Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

General Research Article

TROP2 Down-regulated DSG2 to Promote Gastric Cancer Cell Invasion and Migration by EGFR/AKT and DSG2/PG/β-Catenin Pathways

Author(s): Tingting Yang, Lizhou Jia, Susu Bian, Xinxia Chang, Qian Zhang, Qi Tang, Jing Zhu, Zhiping Yang* and Zhenqing Feng*

Volume 22, Issue 8, 2022

Published on: 09 June, 2022

Page: [691 - 702] Pages: 12

DOI: 10.2174/1568009622666220407111013

Price: $65

Abstract

Background: Gastric cancer (GC) is the fourth most commonly found cancer and the second- highest cause of cancer-related death worldwide. TROP2 overexpression is closely related to many cancers, including gastrointestinal tumors. DSG2 is an important protein in cell adhesion, and its loss affects cell migration.

Aims and Objective: This study aimed to explore the specific mechanism of TROP2 in promoting gastric cancer and provide a basis for the prevention and treatment of gastric cancer.

Method: DSG2 was identified as an interacting protein of TROP2 in GC cells by coimmunoprecipitation and mass spectrometry. The regulated behavior of TROP2 on DSG2 expression was investigated with TROP2 over-expressure or knockdown. Cell-cell adhesion capacity mediated by DSG2 was evaluated by adhesion-related assays. Electron microscope observation was made for accessing GC tumor desmosome assembly. Proteins in EGFR/AKT and DSG2/PG/β-catenin pathways were evaluated by western blotting.

Result: This study suggests that abundant expression of TROP2 in GC cells lessened DSG2 levels as well as desmosome adhesion, increased cell invasion and migration, and promoted malignant progression through EGFR/AKT and DSG2/PG/β-catenin pathways.

Conclusion: TROP2 promotes cell invasion and migration in gastric cancer by decreasing DSG2 expression through EGFR/AKT and DSG2/PG/β-catenin pathways.

Keywords: TROP2, DSG2, gastric cancer, desmosome, adhesion, interacting protein.

« Previous
Graphical Abstract

[1]
Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet, 2016, 388(10060), 2654-2664.
[http://dx.doi.org/10.1016/S0140-6736(16)30354-3] [PMID: 27156933]
[2]
Zong, L.; Abe, M.; Seto, Y.; Ji, J. The challenge of screening for early gastric cancer in China. Lancet, 2016, 388(10060), 2606.
[http://dx.doi.org/10.1016/S0140-6736(16)32226-7] [PMID: 27894662]
[3]
Song, Z.; Wu, Y.; Yang, J.; Yang, D.; Fang, X. Progress in the treatment of advanced gastric cancer. Tumour Biol., 2017, 39(7), 1010428317714626.
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[4]
Figueiredo, C.; Camargo, M.C.; Leite, M.; Fuentes-Pananá, E.M.; Rabkin, C.S.; Machado, J.C. Pathogenesis of gastric cancer: Genetics and molecular classification. Curr. Top. Microbiol. Immunol., 2017, 400, 277-304.
[http://dx.doi.org/10.1007/978-3-319-50520-6_12] [PMID: 28124158]
[5]
McDougall, A.R.A.; Tolcos, M.; Hooper, S.B.; Cole, T.J.; Wallace, M.J. Trop2: From development to disease. Dev. Dyn., 2015, 244(2), 99-109.
[http://dx.doi.org/10.1002/dvdy.24242] [PMID: 25523132]
[6]
Shvartsur, A.; Bonavida, B. Trop2 and its overexpression in cancers: Regulation and clinical/therapeutic implications. Genes Cancer, 2015, 6(3-4), 84-105.
[http://dx.doi.org/10.18632/genesandcancer.40] [PMID: 26000093]
[7]
Mühlmann, G.; Spizzo, G.; Gostner, J.; Zitt, M.; Maier, H.; Moser, P.; Gastl, G.; Zitt, M.; Müller, H.M.; Margreiter, R.; Ofner, D.; Fong, D. TROP2 expression as prognostic marker for gastric carcinoma. J. Clin. Pathol., 2009, 62(2), 152-158.
[http://dx.doi.org/10.1136/jcp.2008.060590] [PMID: 18930986]
[8]
Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Guarino, M.; Abramson, V.; Juric, D.; Tolaney, S.M.; Berlin, J.; Messersmith, W.A.; Ocean, A.J.; Wegener, W.A.; Maliakal, P.; Sharkey, R.M.; Govindan, S.V.; Goldenberg, D.M.; Vahdat, L.T. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J. Clin. Oncol., 2017, 35(19), 2141-2148.
[http://dx.doi.org/10.1200/JCO.2016.70.8297] [PMID: 28291390]
[9]
McDougall, A.R.; Hooper, S.B.; Zahra, V.A.; Cole, T.J.; Lo, C.Y.; Doran, T.; Wallace, M.J. Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 305(7), L508-L521.
[http://dx.doi.org/10.1152/ajplung.00160.2012] [PMID: 23893297]
[10]
Delva, E.; Tucker, D.K.; Kowalczyk, A.P. The desmosome. Cold Spring Harb. Perspect. Biol., 2009, 1(2), a002543.
[http://dx.doi.org/10.1101/cshperspect.a002543] [PMID: 20066089]
[11]
Wang, C.E.; Yumul, R.C.; Lin, J.; Cheng, Y.; Lieber, A.; Pun, S.H. Junction opener protein increases nanoparticle accumulation in solid tumors. J. Control. Release, 2018, 272, 9-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.032] [PMID: 29305923]
[12]
Chidgey, M.; Dawson, C. Desmosomes: A role in cancer? Br. J. Cancer, 2007, 96(12), 1783-1787.
[http://dx.doi.org/10.1038/sj.bjc.6603808] [PMID: 17519903]
[13]
Brooke, M.A.; Nitoiu, D.; Kelsell, D.P. Cell-cell connectivity: Desmosomes and disease. J. Pathol., 2012, 226(2), 158-171.
[http://dx.doi.org/10.1002/path.3027] [PMID: 21989576]
[14]
Dusek, R.L.; Attardi, L.D. Desmosomes: New perpetrators in tumour suppression. Nat. Rev. Cancer, 2011, 11(5), 317-323.
[http://dx.doi.org/10.1038/nrc3051] [PMID: 21508970]
[15]
Nekrasova, O.E.; Amargo, E.V.; Smith, W.O.; Chen, J.; Kreitzer, G.E.; Green, K.J. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J. Cell Biol., 2011, 195(7), 1185-1203.
[http://dx.doi.org/10.1083/jcb.201106057] [PMID: 22184201]
[16]
Yang, L.; Lee, M.M.; Leung, M.M.; Wong, Y.H. Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cell. Signal., 2016, 28(11), 1663-1672.
[http://dx.doi.org/10.1016/j.cellsig.2016.07.017] [PMID: 27495875]
[17]
Lin, Y.; Peng, N.; Zhuang, H.; Zhang, D.; Wang, Y.; Hua, Z.C. Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor. BMC Cancer, 2014, 14, 639.
[http://dx.doi.org/10.1186/1471-2407-14-639] [PMID: 25175595]
[18]
Rötzer, V.; Hartlieb, E.; Vielmuth, F.; Gliem, M.; Spindler, V.; Waschke, J. E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion. Cell. Mol. Life Sci., 2015, 72(24), 4885-4897.
[http://dx.doi.org/10.1007/s00018-015-1977-0] [PMID: 26115704]
[19]
Thomas, P.; Smart, T.G. HEK293 cell line: A vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods, 2005, 51(3), 187-200.
[http://dx.doi.org/10.1016/j.vascn.2004.08.014] [PMID: 15862464]
[20]
Chrétien, D.; Bénit, P.; Ha, H.H.; Keipert, S.; El-Khoury, R.; Chang, Y.T.; Jastroch, M.; Jacobs, H.T.; Rustin, P.; Rak, M. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol., 2018, 16(1), e2003992.
[http://dx.doi.org/10.1371/journal.pbio.2003992] [PMID: 29370167]
[21]
Wen, L.; Voronina, S.; Javed, M.A.; Awais, M.; Szatmary, P.; Latawiec, D.; Chvanov, M.; Collier, D.; Huang, W.; Barrett, J.; Begg, M.; Stauderman, K.; Roos, J.; Grigoryev, S.; Ramos, S.; Rogers, E.; Whitten, J.; Velicelebi, G.; Dunn, M.; Tepikin, A.V.; Criddle, D.N.; Sutton, R. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology, 2015, 149(2), 481-92.e7.
[http://dx.doi.org/10.1053/j.gastro.2015.04.015] [PMID: 25917787]
[22]
Zhao, W.; Zhu, H.; Zhang, S.; Yong, H.; Wang, W.; Zhou, Y.; Wang, B.; Wen, J.; Qiu, Z.; Ding, G.; Feng, Z.; Zhu, J. Trop2 is overexpressed in gastric cancer and predicts poor prognosis. Oncotarget, 2016, 7(5), 6136-6145.
[http://dx.doi.org/10.18632/oncotarget.6733] [PMID: 26716416]
[23]
Inamura, K.; Yokouchi, Y.; Kobayashi, M.; Ninomiya, H.; Sakakibara, R.; Subat, S.; Nagano, H.; Nomura, K.; Okumura, S.; Shibutani, T.; Ishikawa, Y. Association of tumor TROP2 expression with prognosis varies among lung cancer subtypes. Oncotarget, 2017, 8(17), 28725-28735.
[http://dx.doi.org/10.18632/oncotarget.15647] [PMID: 28404926]
[24]
Zimmers, S.M.; Browne, E.P.; Williams, K.E.; Jawale, R.M.; Otis, C.N.; Schneider, S.S.; Arcaro, K.F. TROP2 methylation and expression in tamoxifen-resistant breast cancer. Cancer Cell Int., 2018, 18, 94.
[http://dx.doi.org/10.1186/s12935-018-0589-9] [PMID: 30002602]
[25]
Wu, B.; Yu, C.; Zhou, B.; Huang, T.; Gao, L.; Liu, T.; Yang, X. Overexpression of TROP2 promotes proliferation and invasion of ovarian cancer cells. Exp. Ther. Med., 2017, 14(3), 1947-1952.
[http://dx.doi.org/10.3892/etm.2017.4788] [PMID: 28962108]
[26]
Kröger, C.; Loschke, F.; Schwarz, N.; Windoffer, R.; Leube, R.E.; Magin, T.M. Keratins control intercellular adhesion involving PKC-α-mediated desmoplakin phosphorylation. J. Cell Biol., 2013, 201(5), 681-692.
[http://dx.doi.org/10.1083/jcb.201208162] [PMID: 23690176]
[27]
Dieding, M.; Debus, J.D.; Kerkhoff, R.; Gaertner-Rommel, A.; Walhorn, V.; Milting, H.; Anselmetti, D. Arrhythmogenic cardiomyopathy related DSG2 mutations affect desmosomal cadherin binding kinetics. Sci. Rep., 2017, 7(1), 13791.
[http://dx.doi.org/10.1038/s41598-017-13737-x] [PMID: 29062102]
[28]
Overmiller, A.M.; Pierluissi, J.A.; Wermuth, P.J.; Sauma, S.; Martinez-Outschoorn, U.; Tuluc, M.; Luginbuhl, A.; Curry, J.; Harshyne, L.A.; Wahl, J.K., III; South, A.P.; Mahoney, M.G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. FASEB J., 2017, 31(8), 3412-3424.
[http://dx.doi.org/10.1096/fj.201601138RR] [PMID: 28438789]
[29]
Chenchen Zhu, H.J.W.D. Activation of p38/HSP27 pathway counters melatonin-induced inhibitory effect on proliferation of human gastric cancer cells. J. Biomed. Res., 2019, 33, 317-324.
[30]
Brennan, D.; Peltonen, S.; Dowling, A.; Medhat, W.; Green, K.J.; Wahl, J.K., III; Del Galdo, F.; Mahoney, M.G. A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene, 2012, 31(13), 1636-1648.
[http://dx.doi.org/10.1038/onc.2011.346] [PMID: 21841821]
[31]
Galbiati, F.; Volonte, D.; Brown, A.M.C.; Weinstein, D.E.; Ben-Ze’ev, A.; Pestell, R.G.; Lisanti, M.P. Caveolin-1 expression inhibits Wnt/β-catenin/Lef-1 signaling by recruiting β-catenin to caveolae membrane domains. J. Biol. Chem., 2000, 275(30), 23368-23377.
[http://dx.doi.org/10.1074/jbc.M002020200] [PMID: 10816572]
[32]
Chen, J.; Nekrasova, O.E.; Patel, D.M.; Klessner, J.L.; Godsel, L.M.; Koetsier, J.L.; Amargo, E.V.; Desai, B.V.; Green, K.J. The C-terminal unique region of desmoglein 2 inhibits its internalization via tail-tail interactions. J. Cell Biol., 2012, 199(4), 699-711.
[http://dx.doi.org/10.1083/jcb.201202105] [PMID: 23128240]
[33]
Klessner, J.L.; Desai, B.V.; Amargo, E.V.; Getsios, S.; Green, K.J. EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol. Biol. Cell, 2009, 20(1), 328-337.
[http://dx.doi.org/10.1091/mbc.e08-04-0356] [PMID: 18987342]
[34]
Kottke, M.D.; Delva, E.; Kowalczyk, A.P. The desmosome: Cell science lessons from human diseases. J. Cell Sci., 2006, 119(Pt 5), 797-806.
[http://dx.doi.org/10.1242/jcs.02888] [PMID: 16495480]
[35]
Chitaev, N.A.; Leube, R.E.; Troyanovsky, R.B.; Eshkind, L.G.; Franke, W.W.; Troyanovsky, S.M. The binding of plakoglobin to desmosomal cadherins: Patterns of binding sites and topogenic potential. J. Cell Biol., 1996, 133(2), 359-369.
[http://dx.doi.org/10.1083/jcb.133.2.359] [PMID: 8609168]
[36]
Cai, F.; Zhu, Q.; Miao, Y.; Shen, S.; Su, X.; Shi, Y. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J. Cancer Res. Clin. Oncol., 2017, 143(1), 59-69.
[http://dx.doi.org/10.1007/s00432-016-2250-0] [PMID: 27629878]
[37]
Breuninger, S.; Reidenbach, S.; Sauer, C.G.; Ströbel, P.; Pfitzenmaier, J.; Trojan, L.; Hofmann, I. Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: Implications for diagnosis and tumor progression. Am. J. Pathol., 2010, 176(5), 2509-2519.
[http://dx.doi.org/10.2353/ajpath.2010.090737] [PMID: 20348237]
[38]
Hütz, K.; Zeiler, J.; Sachs, L.; Ormanns, S.; Spindler, V. Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol. Carcinog., 2017, 56(8), 1884-1895.
[http://dx.doi.org/10.1002/mc.22644] [PMID: 28277619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy