcone, F.H.; Garnett, M.; Smith, B.; Horsley, H.; Alexander, C.; Stolnik, S. Uptake and transport of B 12 -conjugated nanoparticles in airway epithelium. J. Control. Release, 2013, 172(1), 374-381.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.028] [PMID: 24008152]
[100]
Francis, M.F.; Cristea, M.; Winnik, F.M. Exploiting the vitamin B12 pathway to enhance oral drug delivery via polymeric micelles. Biomacromolecules, 2005, 6(5), 2462-2467.
[http://dx.doi.org/10.1021/bm0503165] [PMID: 16153081]
[101]
Lozoya-Agullo, I.; Araújo, F.; González-Álvarez, I.; Merino-Sanjuán, M.; González-Álvarez, M.; Bermejo, M.; Sarmento, B. Usefulness of Caco2/HT29-MTX and Caco2/HT29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco2 monoculture. Mol. Pharm., 2017, 14(4), 1264-1270.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01165] [PMID: 28263609]
[102]
Spinks, C.; Zidan, A.; Khan, M.; Habib, M.; Faustino, P. Pharmaceutical characterization of novel tenofovir liposomal formulations for enhanced oral drug delivery: In vitro pharmaceutics and Caco2 permeability investigations. Clin. Pharmacol., 2017, 9, 29-38.
[http://dx.doi.org/10.2147/CPAA.S119875] [PMID: 28260952]
[103]
Ude, V.C.; Brown, D.M.; Viale, L.; Kanase, N.; Stone, V.; Johnston, H.J. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Part. Fibre Toxicol., 2017, 14(1), 31.
[http://dx.doi.org/10.1186/s12989-017-0211-7] [PMID: 28835236]
[104]
Ude, V.C.; Brown, D.M.; Stone, V.; Johnston, H.J. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J. Nanobiotechnology, 2019, 17(1), 70.
[http://dx.doi.org/10.1186/s12951-019-0503-1] [PMID: 31113462]
[105]
Lentz, K.A.; Hayashi, J.; Lucisano, L.J.; Polli, J.E. Development of a more rapid, reduced serum culture system for Caco2 monolayers and application to the biopharmaceutics classification system. Int. J. Pharm., 2000, 200(1), 41-51.
[http://dx.doi.org/10.1016/S0378-5173(00)00334-3] [PMID: 10845684]
[106]
Chong, S.; Dando, S.A.; Morrison, R.A. Evaluation of biocoat intestinal epithelium differentiation environment (3-day cultured Caco2 cells) as an absorption screening model with improved productivity. Pharm. Res., 1997, 14(12), 1835-1837.
[http://dx.doi.org/10.1023/A:1012112820371] [PMID: 9453077]
[107]
Sevin, E.; Dehouck, L.; Fabulas-da Costa, A.; Cecchelli, R.; Dehouck, M.P.; Lundquist, S.; Culot, M. Accelerated Caco2 cell permeability model for drug discovery. J. Pharmacol. Toxicol. Methods, 2013, 68(3), 334-339.
[http://dx.doi.org/10.1016/j.vascn.2013.07.004] [PMID: 23916595]
[108]
Swiderek, M.S.; Mannuzza, F.J.; Park, T.O. Effects of ECM proteins on barrier formation in Caco2 cells. Technical Bulletin 2008.
[109]
Cai, Y.; Xu, C.; Chen, P.; Hu, J.; Hu, R.; Huang, M.; Bi, H. Development, validation, and application of a novel 7-day Caco2 cell culture system. J. Pharmacol. Toxicol. Methods, 2014, 70(2), 175-181.
[http://dx.doi.org/10.1016/j.vascn.2014.07.001] [PMID: 25034865]
[110]
Peng, Y.; Yadava, P.; Heikkinen, A.T.; Parrott, N.; Railkar, A. Applications of a 7-day Caco2 cell model in drug discovery and development. Eur. J. Pharm. Sci., 2014, 56, 120-130.
[http://dx.doi.org/10.1016/j.ejps.2014.02.008] [PMID: 24576578]
[111]
Feltrin, C.; Brambila, P.F.; Simões, C.M.O. Development of Caco2 cells-based gene reporter assays and evaluation of herb-drug interactions involving CYP3A4 and CYP2D6 gene expression. Chem. Biol. Interact., 2019, 303, 79-89.
[http://dx.doi.org/10.1016/j.cbi.2019.01.030] [PMID: 30772286]
[112]
Ma, G.L.; Qiao, Z.L.; He, D.; Wang, J.; Kong, Y.Y.; Xin, X.Y.; Wen, F.Q.; Bao, S.J.; Ma, Z.R.; Wang, F.S.; Xie, J.; Hu, Y.H. Establishment of a low-tumorigenic MDCK cell line and study of differential molecular networks. Biologicals, 2020, 68, 112-121.
[http://dx.doi.org/10.1016/j.biologicals.2020.07.003] [PMID: 32928630]
[113]
Avdeef, A.; Tam, K.Y. How well can the Caco2/Madin-Darby canine kidney models predict effective human jejunal permeability? J. Med. Chem., 2010, 53(9), 3566-3584.
[http://dx.doi.org/10.1021/jm901846t] [PMID: 20373811]
[114]
Theile, M.; Wiora, L.; Russ, D.; Reuter, J.; Ishikawa, H.; Schwerk, C.; Schroten, H.; Mogk, S. A simple approach to perform TEER measurements using a self-made volt-amperemeter with programmable output frequency. J. Vis. Exp., 2019, (152)
[http://dx.doi.org/10.3791/60087] [PMID: 31633685]
[115]
Coon, S.; Kekuda, R.; Saha, P.; Sundaram, U. Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells. Am. J. Physiol. Cell Physiol., 2011, 300(3), C496-C505.
[http://dx.doi.org/10.1152/ajpcell.00292.2010] [PMID: 21148403]
[116]
Versantvoort, C.H.M.; Ondrewater, R.C.A.; Duizer, E.; Van de Sandt, J.J.M.; Gilde, A.J.; Groten, J.P. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: Comparison of active and passive transport with the human colon carcinoma Caco2 cell line. Environ. Toxicol. Pharmacol., 2002, 11(3-4), 335-344.
[http://dx.doi.org/10.1016/S1382-6689(01)00122-3] [PMID: 21782616]
[117]
Turco, L.; Catone, T.; Caloni, F.; Consiglio, E.D.; Testai, E.; Stammati, A. Caco2/TC7 cell line characterization for intestinal absorption: How reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? Toxicol. In Vitro, 2011, 25(1), 13-20.
[http://dx.doi.org/10.1016/j.tiv.2010.08.009] [PMID: 20732406]
[118]
Grès, M.C.; Julian, B.; Bourrié, M.; Meunier, V.; Roques, C.; Berger, M.; Boulenc, X.; Berger, Y.; Fabre, G. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: Comparison with the parental Caco2 cell line. Pharm. Res., 1998, 15(5), 726-733.
[http://dx.doi.org/10.1023/A:1011919003030] [PMID: 9619781]
[119]
Volpe, D.A. Advances in cell-based permeability assays to screen drugs for intestinal absorption. Expert Opin. Drug Discov., 2020, 15(5), 539-549.
[http://dx.doi.org/10.1080/17460441.2020.1735347] [PMID: 32154737]
[120]
Lazorova, L.; Hubatsch, I.; Ekegren, J.K.; Gising, J.; Nakai, D.; Zaki, N.M.; Bergström, C.A.S.; Norinder, U.; Larhed, M.; Artursson, P. Structural features determining the intestinal epithelial permeability and efflux of novel HIV-1 protease inhibitors. J. Pharm. Sci., 2011, 100(9), 3763-3772.
[http://dx.doi.org/10.1002/jps.22570] [PMID: 21491458]
[121]
Geens, M.M.; Niewold, T.A. Optimizing culture conditions of a porcine epithelial cell line IPEC-J2 through a histological and physiological characterization. Cytotechnology, 2011, 63(4), 415-423.
[http://dx.doi.org/10.1007/s10616-011-9362-9] [PMID: 21626283]
[122]
Mahler, G.J.; Shuler, M.L.; Glahn, R.P. Characterization of Caco2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J. Nutr. Biochem., 2009, 20(7), 494-502.
[http://dx.doi.org/10.1016/j.jnutbio.2008.05.006] [PMID: 18715773]
[123]
Hilgendorf, C.; Spahn-Langguth, H.; Regårdh, C.G.; Lipka, E.; Amidon, G.L.; Langguth, P. Caco2 versus Caco2/HT29-MTX co-cultured cell lines: Permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci., 2000, 89(1), 63-75.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200001)89:1<63::AIDJPS7>3.0.CO;2-6] [PMID: 10664539]
[124]
Sarmento, B.; Andrade, F.; Silva, S.B.; Rodrigues, F. das Neves, J.; Ferreira, D. Cell-based in vitro models for predicting drug permeability. Expert Opin. Drug Metab. Toxicol., 2012, 8(5), 607-621.
[http://dx.doi.org/10.1517/17425255.2012.673586] [PMID: 22424145]
[125]
Lock, J.Y.; Carlson, T.L.; Carrier, R.L. Mucus models to evaluate the diffusion of drugs and particles. Adv. Drug Deliv. Rev., 2018, 124, 34-49.
[http://dx.doi.org/10.1016/j.addr.2017.11.001] [PMID: 29117512]
[126]
Ke, Z.; Guo, H.; Zhu, X.; Jin, Y.; Huang, Y. Efficient peroral delivery of insulin via vitamin B12 modified trimethyl chitosan nanoparticles. J. Pharm. Pharm. Sci., 2015, 18(2), 155-170.
[http://dx.doi.org/10.18433/J3J88Q] [PMID: 26158281]
[127]
Li, Y.; Arranz, E.; Guri, A.; Corredig, M. Mucus interactions with liposomes encapsulating bioactives: Interfacial tensiometry and cellular uptake on Caco2 and cocultures of Caco2/HT29-MTX. Food Res. Int., 2017, 92, 128-137.
[http://dx.doi.org/10.1016/j.foodres.2016.12.010] [PMID: 28290290]
[128]
Reale, O.; Huguet, A.; Fessard, V. Co-culture model of Caco2/HT29-MTX cells: A promising tool for investigation of phycotoxins toxicity on the intestinal barrier. Chemosphere, 2020, 128497.
[PMID: 34756374]
[129]
Jørgensen, J.R.; Jepsen, M.L.; Nielsen, L.H.; Dufva, M.; Nielsen, H.M.; Rades, T.; Boisen, A.; Müllertz, A. Microcontainers for oral insulin delivery – in vitro studies of permeation enhancement. Eur. J. Pharm. Biopharm., 2019, 143, 98-105.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.011] [PMID: 31425857]
[130]
Kleiveland, C.R. Co-culture Caco2/immune cells. In: The Impact of Food Bioactives on Health: In vitro and Ex Vivo Models; Springer: Cham, 2015.
[http://dx.doi.org/10.1007/978-3-319-16104-4_18]
[131]
Santbergen, M.J.C.; van der Zande, M.; Gerssen, A.; Bouwmeester, H.; Nielen, M.W.F. Dynamic in vitro intestinal barrier model coupled to chip-based liquid chromatography mass spectrometry for oral bioavailability studies. Anal. Bioanal. Chem., 2020, 412(5), 1111-1122.
[http://dx.doi.org/10.1007/s00216-019-02336-6] [PMID: 31865418]
[132]
Gillois, K.; Stoffels, C.; Leveque, M.; Fourquaux, I.; Blesson, J.; Mils, V.; Cambier, S.; Vignard, J.; Terrisse, H.; Mirey, G.; Audinot, J.N.; Theodorou, V.; Ropers, M.H.; Robert, H.; Mercier-Bonin, M. Repeated exposure of Caco2 versus Caco2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. Sci. Total Environ., 2021, 754, 142324.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142324] [PMID: 33254900]
[133]
Miyake, M.; Ragnarsson, E.; Nakai, D.; Artursson, P. The pro-inflammatory cytokine interleukin-6 regulates nanoparticle transport across model follicle-associated epithelium cells. J. Pharm. Sci., 2016, 105(7), 2099-2104.
[http://dx.doi.org/10.1016/j.xphs.2016.03.043] [PMID: 27262206]
[134]
Schimpel, C.; Teubl, B.; Absenger, M.; Meindl, C.; Fröhlich, E.; Leitinger, G.; Zimmer, A.; Roblegg, E. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Mol. Pharm., 2014, 11(3), 808-818.
[http://dx.doi.org/10.1021/mp400507g] [PMID: 24502507]
[135]
Lima, I.A.; Khalil, N.M.; Tominaga, T.T.; Lechanteur, A.; Sarmento, B.; Mainardes, R.M. Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 993-1002.
[http://dx.doi.org/10.1080/21691401.2018.1477788]
[136]
Silva, D.S.; M., Dos Santos D.; Almeida, A.; Marchiori, L.; Campana-Filho, S.P.; Ribeiro, S.J.L.; Sarmento, B. N-(2-hydroxy)-propyl-3-trimethylammonium, O-mysristoyl chitosan enhances the solubility and intestinal permeability of anticancer curcumin. Pharmaceutics, 2018, 10(4), 245.
[http://dx.doi.org/10.3390/pharmaceutics10040245] [PMID: 30463361]
[137]
Campisi, M.; Shin, Y.; Osaki, T.; Hajal, C.; Chiono, V.; Kamm, R.D. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials, 2018, 180, 117-129.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.014] [PMID: 30032046]
[138]
Pampaloni, F.; Reynaud, E.G.; Stelzer, E.H.K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 839-845.
[http://dx.doi.org/10.1038/nrm2236] [PMID: 17684528]
[139]
Visco, V.; Bava, F.A.; d’Alessandro, F.; Cavallini, M.; Ziparo, V.; Torrisi, M.R. Human colon fibroblasts induce differentiation and proliferation of intestinal epithelial cells through the direct paracrine action of keratinocyte growth factor. J. Cell. Physiol., 2009, 220(1), 204-213.
[http://dx.doi.org/10.1002/jcp.21752] [PMID: 19326389]
[140]
Zhang, J.; Penny, J.; Lu, J.R. Development of a novel in vitro 3D intestinal model for permeability evaluations. Int. J. Food Sci. Nutr., 2020, 71(5), 549-562.
[http://dx.doi.org/10.1080/09637486.2019.1700940] [PMID: 31847617]
[141]
Moyes, S.M.; Morris, J.F.; Carr, K.E. Macrophages increase microparticle uptake by enterocyte-like Caco2 cell monolayers. J. Anat., 2010, 217(6), 740-754.
[http://dx.doi.org/10.1111/j.1469-7580.2010.01304.x] [PMID: 20880316]
[142]
Sung, J.H.; Yu, J.; Luo, D.; Shuler, M.L.; March, J.C. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip, 2011, 11(3), 389-392.
[http://dx.doi.org/10.1039/C0LC00273A] [PMID: 21157619]
[143]
Yu, J.; Peng, S.; Luo, D.; March, J.C. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng., 2012, 109(9), 2173-2178.
[http://dx.doi.org/10.1002/bit.24518] [PMID: 22488418]
[144]
Kim, H.J.; Ingber, D.E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol., 2013, 5(9), 1130-1140.
[http://dx.doi.org/10.1039/c3ib40126j] [PMID: 23817533]
[145]
Liang, E.; Kabcenell, A.K.; Coleman, J.R.; Robson, J.; Ruffles, R.; Yazdanian, M. Permeability measurement of macromolecules and assessment of mucosal antigen sampling using in vitro converted M cells. J. Pharmacol. Toxicol. Methods, 2001, 46(2), 93-101.
[http://dx.doi.org/10.1016/S1056-8719(02)00163-6] [PMID: 12481846]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy