Research Article

甜菜碱调节 MIF 介导的硫代乙酰胺诱导的肾毒性中的氧化应激、炎症和纤维发生

卷 29, 期 31, 2022

发表于: 23 May, 2022

页: [5254 - 5267] 页: 14

弟呕挨: 10.2174/0929867329666220408102856

价格: $65

摘要

背景:巨噬细胞迁移抑制因子(MIF)是一种促炎细胞因子,具有由各种免疫和非免疫细胞释放的趋化因子性质。它有助于许多炎症,自身免疫性疾病和恶性肿瘤的发病机制。 目的:探讨甜菜碱在硫代乙酰胺(TAA)诱导的毒性肾损伤过程中调节MIF介导的氧化应激、炎症和纤维化作用目。 方法:在野生型和敲除MIF-/-C57BL/6小鼠上进行实验。它们被随机分成几组:对照组;Bet-group,接受甜菜碱(2%wt / v溶解在饮用水中);MIF-/-小鼠组;MIF-/- + 投注;TAA组,用TAA(200mg / kg b.w.)治疗,腹膜内,3x /周/ 8周);TAA+Bet;MIF-/-+TAA,以及 MIF-/- + TAA+Bet 组。治疗八周后,处死动物并采集肾脏样本以确定氧化应激参数,促炎细胞因子,促纤维化因子和肾组织的组织病理学。 结果:在MIF-/-小鼠中,与TAA组相比,TAA降低丙二醛(MDA)浓度,IL-6,肿瘤坏死因子α(TNF-α),转化生长因子β1(TGF-β1)和血小板衍生生长因子BB(PDGF-BB),并增加肾脏中的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性以及谷胱甘肽(GSH)含量。甜菜碱可缓解 MIF 介导的 TAA 诱导的肾毒性作用机制,降低 MDA、IL-6、TNF-α、TGF-β1 和 PDGF-BB,并增加 SOD 和 CAT 活性以及 GSH 水平。 结论:MIF通过增加氧化应激,炎症和促纤维介质介导TAA诱导的肾毒性。MIF靶向治疗可以潜在地缓解肾脏中的氧化应激和炎症,以及肾组织的病理组织学变化,但其作用的确切机制尚不完全清楚。甜菜碱通过增加肾细胞的抗氧化能力,减少肾组织中的脂质过氧化和细胞因子产生来减轻MIF肾毒性作用。这表明甜菜碱可用于预防肾脏损伤。

关键词: 硫代乙酰胺,巨噬细胞迁移抑制因子,肾损伤,氧化应激,炎症,纤维化,甜菜碱小鼠。

[1]
Allen, J.H. The wicked problem of chemicals policy: Opportunities for innovation. J. Environ. Stud. Sci., 2013, 3(2), 101-108.
[http://dx.doi.org/10.1007/s13412-013-0117-0]
[2]
Shaikh Omar, A.M.; Shaikh, O. The potential protective influence of flaxseed oil against renal toxicity induced by thioacetamide in rats. Saudi J. Biol. Sci., 2018, 25(8), 1696-1702.
[http://dx.doi.org/10.1016/j.sjbs.2016.09.021] [PMID: 30591787]
[3]
Al-Attar, A.M.; Alrobai, A.A.; Almalki, D.A. Protective effect of olive and juniper leaves extracts on nephrotoxicity induced by thio-acetamide in male mice. Saudi J. Biol. Sci., 2017, 24(1), 15-22.
[http://dx.doi.org/10.1016/j.sjbs.2015.08.013] [PMID: 28053566]
[4]
Keshk, W.A.; Zahran, S.M. Mechanistic role of cAMP and hepatocyte growth factor signaling in thioacetamide-induced nephrotoxicity: Unraveling the role of platelet rich plasma. Biomed. Pharmacother., 2019, 109, 1078-1084.
[http://dx.doi.org/10.1016/j.biopha.2018.10.121] [PMID: 30551358]
[5]
Hong, W.; Zhang, G.; Lu, H.; Guo, Y.; Zheng, S.; Zhu, H.; Xiao, Y.; Papa, A.P.D.; Wu, C.; Sun, L.; Chen, B.; Bai, Y. Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis. Cell Commun. Signal., 2019, 17(1), 145.
[http://dx.doi.org/10.1186/s12964-019-0455-y] [PMID: 31718671]
[6]
Rasmussen, D.G.K.; Boesby, L.; Nielsen, S.H.; Tepel, M.; Birot, S.; Karsdal, M.A.; Kamper, A.L.; Genovese, F. Collagen turnover profiles in chronic kidney disease. Sci. Rep., 2019, 9(1), 16062.
[http://dx.doi.org/10.1038/s41598-019-51905-3] [PMID: 31690732]
[7]
Schyman, P.; Printz, R.L.; Estes, S.K.; Boyd, K.L.; Shiota, M.; Wallqvist, A. Identification of the toxicity pathways associated with thio-acetamide-induced injuries in rat liver and kidney. Front. Pharmacol., 2018, 9, 1272.
[http://dx.doi.org/10.3389/fphar.2018.01272] [PMID: 30459623]
[8]
National Toxicology Program. Thioacetamide. Rep. Carcinog., 2011, 12, 403-404.
[PMID: 21863105]
[9]
Pellegrino, D.; La Russa, D.; Marrone, A. Oxidative imbalance and kidney damage: New study perspectives from animal models to hospitalized patients. Antioxidants, 2019, 8(12), 1-11.
[http://dx.doi.org/10.3390/antiox8120594] [PMID: 31795160]
[10]
Tomsa, A.M.; Alexa, A.L.; Junie, M.L.; Rachisan, A.L.; Ciumarnean, L. Oxidative stress as a potential target in acute kidney injury. PeerJ, 2019, 7, e8046.
[http://dx.doi.org/10.7717/peerj.8046] [PMID: 31741796]
[11]
Ruiz, S.; Pergola, P.E.; Zager, R.A.; Vaziri, N.D. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int., 2013, 83(6), 1029-1041.
[http://dx.doi.org/10.1038/ki.2012.439] [PMID: 23325084]
[12]
Lee, Y.H.; Son, J.Y.; Kim, K.S.; Park, Y.J.; Kim, H.R.; Park, J.H.; Kim, K.B.; Lee, K.Y.; Kang, K.W.; Kim, I.S.; Kacew, S.; Lee, B.M.; Kim, H.S. Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in sprague-dawley rats. Int. J. Mol. Sci., 2019, 20(15), 1-16.
[http://dx.doi.org/10.3390/ijms20153709] [PMID: 31362375]
[13]
Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxi-dation in apoptosis, autophagy and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 5080843.
[http://dx.doi.org/10.1155/2019/5080843] [PMID: 31737171]
[14]
Wynn, T.A.; Vannella, K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3), 450-462.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[15]
Isaka, Y. Targeting TGF-β signaling in kidney fibrosis. Int. J. Mol. Sci., 2018, 19(9), 1-13.
[http://dx.doi.org/10.3390/ijms19092532] [PMID: 30150520]
[16]
Leaf, I.A.; Duffield, J.S. What can target kidney fibrosis? Nephrol. Dial. Transplant., 2017, 32(Suppl. 1), i89-i97.
[http://dx.doi.org/10.1093/ndt/gfw388] [PMID: 28391346]
[17]
Sinitski, D.; Gruner, K.; Brandhofer, M.; Kontos, C.; Winkler, P.; Reinstädler, A.; Bourilhon, P.; Xiao, Z.; Cool, R.; Kapurniotu, A.; Dekker, F.J.; Panstruga, R.; Bernhagen, J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a hu-man cytokine by its plant orthologs. J. Biol. Chem., 2020, 295(3), 850-867.
[http://dx.doi.org/10.1016/S0021-9258(17)49940-6] [PMID: 31811089]
[18]
Grieb, G. Macrophage migration inhibitory factor (MIF) and its receptors – interactions and suitability as biomarkers. Mini Rev. Med. Chem., 2014, 14(14), 1115.
[http://dx.doi.org/10.2174/138955751414150216102436] [PMID: 25692463]
[19]
Boor, P. MIF in kidney diseases: A story of Dr. Jekyll and Mr. Hyde. Pathologe, 2019, 40(S1), 25-30.
[http://dx.doi.org/10.1007/s00292-018-0548-1] [PMID: 30569239]
[20]
Djudjaj, S.; Martin, I.V.; Buhl, E.M.; Nothofer, N.J.; Leng, L.; Piecychna, M.; Floege, J.; Bernhagen, J.; Bucala, R.; Boor, P. Macro-phage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest. J. Am. Soc. Nephrol., 2017, 28(12), 3590-3604.
[http://dx.doi.org/10.1681/ASN.2017020190] [PMID: 28801314]
[21]
Day, C.R.; Kempson, S.A. Betaine chemistry, roles, and potential use in liver disease. Biochim. Biophys. Acta, 2016, 1860(6), 1098-1106.
[http://dx.doi.org/10.1016/j.bbagen.2016.02.001] [PMID: 26850693]
[22]
Ejaz, A.; Martinez-Guino, L.; Goldfine, A.B.; Ribas-Aulinas, F.; De Nigris, V.; Ribó, S.; Gonzalez-Franquesa, A.; Garcia-Roves, P.M.; Li, E.; Dreyfuss, J.M.; Gall, W.; Kim, J.K.; Bottiglieri, T.; Villarroya, F.; Gerszten, R.E.; Patti, M.E.; Lerin, C. Dietary betaine supple-mentation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice. Diabetes, 2016, 65(4), 902-912.
[http://dx.doi.org/10.2337/db15-1094] [PMID: 26858359]
[23]
Yang, W.; Huang, L.; Gao, J.; Wen, S.; Tai, Y.; Chen, M.; Huang, Z.; Liu, R.; Tang, C.; Li, J. Betaine attenuates chronic alco-hol induced fatty liver by broadly regulating hepatic lipid metabolism. Mol. Med. Rep., 2017, 16(4), 5225-5234.
[http://dx.doi.org/10.3892/mmr.2017.7295] [PMID: 28849079]
[24]
Du, J.; Shen, L.; Tan, Z.; Zhang, P.; Zhao, X.; Xu, Y.; Gan, M.; Yang, Q.; Ma, J.; Jiang, A.; Tang, G.; Jiang, Y.; Jin, L.; Li, M.; Bai, L.; Li, X.; Wang, J.; Zhang, S.; Zhu, L. Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet. Nutrients, 2018, 10(2), 131-145.
[http://dx.doi.org/10.3390/nu10020131] [PMID: 29373534]
[25]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[26]
Girotti, M.J.; Khan, N.; McLellan, B.A. Early measurement of systemic lipid peroxidation products in the plasma of major blunt trauma patients. J. Trauma, 1991, 31(1), 32-35.
[http://dx.doi.org/10.1097/00005373-199101000-00007] [PMID: 1846013]
[27]
Sun, M.; Zigman, S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal. Biochem., 1978, 90(1), 81-89.
[http://dx.doi.org/10.1016/0003-2697(78)90010-6] [PMID: 727489]
[28]
Beers, R.F., Jr; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 1952, 195(1), 133-140.
[http://dx.doi.org/10.1016/S0021-9258(19)50881-X] [PMID: 14938361]
[29]
Anderson, M.E. Tissue glutathione. In: The DTNB-GSSG reductase recycling assay for total glutathione (GSH+1/2GSSG); Greenwald, R.A., Ed.; CRC Press: Boca Raton, FL, 1986, pp. 317-323.
[30]
Ghosh, S.; Sarkar, A.; Bhattacharyya, S.; Sil, P.C. Silymarin protects mouse liver and kidney from thioacetamide induced toxicity by scavenging reactive oxygen species and activating PI3K-Akt pathway. Front. Pharmacol., 2016, 7, 481.
[http://dx.doi.org/10.3389/fphar.2016.00481] [PMID: 28018219]
[31]
Zargar, S.; Alonazi, M.; Rizwana, H.; Wani, T.A. Resveratrol reverses thioacetamide-induced renal assault with respect to oxidative stress, renal function, DNA damage, and cytokine release in Wistar rats. Oxid. Med. Cell. Longev., 2019, 2019, 1702959.
[http://dx.doi.org/10.1155/2019/1702959] [PMID: 31583036]
[32]
Yogalakshmi, B.; Viswanathan, P.; Anuradha, C.V. Investigation of antioxidant, anti-inflammatory and DNA-protective properties of eugenol in thioacetamide-induced liver injury in rats. Toxicology, 2010, 268(3), 204-212.
[http://dx.doi.org/10.1016/j.tox.2009.12.018] [PMID: 20036707]
[33]
Begum, Q.; Noori, S.; Mahboob, T. Antioxidant effect of sodium selenite on thioacetamide-induced renal toxicity. Pakistan J. Biochem. Mol. Biol., 2011, 44, 21-26.
[34]
Iacobini, C.; Menini, S.; Ricci, C.; Scipioni, A.; Sansoni, V.; Cordone, S.; Taurino, M.; Serino, M.; Marano, G.; Federici, M.; Pricci, F.; Pugliese, G. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: Role of lipoxidation via receptor-mediated mechanisms. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6), 831-836.
[http://dx.doi.org/10.1161/ATVBAHA.109.186791] [PMID: 19359660]
[35]
Ozbek, E. Induction of oxidative stress in kidney. Int. J. Nephrol., 2012, 2012, 465897.
[http://dx.doi.org/10.1155/2012/465897] [PMID: 22577546]
[36]
Ganesan, B.; Anandan, R.; Lakshmanan, P.T. Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress Chaperones, 2011, 16(6), 641-652.
[http://dx.doi.org/10.1007/s12192-011-0276-4] [PMID: 21717086]
[37]
Zhang, M.; Zhang, H.; Li, H.; Lai, F.; Li, X.; Tang, Y.; Min, T.; Wu, H. Antioxidant mechanism of betaine without free radical scaveng-ing ability. J. Agric. Food Chem., 2016, 64(42), 7921-7930.
[http://dx.doi.org/10.1021/acs.jafc.6b03592] [PMID: 27677203]
[38]
Bashandy, S.A.E.; Ebaid, H.; Abdelmottaleb Moussa, S.A.; Alhazza, I.M.; Hassan, I.; Alaamer, A.; Al Tamimi, J. Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide. Lipids Health Dis., 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12944-018-0674-z] [PMID: 29444683]
[39]
Hajovsky, H.; Hu, G.; Koen, Y.; Sarma, D.; Cui, W.; Moore, D.S.; Staudinger, J.L.; Hanzlik, R.P. Metabolism and toxicity of thio-acetamide and thioacetamide S-oxide in rat hepatocytes. Chem. Res. Toxicol., 2012, 25(9), 1955-1963.
[http://dx.doi.org/10.1021/tx3002719] [PMID: 22867114]
[40]
Rolo, A.P.; Teodoro, J.S.; Palmeira, C.M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med., 2012, 52(1), 59-69.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.003] [PMID: 22064361]
[41]
Kanbak, G.; Akyüz, F.; Inal, M. Preventive effect of betaine on ethanol-induced membrane lipid composition and membrane ATPases. Arch. Toxicol., 2001, 75(1), 59-61.
[http://dx.doi.org/10.1007/s002040000179] [PMID: 11357522]
[42]
Jung, Y.S.; Kim, S.J.; Kwon, D.Y.; Ahn, C.W.; Kim, Y.S.; Choi, D.W.; Kim, Y.C. Alleviation of alcoholic liver injury by betaine in-volves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism. Food Chem. Toxicol., 2013, 62, 292-298.
[http://dx.doi.org/10.1016/j.fct.2013.08.049] [PMID: 23994088]
[43]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological func-tions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[44]
Ruze, A.; Chen, B.D.; Liu, F.; Chen, X.C.; Gai, M.T.; Li, X.M.; Ma, Y.T.; Du, X.J.; Yang, Y.N.; Gao, X.M. Macrophage migration inhibitory factor plays an essential role in ischemic preconditioning-mediated cardioprotection. Clin. Sci. (Lond.), 2019, 133(5), 665-680.
[http://dx.doi.org/10.1042/CS20181013] [PMID: 30804219]
[45]
Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in inflammation: Mechanistic aspects and applica-tions. Front. Immunol., 2018, 9, 1070.
[http://dx.doi.org/10.3389/fimmu.2018.01070] [PMID: 29881379]
[46]
Kim, S.K.; Kim, Y.C. Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. J. Hepatol., 2005, 42(6), 907-913.
[http://dx.doi.org/10.1016/j.jhep.2005.01.017] [PMID: 15885362]
[47]
Okada, T.; Kawakami, S.; Nakamura, Y.; Han, K.H.; Ohba, K.; Aritsuka, T.; Uchino, H.; Shimada, K.; Sekikawa, M.; Ishii, H.; Fuku-shima, M. Amelioration of D-galactosamine-induced acute liver injury in rats by dietary supplementation with betaine derived from sugar beet molasses. Biosci. Biotechnol. Biochem., 2011, 75(7), 1335-1341.
[http://dx.doi.org/10.1271/bbb.110105] [PMID: 21737928]
[48]
Yeung, J.H.K.; Or, P.M. Effects of polysaccharide peptides from COV-1 strain of Coriolus versicolor on glutathione and glutathione-related enzymes in the mouse. Food Chem. Toxicol., 2007, 45(6), 953-961.
[http://dx.doi.org/10.1016/j.fct.2006.12.005] [PMID: 17240508]
[49]
Go, E.K.; Jung, K.J.; Kim, J.M.; Lim, H.; Lim, H.K.; Yu, B.P.; Chung, H.Y. Betaine modulates age-related NF-kappaB by thiol-enhancing action. Biol. Pharm. Bull., 2007, 30(12), 2244-2249.
[http://dx.doi.org/10.1248/bpb.30.2244] [PMID: 18057706]
[50]
Zeisel, S. Choline, other methyl-donors and epigenetics. Nutrients, 2017, 9(5), 1-10.
[http://dx.doi.org/10.3390/nu9050445] [PMID: 28468239]
[51]
Thiele, M.; Bernhagen, J. Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid. Redox Signal., 2005, 7(9-10), 1234-1248.
[http://dx.doi.org/10.1089/ars.2005.7.1234] [PMID: 16115028]
[52]
Li, J.; Tang, Y.; Tang, P.M.K.; Lv, J.; Huang, X.R.; Carlsson-Skwirut, C.; Da Costa, L.; Aspesi, A.; Fröhlich, S. Szczęśniak, P.; Lach-er, P.; Klug, J.; Meinhardt, A.; Fingerle-Rowson, G.; Gong, R.; Zheng, Z.; Xu, A.; Lan, H.Y. Blocking macrophage migration inhibitory factor protects against cisplatin-induced acute kidney injury in mice. Mol. Ther., 2018, 26(10), 2523-2532.
[http://dx.doi.org/10.1016/j.ymthe.2018.07.014] [PMID: 30077612]
[53]
Hong, M.Y.; Tseng, C.C.; Chuang, C.C.; Chen, C.L.; Lin, S.H.; Lin, C.F. Urinary macrophage migration inhibitory factor serves as a potential biomarker for acute kidney injury in patients with acute pyelonephritis. Mediators Inflamm., 2012, 2012, 381358.
[http://dx.doi.org/10.1155/2012/381358] [PMID: 23319831]
[54]
Chen, L.; Zhou, X.; Fan, L.X.; Yao, Y.; Swenson-Fields, K.I.; Gadjeva, M.; Wallace, D.P.; Peters, D.J.M.; Yu, A.; Grantham, J.J.; Li, X. Macrophage migration inhibitory factor promotes cyst growth in polycystic kidney disease. J. Clin. Invest., 2015, 125(6), 2399-2412.
[http://dx.doi.org/10.1172/JCI80467] [PMID: 25961459]
[55]
Li, J.H.; Tang, Y.; Lv, J.; Wang, X.H.; Yang, H.; Tang, P.M.K.; Huang, X.R.; He, Z.J.; Zhou, Z.J.; Huang, Q.Y.; Klug, J.; Meinhardt, A.; Fingerle-Rowson, G.; Xu, A.P.; Zheng, Z.H.; Lan, H.Y. Macrophage migration inhibitory factor promotes renal injury induced by ischemic reperfusion. J. Cell. Mol. Med., 2019, 23(6), 3867-3877.
[http://dx.doi.org/10.1111/jcmm.14234] [PMID: 30968541]
[56]
Stefaniak, J.; Schiefer, J.; Miller, E.J.; Krenn, C.G.; Baron, D.M.; Faybik, P. Macrophage migration inhibitory factor as a potential pre-dictor for requirement of renal replacement therapy after orthotopic liver transplantation. Liver Transpl., 2015, 21(5), 662-669.
[http://dx.doi.org/10.1002/lt.24103] [PMID: 25762421]
[57]
Pohl, J.; Papathanasiou, M.; Heisler, M.; Stock, P.; Kelm, M.; Hendgen-Cotta, U.B.; Rassaf, T.; Luedike, P. Renal replacement therapy neutralizes elevated MIF levels in septic shock. J. Intensive Care, 2016, 4(1), 39.
[http://dx.doi.org/10.1186/s40560-016-0163-2] [PMID: 27313864]
[58]
Wang, Z.; Wei, M.; Wang, M.; Chen, L.; Liu, H.; Ren, Y.; Shi, K.; Jiang, H. Inhibition of macrophage migration inhibitory factor reduc-es diabetic nephropathy in type II diabetes mice. Inflammation, 2014, 37(6), 2020-2029.
[http://dx.doi.org/10.1007/s10753-014-9934-x] [PMID: 24958012]
[59]
Merk, M.; Baugh, J.; Zierow, S.; Leng, L.; Pal, U.; Lee, S.J.; Ebert, A.D.; Mizue, Y.; Trent, J.O.; Mitchell, R.; Nickel, W.; Kavathas, P.B.; Bernhagen, J.; Bucala, R. The Golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. J. Immunol., 2009, 182(11), 6896-6906.
[http://dx.doi.org/10.4049/jimmunol.0803710] [PMID: 19454686]
[60]
Ping, Z.; Peng, Y.; Lang, H.; Xinyong, C.; Zhiyi, Z.; Xiaocheng, W.; Hong, Z.; Liang, S. Oxidative stress in radiation-induced cardio-toxicity. Oxid. Med. Cell. Longev., 2020, 2020, 3579143.
[http://dx.doi.org/10.1155/2020/3579143] [PMID: 32190171]
[61]
Djudjaj, S.; Lue, H.; Rong, S.; Papasotiriou, M.; Klinkhammer, B.M.; Zok, S.; Klaener, O.; Braun, G.S.; Lindenmeyer, M.T.; Cohen, C.D.; Bucala, R.; Tittel, A.P.; Kurts, C.; Moeller, M.J.; Floege, J.; Ostendorf, T.; Bernhagen, J.; Boor, P. Macrophage migration inhibi-tory factor mediates proliferative GN via CD74. J. Am. Soc. Nephrol., 2016, 27(6), 1650-1664.
[http://dx.doi.org/10.1681/ASN.2015020149] [PMID: 26453615]
[62]
Go, E.K.; Jung, K.J.; Kim, J.Y.; Yu, B.P.; Chung, H.Y. Betaine suppresses proinflammatory signaling during aging: The involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinases. J. Gerontol. A Biol. Sci. Med. Sci., 2005, 60(10), 1252-1264.
[http://dx.doi.org/10.1093/gerona/60.10.1252] [PMID: 16282556]
[63]
Lee, E.K.; Jang, E.J.; Jung, K.J.; Kim, D.H.; Yu, B.P.; Chung, H.Y. Betaine attenuates lysophosphatidylcholine-mediated adhesion mol-ecules in aged rat aorta: Modulation of the nuclear factor-κB pathway. Exp. Gerontol., 2013, 48(5), 517-524.
[http://dx.doi.org/10.1016/j.exger.2013.02.024] [PMID: 23466300]
[64]
Poulsen, K.L.; McMullen, M.R.; Huang, E.; Kibler, C.D.; Sheehan, M.M.; Leng, L.; Bucala, R.; Nagy, L.E. Novel role of macrophage migration inhibitory factor in upstream control of the unfolded protein response after ethanol feeding in mice. Alcohol. Clin. Exp. Res., 2019, 43(7), 1439-1451.
[http://dx.doi.org/10.1111/acer.14065] [PMID: 31009094]
[65]
Poulsen, K.L.; Mcmullen, M.; Sheehan, M.; Leng, L.; Bucala, R.; Nagy, L. Protection from Gao-Binge induced liver injury in MIF-/- mice is associated with decreased ER stress. J. Hepatol., 2018, 68, S47-S48.
[http://dx.doi.org/10.1016/S0168-8278(18)30313-1]
[66]
Kim, M.J.; Kim, W.S.; Kim, D.O.; Byun, J.E.; Huy, H.; Lee, S.Y.; Song, H.Y.; Park, Y.J.; Kim, T.D.; Yoon, S.R.; Choi, E.J.; Ha, H.; Jung, H.; Choi, I. Macrophage migration inhibitory factor interacts with thioredoxin-interacting protein and induces NF-κB activity. Cell. Signal., 2017, 34, 110-120.
[http://dx.doi.org/10.1016/j.cellsig.2017.03.007] [PMID: 28323005]
[67]
Shin, M.S.; Kang, Y.; Wahl, E.R.; Park, H.J.; Lazova, R.; Leng, L.; Mamula, M.; Krishnaswamy, S.; Bucala, R.; Kang, I. Macrophage migration inhibitory factor regulates U1 small nuclear RNP immune complex-mediated activation of the NLRP3 inflammasome. Arthritis Rheumatol., 2019, 71(1), 109-120.
[http://dx.doi.org/10.1002/art.40672] [PMID: 30009530]
[68]
Günther, S.; Bordenave, J.; Hua-Huy, T.; Nicco, C.; Cumont, A.; Thuillet, R.; Tu, L.; Quatremarre, T.; Guilbert, T.; Jalce, G.; Batteux, F.; Humbert, M.; Savale, L.; Guignabert, C.; Dinh-Xuan, A.T. Macrophage migration inhibitory factor (MIF) inhibition in a murine model of bleomycin-induced pulmonary fibrosis. Int. J. Mol. Sci., 2018, 19(12), 4105.
[http://dx.doi.org/10.3390/ijms19124105] [PMID: 30567353]
[69]
Marin, V.; Poulsen, K.; Odena, G.; McMullen, M.R.; Altamirano, J.; Sancho-Bru, P.; Tiribelli, C.; Caballeria, J.; Rosso, N.; Bataller, R.; Nagy, L.E. Hepatocyte-derived macrophage migration inhibitory factor mediates alcohol-induced liver injury in mice and patients. J. Hepatol., 2017, 67(5), 1018-1025.
[http://dx.doi.org/10.1016/j.jhep.2017.06.014] [PMID: 28647568]
[70]
Tsai, M.T.; Chen, C.Y.; Pan, Y.H.; Wang, S.H.; Mersmann, H.J.; Ding, S.T. Alleviation of carbon-tetrachloride-induced liver injury and fibrosis by betaine supplementation in chickens. Evid. Based Complement. Alternat. Med., 2015, 2015, 725379.
[http://dx.doi.org/10.1155/2015/725379]
[71]
Bingül, İ.; Aydın, A.F.; Başaran-Küçükgergin, C.; Doğan-Ekici, I.; Çoban, J.; Doğru-Abbasoğlu, S.; Uysal, M. Highfat diet plus carbon tetrachloride-induced liver fibrosis is alleviated by betaine treatment in rats.. Int. Immunopharmacol., 2016, 39, 199-207.
[http://dx.doi.org/10.1016/j.intimp.2016.07.028] [PMID: 27494683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy