Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Current Novel Drug Deliveries for Oral Cancer: A Chronotherapeutic Approach

Author(s): Kishori P. Sutar*, Nisha S. Shirkoli, Prasanna S. Sutar, Bhaskar K. Kurangi, Panchaxari M. Dandagi and Rajashree Masareddy

Volume 20, Issue 3, 2023

Published on: 10 June, 2022

Page: [237 - 249] Pages: 13

DOI: 10.2174/1567201819666220408094520

Price: $65

conference banner
Abstract

Oral squamous cell carcinoma is a malignant disease that is causing considerable mortality worldwide. Conventional treatment approaches, like surgery, cause destructive alterations in facial appearance and oral function impairments associated with psychological and social functioning. Chemotherapy exhibits low bioaccessibility of the anticancer drugs, multiple drug resistance, higher dose necessities, which elevate toxicities to the normal cells, low therapeutic index, and non-specific targeting. Radiation therapies significantly affect the well-being of the patient and impair the quality of life. Therefore, chemotherapeutics are developed that can either actively or passively target the carcinomas, reduce the adverse side effect, and improve therapeutic efficacy. Innovations in novel drug delivery systems deliver the drugs to the desired site of action with better treatment approaches with reduced toxicities to the normal cells and improve the health and survival rate of the patient. Cancer chronotherapy enhances the treatment proficiency by administration of the drugs at the best time, considering biological timings to improve the treatment profiles. Chronotherapy provides benefits to the current anticancer therapies, with minimum adverse effects to the healthy cells. This review discusses the risk factors for oral carcinomas, targeted therapy by nanocarriers, nanotechnology approaches, the role of circadian rhythm in the management of oral cancer, and advances in controlled drug delivery.

Keywords: Oral squamous cell carcinoma, nanotechnology drug delivery, targeted therapy by nanocarriers, cancer chronotherapy, circadian rhythm, oral cancer.

Graphical Abstract

[1]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(7), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[2]
Masthan, K.; Babu, N.A.; Shanmugam, K.T.; Abhinav, J. Nanotechnology: Its application in oral cancer. JCDR, 2012, 6, 1328-1330.
[3]
Nguyen, K.T. Targeted nanoparticles for cancer therapy: Promises and challenges. J. Nanomed. Nanotechnol., 2011, 2(5), 1-2.
[http://dx.doi.org/10.4172/2157-7439.1000103e]
[4]
Deepak, K; Deepti, J; Vivek, S; Rajendra, K Patil, A cancer therapeutics, opportunities, challenges and advances in drug delivery. JAPS, 2011, 1, 01-10.
[5]
Rao, R.S.; Patil, S.; Ghosh, S.; Kumari, K. Current aspects and future strategies in oral cancer research: A review. J Med Radiol Pathol Surg., 2015, 1, 8-13.
[http://dx.doi.org/10.15713/ins.jmrps.15]
[6]
Virupakshappa, B. Applications of nanomedicine in oral cancer. Oral Health Dent. Manag., 2012, 11(2), 62-68.
[PMID: 22692272]
[7]
Tshering Vogel, D.W.; Zbaeren, P.; Thoeny, H.C. Cancer of the oral cavity and oropharynx. Cancer Imaging, 2010, 10(62), 62-72.
[http://dx.doi.org/10.1102/1470-7330.2010.0008] [PMID: 20233682]
[8]
Manikandan, M.; Deva Magendhra Rao, A.K.; Arunkumar, G.; Manickavasagam, M.; Rajkumar, K.S.; Rajaraman, R.; Munirajan, A.K. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol. Cancer, 2016, 15(1), 28.
[http://dx.doi.org/10.1186/s12943-016-0512-8] [PMID: 27056547]
[9]
Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11884-11894.
[PMID: 26617944]
[10]
Prince, V.M.; Papagerakis, S.; Prince, M.E. Oral cancer and cancer stem cells: Relevance to oral cancer risk factors, premalignant lesions, and treatment. Curr. Oral Health Rep., 2016, 3(2), 65-73.
[http://dx.doi.org/10.1007/s40496-016-0081-3]
[11]
Adams, A.K.; Hallenbeck, G.E.; Casper, K.A.; Patil, Y.J.; Wilson, K.M. DEK promotes HPV-positive and-negative head and neck cancer cell proliferation. Oncogene, 2015, 34, 868.
[http://dx.doi.org/10.1038/onc.2014.15] [PMID: 24608431]
[12]
Hübbers, C.U.; Akgül, B. HPV and cancer of the oral cavity. Virulence, 2015, 6(3), 244-248.
[http://dx.doi.org/10.1080/21505594.2014.999570] [PMID: 25654476]
[13]
Gupta, P.C.; Murti, P.R.; Bhonsle, R.B.; Mehta, F.S.; Pindborg, J.J. Effect of cessation of tobacco use on the incidence of oral mucosal lesions in a 10-yr follow-up study of 12,212 users. Oral Dis., 1995, 1(1), 54-58.
[http://dx.doi.org/10.1111/j.1601-0825.1995.tb00158.x] [PMID: 7553382]
[14]
Warnakulasuriya, K.A.; Johnson, N.W.; Linklater, K.M.; Bell, J. Cancer of mouth, pharynx and nasopharynx in Asian and Chinese immigrants resident in Thames regions. Oral Oncol., 1999, 35(5), 471-475.
[http://dx.doi.org/10.1016/S1368-8375(99)00019-6] [PMID: 10694946]
[15]
Scully, C.; Field, J.K.; Tanzawa, H. Genetic aberrations in oral or head and neck squamous cell carcinoma (SCCHN): 1. Carcinogen metabolism, DNA repair and cell cycle control. Oral Oncol., 2000, 36(3), 256-263.
[http://dx.doi.org/10.1016/S1368-8375(00)00007-5] [PMID: 10793327]
[16]
Warnakulasuriya, K.A.; Ralhan, R. Clinical, pathological, cellular and molecular lesions caused by oral smokeless tobacco-a review. J. Oral Pathol. Med., 2007, 36(2), 63-77.
[http://dx.doi.org/10.1111/j.1600-0714.2007.00496.x] [PMID: 17238967]
[17]
Hecht, S.S. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat. Rev. Cancer, 2003, 3(10), 733-744.
[http://dx.doi.org/10.1038/nrc1190] [PMID: 14570033]
[18]
Dalianis, T. Human papillomavirus and oropharyngeal cancer, the epidemics, and significance of additional clinical biomarkers for prediction of response to therapy (Review). Int. J. Oncol., 2014, 44(6), 1799-1805.
[http://dx.doi.org/10.3892/ijo.2014.2355] [PMID: 24676623]
[19]
Kang, H.; Kiess, A.; Chung, C.H. Emerging biomarkers in head and neck cancer in the era of genomics. Nat. Rev. Clin. Oncol., 2015, 12(1), 11-26.
[http://dx.doi.org/10.1038/nrclinonc.2014.192] [PMID: 25403939]
[20]
Neville, B.W.; Damm, D.D.; Allen, C.; Chi, A. Oral and Maxillofacial Pathology, 4th ed.; , 2009.
[21]
Zhu, Y.; Wen, L.M.; Li, R.; Dong, W.; Jia, S.Y.; Qi, M.C. Recent advances of nano-drug delivery system in oral squamous cell carcinoma treatment. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(21), 9445-9453.
[PMID: 31773682]
[22]
Afifi, M.M.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. XAV939: From a small inhibitor to a potent drug bioconjugate when delivered by gold nanoparticles. Bioconjug. Chem., 2014, 25(2), 207-215.
[http://dx.doi.org/10.1021/bc400271x] [PMID: 24409808]
[23]
Xiao, D.Z.; Dai, B.; Chen, J.; Luo, Q.; Liu, X.Y.; Lin, Q.X.; Li, X.H.; Huang, W.; Yu, X.Y. Loss of macrophage migration inhibitory factor impairs the growth properties of human HeLa cervical cancer cells. Cell Prolif., 2011, 44(6), 582-590.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00787.x] [PMID: 21991924]
[24]
Oliveira, C.S.; de Bock, C.E.; Molloy, T.J.; Sadeqzadeh, E.; Geng, X.Y.; Hersey, P.; Zhang, X.D.; Thorne, R.F. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer, 2014, 14(1), 630.
[http://dx.doi.org/10.1186/1471-2407-14-630] [PMID: 25168062]
[25]
Huang, H.C.; Barua, S.; Sharma, G.; Dey, S.K.; Rege, K. Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release, 2011, 155(3), 344-357.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.004] [PMID: 21723891]
[26]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[27]
Subramani, K.; Ahmed, W. Nanoparticulate. In: Drug Delivery Systems for Oral Cancer Treatment, 1st ed; Elsevier Inc.: Amsterdam, The Netherlands, 2012.
[28]
Poonia, M.; Ramalingam, K.; Goyal, S.; Sidhu, S.K. Nanotechnology in oral cancer: A comprehensive review. J. Oral Maxillofac. Pathol., 2017, 21(3), 407-414.
[http://dx.doi.org/10.4103/jomfp.JOMFP_29_17] [PMID: 29391716]
[29]
Calixto, G.; Bernegossi, J.; Fonseca-Santos, B.; Chorilli, M. Nanotechnology-based drug delivery systems for treatment of oral cancer: A review. Int. J. Nanomedicine, 2014, 9, 3719-3735.
[http://dx.doi.org/10.2147/IJN.S61670] [PMID: 25143724]
[30]
Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2012, 64, 206-212.
[http://dx.doi.org/10.1016/j.addr.2012.09.033]
[31]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[32]
Maitra, J.; Kumar, S.V. Cross-linking in hydrogels-a review. Am. J. Polym. Sci., 2014, 25-31.
[33]
Ketabat, F.; Khorshidi, S.; Karkhaneh, A. Application of minimally invasive injectable conductive hydrogels as stimulating scaffolds for myocardial tissue engineering. Polym. Int., 2018, 67(8), 975-982.
[http://dx.doi.org/10.1002/pi.5599]
[34]
Koutsopoulos, S.; Zhang, S. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. J. Control. Release, 2012, 160(3), 451-458.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.014] [PMID: 22465676]
[35]
Sepantafar, M.; Maheronnaghsh, R.; Mohammadi, H.; Radmanesh, F.; Hasani-Sadrabadi, M.M.; Ebrahimi, M.; Baharvand, H. Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol., 2017, 35(11), 1074-1087.
[http://dx.doi.org/10.1016/j.tibtech.2017.06.015] [PMID: 28734545]
[36]
Qi, X.; Wei, W.; Li, J.; Liu, Y.; Hu, X.; Zhang, J.; Bi, L.; Dong, W. Fabrication and characterization of a novel anticancer drug delivery system: Salecan/poly (methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater. Sci. Eng., 2015, 1(12), 1287-1299.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00346] [PMID: 33429676]
[37]
Ruel-Gariépy, E.; Shive, M.; Bichara, A.; Berrada, M.; Le Garrec, D.; Chenite, A.; Leroux, J.C. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur. J. Pharm. Biopharm., 2004, 57(1), 53-63.
[http://dx.doi.org/10.1016/S0939-6411(03)00095-X] [PMID: 14729080]
[38]
Obara, K.; Ishihara, M.; Ozeki, Y.; Ishizuka, T.; Hayashi, T.; Nakamura, S.; Saito, Y.; Yura, H.; Matsui, T.; Hattori, H.; Takase, B.; Ishihara, M.; Kikuchi, M.; Maehara, T. Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J. Control. Release, 2005, 110(1), 79-89.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.026] [PMID: 16289419]
[39]
Konishi, M.; Tabata, Y.; Kariya, M.; Suzuki, A.; Mandai, M.; Nanbu, K.; Takakura, K.; Fujii, S. In vivo anti-tumor effect through the controlled release of cisplatin from biodegradable gelatin hydrogel. J. Control. Release, 2003, 92(3), 301-313.
[http://dx.doi.org/10.1016/S0168-3659(03)00364-X] [PMID: 14568411]
[40]
Gurski, L.A.; Jha, A.K.; Zhang, C.; Jia, X.; Farach-Carson, M.C. Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials, 2009, 30(30), 6076-6085.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.054] [PMID: 19695694]
[41]
Gao, Y.; Ren, F.; Ding, B.; Sun, N.; Liu, X.; Ding, X.; Gao, S. A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel. J. Drug Target., 2011, 19(7), 516-527.
[http://dx.doi.org/10.3109/1061186X.2010.519031] [PMID: 20883085]
[42]
Hao, T.; Li, Z.; Qiao, M.; Fan, Q. Preparation of docetaxel hydrogels for subcutaneous injection and their release profile in vitro. Chung Kuo Yao Hsueh Tsa Chih, 2009, 24, 15.
[43]
Shaker, D.S.; Ghorab, M.K.; Klingner, A.; Teiama, M.S. In-situ injectable thermosensitive gel based on poloxamer as a new carrier for tamoxifen citrate. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 429-437.
[44]
Konishi, M.; Tabata, Y.; Kariya, M.; Hosseinkhani, H.; Suzuki, A.; Fukuhara, K.; Mandai, M.; Takakura, K.; Fujii, S. In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel. J. Control. Release, 2005, 103(1), 7-19.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.014] [PMID: 15710496]
[45]
Deurloo, M.J.; Kop, W.; van Tellingen, O.; Bartelink, H.; Begg, A.C. Intratumoural administration of cisplatin in slow-release devices: II. Pharmacokinetics and intratumoural distribution. Cancer Chemother. Pharmacol., 1991, 27(5), 347-353.
[http://dx.doi.org/10.1007/BF00688856] [PMID: 1998994]
[46]
Tauro, J.R.; Gemeinhart, R.A. Extracellular protease activation of chemotherapeutics from hydrogel matrices: A new paradigm for local chemotherapy. Mol. Pharm., 2005, 2(5), 435-438.
[http://dx.doi.org/10.1021/mp050028n] [PMID: 16196497]
[47]
Li, J.; Gong, C.; Feng, X.; Zhou, X.; Xu, X.; Xie, L.; Wang, R.; Zhang, D.; Wang, H.; Deng, P.; Zhou, M.; Ji, N.; Zhou, Y.; Wang, Y.; Wang, Z.; Liao, G.; Geng, N.; Chu, L.; Qian, Z.; Wang, Z.; Chen, Q. Biodegradable thermosensitive hydrogel for SAHA and DDP delivery: Therapeutic effects on oral squamous cell carcinoma xenografts. PLoS One, 2012, 7(4), e33860.
[http://dx.doi.org/10.1371/journal.pone.0033860] [PMID: 22529899]
[48]
Tang, M.F.; Lei, L.; Guo, S.R.; Huang, W.L. Recent progress in nanotechnology for cancer therapy. Chin. J. Cancer, 2010, 29(9), 775-780.
[http://dx.doi.org/10.5732/cjc.010.10075] [PMID: 20800018]
[49]
Pillai, G. Nanomedicines for cancer therapy: An update of FDA approved and those under various stages of development. SOJ Pharm. Pharm. Sci., 2014, 1(2), 1-13.
[http://dx.doi.org/10.15226/2374-6866/1/1/00109]
[50]
Jain, N.; Jain, R.; Thakur, N.; Gupta, B.R. Nanotechnology: A safe and effective drug delivery system. AJPC, 2010, 3, 159-165.
[51]
Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel), 2013, 6(11), 1361-1380.
[http://dx.doi.org/10.3390/ph6111361] [PMID: 24287462]
[52]
Shi, S.; Kang, P. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials (Basel), 2020, 656(10), 1-21.
[53]
Sudhakara, R.R.; Sahithi, D. Nano drug delivery in oral cancer therapy: An emerging avenue to unveil. J. Med. Radiol. Pathol. Surg., 2015, 1, 17-22.
[54]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[55]
Hu, C.M.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv., 2010, 1(2), 323-334.
[http://dx.doi.org/10.4155/tde.10.13] [PMID: 22816135]
[56]
Tekade, R.K.; Dutta, T.; Gajbhiye, V.; Jain, N.K. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J. Microencapsul., 2009, 26(4), 287-296.
[http://dx.doi.org/10.1080/02652040802312572] [PMID: 18791906]
[57]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[58]
Kushwaha, S.K.; Ghoshal, S.; Rai, A.K.; Singh, S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: A review. Braz. J. Pharm. Sci., 2013, 49(4), 621-643.
[http://dx.doi.org/10.1590/S1984-82502013000400002]
[59]
Paciotti, G.F.; Myer, L.; Weinreich, D. Colloidal gold: A novel nanoparticle vector for tumour directed drug delivery. Drug Deliv., 2004, 11(3), 169-183.
[http://dx.doi.org/10.1080/10717540490433895] [PMID: 15204636]
[60]
Barakat, N.S.; Taleb, D.A.; Salehitekade, A.S. Target nanoparticles: An appealing drug delivery platform. J. Nanomed. Nanotechnol., 2012, 4, 2-9.
[61]
Khan, K.A.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[62]
Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release, 2015, 219, 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030] [PMID: 26241750]
[63]
Jiang, X.C.; Gao, J.Q. Exosomes as novel bio-carriers for gene and drug delivery. Int. J. Pharm., 2017, 521(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.038] [PMID: 28216464]
[64]
Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteomics, 2010, 73(10), 1907-1920.
[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]
[65]
Sun, D.; Zhuang, X.; Xiang, X.; Liu, Y.; Zhang, S.; Liu, C.; Barnes, S.; Grizzle, W.; Miller, D.; Zhang, H.G. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther., 2010, 18(9), 1606-1614.
[http://dx.doi.org/10.1038/mt.2010.105] [PMID: 20571541]
[66]
Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 2014, 35(7), 2383-2390.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.083] [PMID: 24345736]
[67]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[68]
Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin., 2017, 38(6), 754-763.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[69]
Desai, K.G.H. Polymeric drug delivery systems for intraoral site-specific chemoprevention of oral cancer. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(3), 1383-1413.
[http://dx.doi.org/10.1002/jbm.b.33943] [PMID: 28650116]
[70]
Satapathy, S.R.; Siddharth, S.; Das, D.; Nayak, A.; Kundu, C.N. Enhancement of cytotoxicity and inhibition of angiogenesis in oral cancer stem cells by a hybrid nanoparticle of bioactive quinacrine and silver: Implication of base excision repair cascade. Mol. Pharm., 2015, 12(11), 4011-4025.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00461] [PMID: 26448277]
[71]
Yesilot, S.; Aydin, C. Silver nanoparticles; a new hope in cancer therapy. East. J. Med., 2019, 24(1), 111-116.
[http://dx.doi.org/10.5505/ejm.2019.66487]
[72]
Rana, V. Therapeutic delivery. Ther. Deliv., 2016, 17, 117-138.
[73]
Zlotogorski, A.; Dayan, A.; Dayan, D.; Chaushu, G.; Salo, T.; Vered, M. Nutraceuticals as new treatment approaches for oral cancer-I: Curcumin. Oral Oncol., 2013, 49(3), 187-191.
[http://dx.doi.org/10.1016/j.oraloncology.2012.09.015] [PMID: 23116961]
[74]
Liu, D.; Liu, Z.; Wang, L.; Zhang, C.; Zhang, N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B Biointerfaces, 2011, 85(2), 262-269.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[75]
Iida, S.; Shimada, J.; Sakagami, H. Cytotoxicity induced by docetaxel in human oral squamous cell carcinoma cell lines. In vivo, 2013, 27, 321-332.
[PMID: 23606687]
[76]
Zhang, T.; Chen, J.; Zhang, Y.; Shen, Q.; Pan, W. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur. J. Pharm. Sci., 2011, 43(3), 174-179.
[http://dx.doi.org/10.1016/j.ejps.2011.04.005] [PMID: 21530654]
[77]
Kushwaha, K.S; Rastogi, A; Rai, A.K; Singh, S. Novel drug delivery system for anti-cancer- a review. Int. J. Pharm. Tech. Res., 2012, 4, 542-553.
[78]
Panda, S.; Hogenesch, J.B.; Kay, S.A. Circadian rhythms from flies to human. Nature, 2002, 417(6886), 329-335.
[http://dx.doi.org/10.1038/417329a] [PMID: 12015613]
[79]
Partch, C.L.; Green, C.B.; Takahashi, J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol., 2014, 24(2), 90-99.
[http://dx.doi.org/10.1016/j.tcb.2013.07.002] [PMID: 23916625]
[80]
Matsuo, T.; Yamaguchi, S.; Mitsui, S.; Emi, A.; Shimoda, F.; Okamura, H. Control mechanism of the circadian clock for timing of cell division in vivo. Science, 2003, 302, 255-259.
[http://dx.doi.org/10.1126/science.1086271] [PMID: 12934012]
[81]
Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. USA, 2014, 111(45), 16219-16224.
[http://dx.doi.org/10.1073/pnas.1408886111] [PMID: 25349387]
[82]
Akle, V.; Stankiewicz, A.J.; Kharchenko, V.; Yu, L.; Kharchenko, P.V.; Zhdanova, I.V. Circadian kinetics of cell cycle progression in adult neurogenic niches of a diurnal vertebrate. J. Neurosci., 2017, 37(7), 1900-1909.
[http://dx.doi.org/10.1523/JNEUROSCI.3222-16.2017] [PMID: 28087763]
[83]
Lamia, K. Ticking time bombs: Connections between circadian clocks and cancer. F1000. Fac. Rev., 2017, 6.
[84]
Papagiannakopoulos, T.; Bauer, M.R.; Davidson, S.M.; Heimann, M.; Subbaraj, L.; Bhutkar, A.; Bartlebaugh, J.; Vander Heiden, M.G.; Jacks, T. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab., 2016, 24(2), 324-331.
[http://dx.doi.org/10.1016/j.cmet.2016.07.001] [PMID: 27476975]
[85]
Ye, Y.; Xiang, Y.; Ozguc, F.M.; Kim, Y.; Liu, C.J.; Park, P.K.; Hu, Q.; Diao, L.; Lou, Y.; Lin, C.; Guo, A.Y.; Zhou, B.; Wang, L.; Chen, Z.; Takahashi, J.S.; Mills, G.B.; Yoo, S.H.; Han, L. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst., 2018, 6(3), 314-328.e2.
[http://dx.doi.org/10.1016/j.cels.2018.01.013] [PMID: 29525205]
[86]
Ballesta, A.; Innominato, P.F.; Dallmann, R.; Rand, D.A.; Lévi, F.A. Systems chronotherapeutics. Pharmacol. Rev., 2017, 69(2), 161-199.
[http://dx.doi.org/10.1124/pr.116.013441] [PMID: 28351863]
[87]
Lévi, F.; Okyar, A.; Dulong, S.; Innominato, P.F.; Clairambault, J. Circadian timing in cancer treatments. Annu. Rev. Pharmacol. Toxicol., 2010, 50(1), 377-421.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094626] [PMID: 20055686]
[88]
Levi, F.; Schibler, U. Circadian rhythms: Mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 593-628.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105208] [PMID: 17209800]
[89]
Mormont, M.C.; Levi, F. Cancer chronotherapy: Principles, applications, and perspectives. Cancer, 2003, 97(1), 155-169.
[http://dx.doi.org/10.1002/cncr.11040] [PMID: 12491517]
[90]
Altinok, A.; Lévi, F.; Goldbeter, A. Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Eur. J. Pharm. Sci., 2009, 36(1), 20-38.
[http://dx.doi.org/10.1016/j.ejps.2008.10.024] [PMID: 19041394]
[91]
Lévi, F.; Redfern, P.; Lemmer, B. Chronopharmacology of anticancer agents. In: Physiology and Pharmacology of Biological Rhythms; Springer-Verlag: Berlin, 1997; pp. 299-233.
[92]
Doi, M.; Hirayama, J.; Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell, 2006, 125(3), 497-508.
[http://dx.doi.org/10.1016/j.cell.2006.03.033] [PMID: 16678094]
[93]
Kume, K.; Zylka, M.J.; Sriram, S.; Shearman, L.P.; Weaver, D.R.; Jin, X.; Maywood, E.S.; Hastings, M.H.; Reppert, S.M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell, 1999, 98(2), 193-205.
[http://dx.doi.org/10.1016/S0092-8674(00)81014-4] [PMID: 10428031]
[94]
Sato, T.K.; Yamada, R.G.; Ukai, H.; Baggs, J.E.; Miraglia, L.J.; Kobayashi, T.J.; Welsh, D.K.; Kay, S.A.; Ueda, H.R.; Hogenesch, J.B. Feedback repression is required for mammalian circadian clock function. Nat. Genet., 2006, 38(3), 312-319.
[http://dx.doi.org/10.1038/ng1745] [PMID: 16474406]
[95]
Chaiyakarn, P.; Theerasak, R.; Opanasopit, P.; Ngawhirunpat, T.; Patrojanasophon, P. Synthesis of novel N-vinylpyrrolidone/acrylic acid nanoparticles as drug delivery carriers of cisplatin to cancer cells. Colloids Surf. B Biointerfaces, 2020, 185, 110566.
[96]
Xin, H.K.; Ian, C.; Bey-Hing, G. Cisplatin-resistance in oral squamous cell carcinoma: Regulation by tumour cell-derived extracellular vesicles. Cancers (Basel), 2019, 11(18), 1108-1166.
[PMID: 31416147]
[97]
Haifeng, Z.; Yang, G.; Wei, V. Preparation of bleomycin A2–PLGA microspheres and related in vitro and in vivo studies. J. Pharm. Sci., 2011, 100(7), 2790-2800.
[PMID: 21344412]
[98]
Mehran, M.; Rana Jahanban, E.; Monfaredan, A. Oral and IV dosages of doxorubicin-methotrexate loaded nanoparticles inhibit progression of oral cancer by downregulation of matrix methaloproteinase expression in vivo. Asian Pac. J. Cancer Prev., 2011, 15(24), 10705-10711.
[99]
Jin, B.Z.; Dong, X.Q.; Xu, X.; Zhang, F.H. Development and in vitro evaluation of mucoadhesive patches of methotrexate for targeted delivery in oral cancer. Oncol. Lett., 2018, 15(2), 2541-2549.
[PMID: 29434971]
[100]
Liu, Z.; Shi, J.; Zhu, B.; Xu, Q. Development of a multifunctional gold nanoplatform for combined chemo-photothermal therapy against oral cancer. Nanomedicine (Lond.), 2020, 15(7), 661-676.
[http://dx.doi.org/10.2217/nnm-2019-0415] [PMID: 32141806]
[101]
Dehari, H.; Ito, Y. Enhanced antitumour effect of RGD fiber-modified adenovirus for gene therapy of oral cancer. Cancer Gene Ther., 2003, 10, 75.
[102]
Wenig, B.L.; Werner, J.A.; Castro, D.J.; Sridhar, K.S.; Garewal, H.S.; Kehrl, W.; Pluzanska, A.; Arndt, O.; Costantino, P.D.; Mills, G.M.; Dunphy, F.R., II; Orenberg, E.K.; Leavitt, R.D. The role of intratumoral therapy with cisplatin/epinephrine injectable gel in the management of advanced squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg., 2002, 128(8), 880-885.
[http://dx.doi.org/10.1001/archotol.128.8.880] [PMID: 12162764]
[103]
Arulmozhi, V.; Pandian, K.; Mirunalini, S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf. B Biointerfaces, 2013, 110, 313-320.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.039] [PMID: 23732810]
[104]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[105]
Guo, R.; Peng, H.; Tian, Y.; Shen, S.; Yang, W. Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small, 2016, 12(33), 4541-4552.
[http://dx.doi.org/10.1002/smll.201601094] [PMID: 27390093]
[106]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 2008, 23(3), 217-228.
[http://dx.doi.org/10.1007/s10103-007-0470-x] [PMID: 17674122]
[107]
Radaic, A.; Ganther, S.; Kamarajan, P.; Grandis, J.; Yom, S.S.; Kapila, Y.L. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol. 2000, 2021, 87(1), 76-93.
[http://dx.doi.org/10.1111/prd.12388] [PMID: 34463982]
[108]
Grigolato, R. Oral cancer in non-smoker non-drinker patients. Could comparative pet oncology help to understand risk factors and pathogenesis? Crit. Rev. Oncol. Hematol., 2021, 103458.
[PMID: 34461267]
[109]
Zheng, W.; Zhou, Q.; Yuan, C. Nanoparticles for oral cancer diagnosis and therapy. Bioinorg. Chem. Appl., 2021, 2021, 9977131.
[http://dx.doi.org/10.1155/2021/9977131] [PMID: 33981334]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy