Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Antifungal Biofilm Strategies: A Less Explored Area in Wound Management

Author(s): Shilpa Bharti, Foziyah Zakir, Mohd Aamir Mirza* and Geeta Aggarwal*

Volume 23, Issue 12, 2022

Published on: 30 June, 2022

Page: [1497 - 1513] Pages: 17

DOI: 10.2174/1389201023666220411100214

Price: $65

Abstract

Background: The treatment of wound-associated infections has always remained a challenge for clinicians, with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance to antimicrobials. Various fungal pathogens form fungal biofilms, namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with an increase in the number of surgical procedures, transplantation, and the exponential use of medical devices, the fungal bioburden is rising.

Objectives: The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are also highlighted. Further, the prospects of nanotechnology-based medical devices to combat fungal biofilm resistance have been explored. Some clinical trials and up-to-date patent technologies to eradicate biofilms are also mentioned.

Conclusion: Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have made it to the market. Eradication of fungal biofilms are a fragmentary area that needs further exploration.

Keywords: Antifungal, biofilm, medical devices, novel drug delivery, resistance, wound healing.

Graphical Abstract

[1]
Kalan, L.; Grice, E.A. Fungi in the wound microbiome. Adv. Wound Care (New Rochelle), 2018, 7(7), 247-255.
[http://dx.doi.org/10.1089/wound.2017.0756] [PMID: 29984114]
[2]
Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem., 2015, 7(4), 493-512.
[http://dx.doi.org/10.4155/fmc.15.6] [PMID: 25875875]
[3]
Sardi, J.C.; Pitangui, N.S.; Rodríguez-Arellanes, G.; Taylor, M.L.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J. Highlights in pathogenic fungal biofilms. Rev. Iberoam. Micol., 2014, 31(1), 22-29.
[http://dx.doi.org/10.1016/j.riam.2013.09.014] [PMID: 24252828]
[4]
O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol., 2000, 54(1), 49-79.
[http://dx.doi.org/10.1146/annurev.micro.54.1.49] [PMID: 11018124]
[5]
Nobile, C.J.; Johnson, A.D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol., 2015, 69(1), 71-92.
[http://dx.doi.org/10.1146/annurev-micro-091014-104330] [PMID: 26488273]
[6]
Gulati, M.; Nobile, C.J. Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes Infect., 2016, 18(5), 310-321.
[http://dx.doi.org/10.1016/j.micinf.2016.01.002] [PMID: 26806384]
[7]
Wu, S.; Wang, Y.; Liu, N.; Dong, G.; Sheng, C. Tackling fungal resistance by biofilm inhibitors. J. Med. Chem., 2017, 60(6), 2193-2211.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01203] [PMID: 28051303]
[8]
Mitchell, K.F.; Zarnowski, R.; Andes, D.R. The extracellular matrix of fungal biofilms. Adv. Exp. Med. Biol., 2016, 931, 21-35.
[http://dx.doi.org/10.1007/5584_2016_6] [PMID: 27271680]
[9]
Tolker-Nielsen, T. Biofilm development. Microbiol. Spectr., 2015, 3(2), MB-0001-MB-2014.
[http://dx.doi.org/10.1128/microbiolspec.MB-0001-2014] [PMID: 26104692]
[10]
Wolcott, R.D.; Rhoads, D.D.; Dowd, S.E. Biofilms and chronic wound inflammation. J. Wound Care, 2008, 17(8), 333-341.
[http://dx.doi.org/10.12968/jowc.2008.17.8.30796] [PMID: 18754194]
[11]
Dowd, S.E.; Delton Hanson, J.; Rees, E.; Wolcott, R.D.; Zischau, A.M.; Sun, Y.; White, J.; Smith, D.M.; Kennedy, J.; Jones, C.E. Survey of fungi and yeast in polymicrobial infections in chronic wounds. J. Wound Care, 2011, 20(1), 40-47.
[http://dx.doi.org/10.12968/jowc.2011.20.1.40] [PMID: 21278640]
[12]
Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J. Bacteriol., 2001, 183(18), 5385-5394.
[http://dx.doi.org/10.1128/JB.183.18.5385-5394.2001] [PMID: 11514524]
[13]
Tsui, C.; Kong, E.F.; Jabra-Rizk, M.A. Pathogenesis of Candida albicans biofilm. Pathog. Dis., 2016, 74(4), ftw018.
[http://dx.doi.org/10.1093/femspd/ftw018] [PMID: 26960943]
[14]
Tumbarello, M.; Posteraro, B.; Trecarichi, E.M.; Fiori, B.; Rossi, M.; Porta, R.; de Gaetano Donati, K.; La Sorda, M.; Spanu, T.; Fadda, G.; Cauda, R.; Sanguinetti, M. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patents with candidemia. J. Clin. Microbiol., 2007, 45(6), 1843-1850.
[http://dx.doi.org/10.1128/JCM.00131-07] [PMID: 17460052]
[15]
Braun, D.K.; Janssen, D.A.; Marcus, J.R.; Kauffman, C.A. Cryptococcal infection of a prosthetic dialysis fistula. Am. J. Kidney Dis., 1994, 24(5), 864-867.
[http://dx.doi.org/10.1016/S0272-6386(12)80683-4] [PMID: 7977331]
[16]
Johannsson, B.; Callaghan, J.J. Prosthetic hip infection due to Cryptococcus neoformans: Case report. Diagn. Microbiol. Infect. Dis., 2009, 64(1), 76-79.
[http://dx.doi.org/10.1016/j.diagmicrobio.2009.01.005] [PMID: 19362259]
[17]
Banerjee, U.; Gupta, K.; Venugopal, P. A case of prosthetic valve endocarditis caused by Cryptococcus neoformans var. neoformans. J. Med. Vet. Mycol., 1997, 35(2), 139-141.
[http://dx.doi.org/10.1080/02681219780001031] [PMID: 9147274]
[18]
Krzossok, S.; Birck, R.; Henke, S.; Hof, H.; van der Woude, F.J.; Braun, C. Trichosporon asahii infection of a dialysis PTFE arteriovenous graft. Clin. Nephrol., 2004, 62(1), 66-68.
[http://dx.doi.org/10.5414/CNP62066] [PMID: 15267017]
[19]
Ruan, S.Y.; Chien, J.Y.; Hsueh, P.R. Invasive trichosporonosis caused by Trichosporon asahii and other unusual Trichosporon species at a medical center in Taiwan. Clin. Infect. Dis., 2009, 49(1), e11-e17.
[http://dx.doi.org/10.1086/599614] [PMID: 19489711]
[20]
Reddy, B.T.; Torres, H.A.; Kontoyiannis, D.P. Breast implant infection caused by Trichosporon beigelii. Scand. J. Infect. Dis., 2002, 34(2), 143-144.
[http://dx.doi.org/10.1080/00365540110026895] [PMID: 11928852]
[21]
Coco, B.J.; Bagg, J.; Cross, L.J.; Jose, A.; Cross, J.; Ramage, G. Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral Microbiol. Immunol., 2008, 23(5), 377-383.
[http://dx.doi.org/10.1111/j.1399-302X.2008.00439.x] [PMID: 18793360]
[22]
Davis, L.E.; Cook, G.; Costerton, J.W. Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg. Infect. Dis., 2002, 8(4), 376-379.
[http://dx.doi.org/10.3201/eid0804.010103] [PMID: 11971770]
[23]
Langer, P.; Kassim, R.A.; Macari, G.S.; Saleh, K.J. Aspergillus infection after total knee arthroplasty. Am. J. Orthop., 2003, 32(8), 402-404.
[PMID: 12943343]
[24]
Jeloka, T.K.; Shrividya, S.; Wagholikar, G. Catheter outflow obstruction due to an aspergilloma. Perit. Dial. Int., 2011, 31(2), 211-212.
[PMID: 21427254]
[25]
D’Antonio, D.; Parruti, G.; Pontieri, E.; Di Bonaventura, G.; Manzoli, L.; Sferra, R.; Vetuschi, A.; Piccolomini, R.; Romano, F.; Staniscia, T. Slime production by clinical isolates of Blastoschizomyces capitatus from patents with hematological malignancies and catheter-related fungemia. Eur. J. Clin. Microbiol. Infect. Dis., 2004, 23(10), 787-789.
[http://dx.doi.org/10.1007/s10096-004-1207-4] [PMID: 15368097]
[26]
Cannizzo, F.T.; Eraso, E.; Ezkurra, P.A.; Villar-Vidal, M.; Bollo, E.; Castellá, G.; Cabañes, F.J.; Vidotto, V.; Quindós, G. Biofilm development by clinical isolates of Malassezia pachydermatis. Med. Mycol., 2007, 45(4), 357-361.
[http://dx.doi.org/10.1080/13693780701225767] [PMID: 17510859]
[27]
Imamura, Y.; Chandra, J.; Mukherjee, P.K.; Lattif, A.A.; Szczotka-Flynn, L.B.; Pearlman, E.; Lass, J.H.; O’Donnell, K.; Ghannoum, M.A. Fusarium and Candida albicans biofilms on soft contact lenses: Model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob. Agents Chemother., 2008, 52(1), 171-182.
[http://dx.doi.org/10.1128/AAC.00387-07] [PMID: 17999966]
[28]
Costa-Orlandi, C.B.; Sardi, J.C.O.; Pitangui, N.S.; de Oliveira, H.C.; Scorzoni, L.; Galeane, M.C.; Medina-Alarcón, K.P.; Melo, W.C.M.A.; Marcelino, M.Y.; Braz, J.D.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Fungal biofilms and polymicrobial diseases. J. Fungi (Basel), 2017, 3(2), 22.
[http://dx.doi.org/10.3390/jof3020022] [PMID: 29371540]
[29]
Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, challenges, and promising strategies. Front. Med. (Lausanne), 2018, 5, 28.
[http://dx.doi.org/10.3389/fmed.2018.00028] [PMID: 29487851]
[30]
Bhagwat, G.; O’Connor, W.; Grainge, I.; Palanisami, T. Understanding the fundamental basics for biofilm formation on plastic surfaces: Role of conditioning films. Front. Microbiol., 2021, 12, 687118.
[http://dx.doi.org/10.3389/fmicb.2021.687118] [PMID: 34248907]
[31]
Padder, S.A.; Prasad, R.; Shah, A.H. Quorum sensing: A less known mode of communication among fungi. Microbiol. Res., 2018, 210, 51-58.
[http://dx.doi.org/10.1016/j.micres.2018.03.007] [PMID: 29625658]
[32]
Hogan, D.A. Talking to themselves: Autoregulation and quorum sensing in fungi. Eukaryot. Cell, 2006, 5(4), 613-619.
[http://dx.doi.org/10.1128/EC.5.4.613-619.2006] [PMID: 16607008]
[33]
Rodríguez-Cerdeira, C.; Gregorio, M.C.; Molares-Vila, A.; López-Barcenas, A.; Fabbrocini, G.; Bardhi, B.; Sinani, A.; Sánchez-Blanco, E.; Arenas-Guzmán, R.; Hernandez-Castro, R. Biofilms and vulvovaginal candidiasis. Colloids Surf. B Biointerfaces, 2019, 174, 110-125.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.011] [PMID: 30447520]
[34]
Kucharíková, S.; Tournu, H.; Lagrou, K.; Van Dijck, P.; Bujdáková, H. Detailed comparison of candida albicans and candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J. Med. Microbiol., 2011, 60(Pt 9), 1261-1269.
[http://dx.doi.org/10.1099/jmm.0.032037-0] [PMID: 21566087]
[35]
Prasad, R.; Rawal, M.K.; Shah, A.H. Candida efflux ATPases and antiporters in clinical drug resistance. In: Yeast Membrane Transport; Ramos, J.; Sychrová, H.; Kschischo, M., Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-25304-6_15]
[36]
Ramage, G.; Rajendran, R.; Sherry, L.; Williams, C. Fungal biofilm resistance. Int. J. Microbiol., 2012, 2012, 528521.
[http://dx.doi.org/10.1155/2012/528521] [PMID: 22518145]
[37]
Desai, J.V.; Mitchell, A.P.; Andes, D.R. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb. Perspect. Med., 2014, 4(10), a019729.
[http://dx.doi.org/10.1101/cshperspect.a019729] [PMID: 25274758]
[38]
Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: Mechanisms of action. Trends Microbiol., 2003, 11(6), 272-279.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[39]
Akins, R.A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol., 2005, 43(4), 285-318.
[http://dx.doi.org/10.1080/13693780500138971] [PMID: 16110776]
[40]
Chau, A.S.; Gurnani, M.; Hawkinson, R.; Laverdiere, M.; Cacciapuoti, A.; McNicholas, P.M. Inactivation of sterol Delta5,6-desaturase attenuates virulence in Candida albicans. Antimicrob. Agents Chemother., 2005, 49(9), 3646-3651.
[http://dx.doi.org/10.1128/AAC.49.9.3646-3651.2005] [PMID: 16127034]
[41]
Liu, J.; Balasubramanian, M.K. 1,3-beta-Glucan synthase: A useful target for antifungal drugs. Curr. Drug Targets Infect. Disord., 2001, 1(2), 159-169.
[http://dx.doi.org/10.2174/1568005014606107] [PMID: 12455412]
[42]
Williams, C.; Ramage, G. Fungal biofilms in human disease. Adv. Exp. Med. Biol., 2015, 831, 11-27.
[http://dx.doi.org/10.1007/978-3-319-09782-4_2] [PMID: 25384660]
[43]
Hope, W.W.; Tabernero, L.; Denning, D.W.; Anderson, M.J. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob. Agents Chemother., 2004, 48(11), 4377-4386.
[http://dx.doi.org/10.1128/AAC.48.11.4377-4386.2004] [PMID: 15504867]
[44]
Rauseo, A.M.; Coler-Reilly, A.; Larson, L.; Spec, A. Hope on the horizon: Novel fungal treatments in development. Open Forum Infect. Dis., 2020, 7(2), ofaa016.
[http://dx.doi.org/10.1093/ofid/ofaa016]
[45]
Voltan, A.R.; Quindós, G.; Alarcón, K.P.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.; Chorilli, M. Fungal diseases: Could nanostructured drug delivery systems be a novel paradigm for therapy? Int. J. Nanomedicine, 2016, 11, 3715-3730.
[http://dx.doi.org/10.2147/IJN.S93105] [PMID: 27540288]
[46]
Pircalabioru, G.G.; Chifiriuc, M.C. Nanoparticulate drug-delivery systems for fighting microbial biofilms: From bench to bedside. Future Microbiol., 2020, 15(8), 679-698.
[http://dx.doi.org/10.2217/fmb-2019-0251] [PMID: 32495694]
[47]
Robino, L.; Scavone, P. Nanotechnology in biofilm prevention. Future Microbiol., 2020, 15(6), 377-379.
[http://dx.doi.org/10.2217/fmb-2019-0327] [PMID: 32242746]
[48]
Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci., 2010, 2(4), 282-289.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[49]
Niemirowicz, K.; Durnaś, B.; Tokajuk, G.; Piktel, E.; Michalak, G.; Gu, X.; Kułakowska, A.; Savage, P.B.; Bucki, R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci. Rep., 2017, 7(1), 4610.
[http://dx.doi.org/10.1038/s41598-017-04653-1] [PMID: 28676673]
[50]
Mallmann, E.J.; Cunha, F.A.; Castro, B.N.; Maciel, A.M.; Menezes, E.A.; Fechine, P.B. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. São Paulo, 2015, 57(2), 165-167.
[http://dx.doi.org/10.1590/S0036-46652015000200011] [PMID: 25923897]
[51]
Osonga, F.J.; Akgul, A.; Yazgan, I.; Akgul, A.; Eshun, G.B.; Sakhaee, L.; Sadik, O.A. Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: A model study as potential fungicides. Molecules, 2020, 25(11), 2682.
[http://dx.doi.org/10.3390/molecules25112682] [PMID: 32527041]
[52]
Menon, S.; Rajeshkumar, S.; Kumar, V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies, 2017, 3(4), 516-527.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[53]
Chapman, J.; Weir, E.; Regan, F. Period four metal nanoparticles on the inhibition of biofouling. Colloids Surf. B Biointerfaces, 2010, 78(2), 208-216.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.002] [PMID: 20356719]
[54]
Ramasamy, M.; Lee, J.H.; Lee, J. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf. B Biointerfaces, 2017, 160, 639-648.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.018] [PMID: 29031224]
[55]
Chen, Y.S.; Hung, Y.C.; Liau, I.; Huang, G.S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett., 2009, 4(8), 858-864.
[http://dx.doi.org/10.1007/s11671-009-9334-6] [PMID: 20596373]
[56]
Sawant, B.; Khan, T. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed. Pharmacother., 2017, 96, 1478-1490.
[http://dx.doi.org/10.1016/j.biopha.2017.11.127] [PMID: 29223551]
[57]
Guimarães, G.P.; Reis, M.Y.; Silva, D.T.; Junior, F.J.; Converti, A.; Pessoa, A.; de Lima Damasceno, B.P.; da Silva, J.A. Antifungal activity of topical microemulsion containing athiophene derivative. Braz. J. Microbiol., 2014, 45(2), 545-550.
[http://dx.doi.org/10.1590/S1517-83822014000200024] [PMID: 25242940]
[58]
Garg, A.; Sharma, G.S.; Goyal, A.K.; Ghosh, G.; Si, S.C.; Rath, G. Recent advances in topical carriers of anti-fungal agents. Heliyon, 2020, 6(8), e04663.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04663] [PMID: 32904164]
[59]
Khuroo, T.; Verma, D.; Talegaonkar, S.; Padhi, S.; Panda, A.K.; Iqbal, Z. Topotecan-tamoxifen duple PLGA polymeric nanoparticles: Investigation of in vitro, in vivo and cellular uptake potential. Int. J. Pharm., 2014, 473(1-2), 384-394.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.022] [PMID: 25051112]
[60]
Yenice Gürsu, B. Potential antibiofilm activity of farnesol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against Candida albicans. J. Anal. Sci. Technol., 2020, 11(43), 1-10.
[http://dx.doi.org/10.1186/s40543-020-00241-7]
[61]
Andreozzi, E.; Barbieri, F.; Ottaviani, M.F.; Giorgi, L.; Bruscolini, F.; Manti, A.; Battistelli, M.; Sabatini, L.; Pianetti, A. Dendrimers and polyamino-phenolic ligands: Activity of new molecules against Legionella pneumophila biofilms. Front. Microbiol., 2016, 7, 289.
[http://dx.doi.org/10.3389/fmicb.2016.00289] [PMID: 27014213]
[62]
Thaya, R.; Malaikozhundan, B.; Vijayakumar, S.; Sivakamavalli, J.; Jeyasekar, R.; Shanthi, S.; Vaseeharan, B.; Ramasamy, P.; Sonawane, A. Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb. Pathog., 2016, 100, 124-132.
[http://dx.doi.org/10.1016/j.micpath.2016.09.010] [PMID: 27622344]
[63]
Azevedo, M.M.; Ramalho, P.; Silva, A.P.; Teixeira-Santos, R.; Pina-Vaz, C.; Rodrigues, A.G. Polyethyleneimine and polyethyleneimine-based nanoparticles: Novel bacterial and yeast biofilm inhibitors. J. Med. Microbiol., 2014, 63(Pt 9), 1167-1173.
[http://dx.doi.org/10.1099/jmm.0.069609-0] [PMID: 24913563]
[64]
Anghel, I.; Grumezescu, A.M.; Holban, A.M.; Ficai, A.; Anghel, A.G.; Chifiriuc, M.C. Biohybrid nanostructured iron oxide nanoparticles and satureja hortensis to prevent fungal biofilm development. Int. J. Mol. Sci., 2013, 14(9), 18110-18123.
[http://dx.doi.org/10.3390/ijms140918110] [PMID: 24009022]
[65]
Khan, S.; Alam, F.; Azam, A.; Khan, A.U. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: A novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nanomedicine, 2012, 7, 3245-3257.
[http://dx.doi.org/10.2147/IJN.S31219] [PMID: 22802686]
[66]
Anghel, I.; Grumezescu, A.M.; Andronescu, E.; Anghel, A.G.; Ficai, A.; Saviuc, C.; Grumezescu, V.; Vasile, B.S.; Chifiriuc, M.C. Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Res. Lett., 2012, 7(1), 501.
[http://dx.doi.org/10.1186/1556-276X-7-501] [PMID: 22950367]
[67]
Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnology, 2015, 13(1), 91.
[http://dx.doi.org/10.1186/s12951-015-0147-8] [PMID: 26666378]
[68]
Ahmadi, M.S.; Lee, H.H.; Sanchez, D.A.; Friedman, A.J.; Tar, M.T.; Davies, K.P.; Nosanchuk, J.D.; Martinez, L.R. Sustained nitric oxide-releasing nanoparticles induce cell death in Candida albicans yeast and hyphal cells, preventing biofilm formation in vitro and in a rodent central venous catheter model. Antimicrob. Agents Chemother., 2016, 60(4), 2185-2194.
[http://dx.doi.org/10.1128/AAC.02659-15] [PMID: 26810653]
[69]
Monteiro, D.R.; Gorup, L.F.; Silva, S.; Negri, M.; de Camargo, E.R.; Oliveira, R.; Barbosa, D.B.; Henriques, M. Silver colloidal nanoparticles: Antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling, 2011, 27(7), 711-719.
[http://dx.doi.org/10.1080/08927014.2011.599101] [PMID: 21756192]
[70]
Schinabeck, M.K.; Long, L.A.; Hossain, M.A.; Chandra, J.; Mukherjee, P.K.; Mohamed, S.; Ghannoum, M.A. Rabbit model of Candida albicans biofilm infection: Liposomal amphotericin B antifungal lock therapy. Antimicrob. Agents Chemother., 2004, 48(5), 1727-1732.
[http://dx.doi.org/10.1128/AAC.48.5.1727-1732.2004] [PMID: 15105127]
[71]
Albayaty, Y.N.; Thomas, N.; Ramírez-García, P.D.; Davis, T.P.; Quinn, J.F.; Whittaker, M.R.; Prestidge, C.A. pH-Responsive copolymer micelles to enhance itraconazole efficacy against Candida albicans biofilms. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(8), 1672-1681.
[http://dx.doi.org/10.1039/C9TB02586C] [PMID: 32016213]
[72]
Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30(14), 2782-2789.
[http://dx.doi.org/10.1016/j.biomaterials.2009.01.052] [PMID: 19233464]
[73]
Vera-González, N.; Bailey-Hytholt, C.M.; Langlois, L.; de Camargo Ribeiro, F.; de Souza Santos, E.L.; Junqueira, J.C.; Shukla, A. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm Candida albicans. J. Biomed. Mater. Res. A, 2020, 108(11), 2263-2276.
[http://dx.doi.org/10.1002/jbm.a.36984] [PMID: 32363762]
[74]
Seidler, M.; Salvenmoser, S.; Müller, F.M. Liposomal amphotericin B eradicates Candida albicans biofilm in a continuous catheter flow model. FEMS Yeast Res., 2010, 10(4), 492-495.
[http://dx.doi.org/10.1111/j.1567-1364.2010.00618.x] [PMID: 20345899]
[75]
Heredero-Bermejo, I.; Gómez-Casanova, N.; Quintana, S.; Soliveri, J.; de la Mata, F.J.; Pérez-Serrano, J.; Sánchez-Nieves, J.; Copa-Patiño, J.L. In vitro activity of carbosilane cationic dendritic molecules on prevention and treatment of Candida albicans biofilms. Pharmaceutics, 2020, 12(10), 918.
[http://dx.doi.org/10.3390/pharmaceutics12100918] [PMID: 32992733]
[76]
Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Hydrogel of ketoconazole and PAMAM dendrimers: Formulation and antifungal activity. Molecules, 2012, 17(4), 4612-4624.
[http://dx.doi.org/10.3390/molecules17044612] [PMID: 22513487]
[77]
Sherwani, M.A.; Tufail, S.; Khan, A.A.; Owais, M. Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: Potential for treatment of C. albicans infection in BALB/c mice. PLoS One, 2015, 10(7), e0131684.
[http://dx.doi.org/10.1371/journal.pone.0131684] [PMID: 26148012]
[78]
Teodoro, G.R.; Gontijo, A.V.L.; Borges, A.C.; Tanaka, M.H.; Lima, G.M.G.; Salvador, M.J.; Koga-Ito, C.Y. Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/in vivo Candida albicans biofilms. PLoS One, 2017, 12(7), e0181199.
[http://dx.doi.org/10.1371/journal.pone.0181199] [PMID: 28700692]
[79]
Wang, S.H.; Chen, C.C.; Lee, C.H.; Chen, X.A.; Chang, T.Y.; Cheng, Y.C.; Young, J.J.; Lu, J.J. Fungicidal and anti-biofilm activities of trimethylchitosan-stabilized silver nanoparticles against Candida species in zebrafish embryos. Int. J. Biol. Macromol., 2020, 143, 724-731.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.002] [PMID: 31734360]
[80]
Sampaio, A.D.G.; Gontijo, A.V.L.; Lima, G.M.G.; de Oliveira, M.A.C.; Lepesqueur, L.S.S.; Koga-Ito, C.Y. Ellagic acid–cyclodextrin complexes for the treatment of oral candidiasis. Molecules, 2021, 26(2), 505.
[http://dx.doi.org/10.3390/molecules26020505] [PMID: 33477918]
[81]
Gharbi, A.; Humblot, V.; Turpin, F.; Pradier, C.M.; Imbert, C.; Berjeaud, J.M. Elaboration of antibiofilm surfaces functionalized with antifungal-cyclodextrin inclusion complexes. FEMS Immunol. Med. Microbiol., 2012, 65(2), 257-269.
[http://dx.doi.org/10.1111/j.1574-695X.2012.00932.x] [PMID: 22268719]
[82]
de Alteriis, E.; Maselli, V.; Falanga, A.; Galdiero, S.; Di Lella, F.M.; Gesuele, R.; Guida, M.; Galdiero, E. Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect. Drug Resist., 2018, 11, 915-925.
[http://dx.doi.org/10.2147/IDR.S164262] [PMID: 30013374]
[83]
Nava-Ortiz, C.A.; Burillo, G.; Concheiro, A.; Bucio, E.; Matthijs, N.; Nelis, H.; Coenye, T.; Alvarez-Lorenzo, C. Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomater., 2010, 6(4), 1398-1404.
[http://dx.doi.org/10.1016/j.actbio.2009.10.039] [PMID: 19874920]
[84]
Rajasekar, V.; Darne, P.; Prabhune, A.; Kao, R.Y.T.; Solomon, A.P.; Ramage, G.; Samaranayake, L.; Neelakantan, P. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids Surf. B Biointerfaces, 2021, 200, 111617.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111617] [PMID: 33592455]
[85]
Wen, J.; Jiang, F.; Yeh, C.K.; Sun, Y. Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids Surf. B Biointerfaces, 2016, 140, 19-27.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.028] [PMID: 26731194]
[86]
Halbandge, S.D.; Mortale, S.P.; Karuppayil, S.M. Biofabricated silver nanoparticles synergistically activate amphotericin B against mature biofilm forms of Candida albicans. Open Nanomed. J., 2017, 4(1), 1-16.
[http://dx.doi.org/10.2174/1875933501704010001]
[87]
Nasti, T.H.; Khan, M.A.; Owais, M. Enhanced efficacy of pH-sensitive nystatin liposomes against Cryptococcus neoformans in murine model. J. Antimicrob. Chemother., 2006, 57(2), 349-352.
[http://dx.doi.org/10.1093/jac/dki454] [PMID: 16368700]
[88]
Huang, K.; Dou, F.; Nitin, N. Biobased sanitizer delivery system for improved sanitation of bacterial and fungal biofilms. ACS Appl. Mater. Interfaces, 2019, 11(19), 17204-17214.
[http://dx.doi.org/10.1021/acsami.9b02428] [PMID: 30997985]
[89]
Albayaty, Y.N.; Thomas, N.; Ramírez-García, P.D.; Davis, T.P.; Quinn, J.F.; Whittaker, M.R.; Prestidge, C.A. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm. Drug Deliv. Transl. Res., 2021, 11(4), 1586-1597.
[http://dx.doi.org/10.1007/s13346-021-00943-4] [PMID: 33713317]
[90]
Lee, A.L.; Ng, V.W.; Poon, G.L.; Ke, X.; Hedrick, J.L.; Yang, Y.Y. Co-delivery of antiviral and antifungal therapeutics for the treatment of sexually transmitted infections using a moldable, supramolecular hydrogel. Adv. Healthc. Mater., 2015, 4(3), 385-394.
[http://dx.doi.org/10.1002/adhm.201400340] [PMID: 25234003]
[91]
Ribeiro, A.P.; Andrade, M.C.; da Silva, J.F.; Jorge, J.H.; Primo, F.L.; Tedesco, A.C.; Pavarina, A.C. Photodynamic inactivation of planktonic cultures and biofilms of Candida albicans mediated by aluminum-chloride-phthalocyanine entrapped in nanoemulsions. Photochem. Photobiol., 2013, 89(1), 111-119.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01198.x] [PMID: 22774873]
[92]
Junqueira, J.C.; Jorge, A.O.; Barbosa, J.O.; Rossoni, R.D.; Vilela, S.F.; Costa, A.C.; Primo, F.L.; Gonçalves, J.M.; Tedesco, A.C.; Suleiman, J.M. Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers Med. Sci., 2012, 27(6), 1205-1212.
[http://dx.doi.org/10.1007/s10103-012-1050-2] [PMID: 22278349]
[93]
Dos Santos Ramos, M.A.; de Toledo, L.G.; Calixto, G.M.; Bonifácio, B.V.; de Freitas Araújo, M.G.; Dos Santos, L.C.; de Almeida, M.T.; Chorilli, M.; Bauab, T.M. Syngonanthus nitens Bong.(Rhul.)-loaded nanostructured system for vulvovaginal candidiasis treatment. Int. J. Mol. Sci., 2016, 17(8), 1368.
[http://dx.doi.org/10.3390/ijms17081368] [PMID: 27556451]
[94]
C. de Lima, L. A S Ramos, M.; Toledo, L.G.; Rodero, C.F.; Hilário, F.; Dos Santos, L.C.; Chorilli, M.; Bauab, T.M. Syngonanthus nitens (Bong.) ruhland derivatives loaded into a lipid nanoemulsion for enhanced antifungal activity against Candida parapsilosis. Curr. Pharm. Des., 2020, 26(14), 1556-1565.
[http://dx.doi.org/10.2174/1381612826666200317131041] [PMID: 32183660]
[95]
Das, S.; Vörös-Horváth, B.; Bencsik, T.; Micalizzi, G.; Mondello, L.; Horváth, G.; Kőszegi, T.; Széchenyi, A. Antimicrobial activity of different Artemisia essential oil formulations. Molecules, 2020, 25(10), 2390.
[http://dx.doi.org/10.3390/molecules25102390] [PMID: 32455592]
[96]
Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klein, B.; Gundel, A.; Wagner, R.; de Almeida Vaucher, R.; Ourique, A.F.; Santos, R.C.V. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb. Pathog., 2017, 112, 230-242.
[http://dx.doi.org/10.1016/j.micpath.2017.09.062] [PMID: 28970174]
[97]
Trigo-Gutierrez, J.K.; Sanitá, P.V.; Tedesco, A.C.; Pavarina, A.C.; Mima, E.G.O. Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm. Photodiagn. Photodyn. Ther., 2018, 24, 212-219.
[http://dx.doi.org/10.1016/j.pdpdt.2018.10.005] [PMID: 30308310]
[98]
Abruzzo, A.; Giordani, B.; Parolin, C.; De Gregorio, P.R.; Foschi, C.; Cerchiara, T.; Bigucci, F.; Vitali, B.; Luppi, B. Lactobacillus crispatus BC1 biosurfactant delivered by Hyalurosomes: An advanced strategy to counteract Candida biofilm. Antibiotics (Basel), 2021, 10(1), 33.
[http://dx.doi.org/10.3390/antibiotics10010033] [PMID: 33401413]
[99]
Haque, F.; Sajid, M.; Cameotra, S.S.; Battacharyya, M.S. Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling, 2017, 33(9), 768-779.
[http://dx.doi.org/10.1080/08927014.2017.1363191] [PMID: 28946803]
[100]
Rodrigues, C.F.; Henriques, M. Liposomal and deoxycholate amphotericin B formulations: Effectiveness against biofilm infections of Candida spp. Pathogens, 2017, 6(4), 62.
[http://dx.doi.org/10.3390/pathogens6040062] [PMID: 29194382]
[101]
Czuban, M.; Wulsten, D.; Wang, L.; Di Luca, M.; Trampuz, A. Release of different amphotericin B formulations from PMMA bone cements and their activity against Candida biofilm. Colloids Surf. B Biointerfaces, 2019, 183, 110406.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110406] [PMID: 31401462]
[102]
Bandara, H.M.H.N.; Hewavitharana, A.K.; Shaw, P.N.; Smyth, H.D.C.; Samaranayake, L.P. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. Int. J. Pharm., 2020, 578, 119096.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119096] [PMID: 32006626]
[103]
Neethirajan, S.; Clond, M.A.; Vogt, A. Medical biofilms--nanotechnology approaches. J. Biomed. Nanotechnol., 2014, 10(10), 2806-2827.
[http://dx.doi.org/10.1166/jbn.2014.1892] [PMID: 25992419]
[104]
Ramasamy, M.; Lee, J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Res. Int., 2016, 2016, 1851242.
[http://dx.doi.org/10.1155/2016/1851242] [PMID: 27872845]
[105]
Roosjen, A.; van der Mei, H.C.; Busscher, H.J.; Norde, W. Microbial adhesion to poly(ethylene oxide) brushes: Influence of polymer chain length and temperature. Langmuir, 2004, 20(25), 10949-10955.
[http://dx.doi.org/10.1021/la048469l] [PMID: 15568845]
[106]
Haghighi, F.; Roudbar Mohammadi, S.; Mohammadi, P.; Hosseinkhani, S.; Shipour, R. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect. Epidemiol. Med., 2013, 1(1), 33-38.
[107]
Lichter, J.A.; Rubner, M.F. Polyelectrolyte multilayers with intrinsic antimicrobial functionality: The importance of mobile polycations. Langmuir, 2009, 25(13), 7686-7694.
[http://dx.doi.org/10.1021/la900349c] [PMID: 19317389]
[108]
Nevius, B.A.; Chen, Y.P.; Ferry, J.L.; Decho, A.W. Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology, 2012, 21(8), 2205-2213.
[http://dx.doi.org/10.1007/s10646-012-0975-3] [PMID: 22806556]
[109]
Hillmyer, M.A. Nanoporous materials from block copolymer precursors.Block Copolymers II; Abetz, V., Ed.; Springer Link, 2005, Vol. 190, pp. 137-181.
[http://dx.doi.org/10.1007/12_002]
[110]
Li, X.; Li, P.; Saravanan, R.; Basu, A.; Mishra, B.; Lim, S.H.; Su, X.; Tambyah, P.A.; Leong, S.S. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater., 2014, 10(1), 258-266.
[http://dx.doi.org/10.1016/j.actbio.2013.09.009] [PMID: 24056098]
[111]
Macherla, C.; Sanchez, D.A.; Ahmadi, M.S.; Vellozzi, E.M.; Friedman, A.J.; Nosanchuk, J.D.; Martinez, L.R. Nitric oxide releasing nanoparticles for treatment of Candida albicans burn infections. Front. Microbiol., 2012, 3, 193.
[http://dx.doi.org/10.3389/fmicb.2012.00193] [PMID: 22701111]
[112]
De Prijck, K.; De Smet, N.; Rymarczyk-Machal, M.; Van Driessche, G.; Devreese, B.; Coenye, T.; Schacht, E.; Nelis, H.J. Candida albicans biofilm formation on peptide functionalized polydimethylsiloxane. Biofouling, 2010, 26(3), 269-275.
[http://dx.doi.org/10.1080/08927010903501908] [PMID: 20054722]
[113]
De Prijck, K.; De Smet, N.; Coenye, T.; Schacht, E.; Nelis, H.J. Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. Mycopathologia, 2010, 170(4), 213-221.
[http://dx.doi.org/10.1007/s11046-010-9316-3] [PMID: 20458631]
[114]
Prucek, R.; Tuček, J.; Kilianová, M.; Panáček, A.; Kvítek, L.; Filip, J.; Kolář, M.; Tománková, K.; Zbořil, R. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials, 2011, 32(21), 4704-4713.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.039] [PMID: 21507482]
[115]
Lino, M.M.; Paulo, C.S.; Vale, A.C.; Vaz, M.F.; Ferreira, L.S. Antifungal activity of dental resins containing amphotericin B-conjugated nanoparticles. Dent. Mater., 2013, 29(10), e252-e262.
[http://dx.doi.org/10.1016/j.dental.2013.07.023] [PMID: 23981323]
[116]
Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals (Basel), 2020, 13(9), 248.
[http://dx.doi.org/10.3390/ph13090248] [PMID: 32942693]
[117]
Van Dijck, P.; Sjollema, J.; Cammue, B.P.; Lagrou, K.; Berman, J.; d’Enfert, C.; Andes, D.R.; Arendrup, M.C.; Brakhage, A.A.; Calderone, R.; Cantón, E.; Coenye, T.; Cos, P.; Cowen, L.E.; Edgerton, M.; Espinel-Ingroff, A.; Filler, S.G.; Ghannoum, M.; Gow, N.A.R.; Haas, H.; Jabra-Rizk, M.A.; Johnson, E.M.; Lockhart, S.R.; Lopez-Ribot, J.L.; Maertens, J.; Munro, C.A.; Nett, J.E.; Nobile, C.J.; Pfaller, M.A.; Ramage, G.; Sanglard, D.; Sanguinetti, M.; Spriet, I.; Verweij, P.E.; Warris, A.; Wauters, J.; Yeaman, M.R.; Zaat, S.A.J.; Thevissen, K. Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microb. Cell, 2018, 5(7), 300-326.
[http://dx.doi.org/10.15698/mic2018.07.638] [PMID: 29992128]
[118]
Borkow, G.; Gabbay, J. Putting copper into action: Copper-impregnated products with potent biocidal activities. FASEB J., 2004, 18(14), 1728-1730.
[http://dx.doi.org/10.1096/fj.04-2029fje] [PMID: 15345689]
[119]
Seneviratne, C.J.; Kao, Y.T.R.; Samaranayake, L.P.; Yuen, K.Y.; Yang, D.; Wang, Y.; Wong, S.W.S. Antifungal compound and uses thereof. WO2014086285A1, 2014.
[120]
Brenicci, T.; Cecca, M.E. Vitamin E phosphate or acetate for use in the treatment and prevention of biofilm infections. US 2019015385 2019.
[121]
Cao, Y.; Tan, F.; Zhao, L. Cysteine is preparing the application in antimycotic biofilm drug. CN 109908126, , 2019.
[122]
Zhou, Z.; Shi, L. Application of dictamine in preparation of anti candida albicans drugs. CN104248637, 2014.
[123]
Sakurada, K.; Nitta, E.; Ichinomiya, N. Composition for inhibiting biofilm formation. 2019137791, 2019.
[124]
Zhang, L.; La Jeunesse, D.R.; Sirelkhatim, N. Antifungal compositions and methods of use thereof. US 20200077652, 2020.
[125]
Panin, G. Formulation based on vitamin e or an ester thereof for treating bacterial and fungal biofilms. US 20200360339, 2020.
[126]
Haas, G.R.; Kerr, R.C.; Mateus, C.; Morris, D.L.; Patel, B.; Kurja, J. Antimicrobial rubber formulations and molded article. US7858674B2, 2008.
[127]
Borkow, G.; Lara, H.H.; Covington, C.Y.; Nyamathi, A.; Gabbay, J. Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob. Agents Chemother., 2008, 52(2), 518-525.
[http://dx.doi.org/10.1128/AAC.00899-07] [PMID: 18070974]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy