Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Inflammasomes as Potential Therapeutic Targets in Atherosclerotic Cardiovascular Disease

Author(s): Ping Wang, Jun Ma* and Ru Zhang*

Volume 22, Issue 14, 2022

Published on: 05 August, 2022

Page: [1378 - 1389] Pages: 12

DOI: 10.2174/1871530322666220407090916

Price: $65

Abstract

Recent studies have shown that interleukin 1β monoclonal antibody improves the prognosis of patients with coronary artery disease independently of lipid levels, providing the first evidence of the effectiveness of anti-inflammatory treatment for atherosclerotic disease. However, there is still a significant risk of residual inflammation with interleukin 1β monoclonal antibody therapy alone. Activation of the inflammasome, an intracellular protein complex composed of pattern recognition receptors and other inflammatory molecules, is a critical step in the development of the inflammatory response, and targeting the inflammasome to reduce residual inflammation has emerged as a new idea in the anti-inflammatory treatment of atherosclerotic disease. This review discusses the role and mechanisms of inflammasomes in atherosclerotic disease and lists drugs that are currently thought to potentially treat atherosclerosis through antiinflammasomes, hoping to provide insight into the development of new anti-inflammatory therapies for the prevention and treatment of atherosclerotic disease.

Keywords: Atherosclerotic disease, inflammasomes, interleukin 1β, interleukin 18, 1β monoclonal antibody, coronary artery disease.

Graphical Abstract

[1]
Libby, P.; Hansson, G.K. From focal lipid storage to systemic inflammation: JACC review topic of the week. J. Am. Coll. Cardiol., 2019, 74(12), 1594-1607.
[http://dx.doi.org/10.1016/j.jacc.2019.07.061] [PMID: 31537270]
[2]
Libby, P. The changing landscape of atherosclerosis. Nature, 2021, 592(7855), 524-533.
[http://dx.doi.org/10.1038/s41586-021-03392-8] [PMID: 33883728]
[3]
Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Crowe, T.; Sasiela, W.J.; Tsai, J.; Orazem, J.; Magorien, R.D.; O’Shaughnessy, C.; Ganz, P. Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) Investigators. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med., 2005, 352(1), 29-38.
[http://dx.doi.org/10.1056/NEJMoa042000] [PMID: 15635110]
[4]
Ridker, P.M.; Cannon, C.P.; Morrow, D.; Rifai, N.; Rose, L.M.; McCabe, C.H.; Pfeffer, M.A.; Braunwald, E. Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med., 2005, 352(1), 20-28.
[http://dx.doi.org/10.1056/NEJMoa042378] [PMID: 15635109]
[5]
Bohula, E.A.; Giugliano, R.P.; Cannon, C.P.; Zhou, J.; Murphy, S.A.; White, J.A.; Tershakovec, A.M.; Blazing, M.A.; Braunwald, E. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation, 2015, 132(13), 1224-1233.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018381] [PMID: 26330412]
[6]
Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; Kastelein, J.J.P.; Cornel, J.H.; Pais, P.; Pella, D.; Genest, J.; Cifkova, R.; Lorenzatti, A.; Forster, T.; Kobalava, Z.; Vida-Simiti, L.; Flather, M.; Shimokawa, H.; Ogawa, H.; Dellborg, M.; Rossi, P.R.F.; Troquay, R.P.T.; Libby, P.; Glynn, R.J.; Group, C.T. CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med., 2017, 377(12), 1119-1131.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[7]
Everett, B.M.; MacFadyen, J.G.; Thuren, T.; Libby, P.; Glynn, R.J.; Ridker, P.M. Inhibition of interleukin-1β and reduction in atherothrombotic cardiovascular events in the cantos trial. J. Am. Coll. Cardiol., 2020, 76(14), 1660-1670.
[http://dx.doi.org/10.1016/j.jacc.2020.08.011] [PMID: 33004131]
[8]
Rathinam, V.A.; Fitzgerald, K.A. Inflammasome complexes: Emerging mechanisms and effector functions. Cell, 2016, 165(4), 792-800.
[http://dx.doi.org/10.1016/j.cell.2016.03.046] [PMID: 27153493]
[9]
Guo, H.; Callaway, J.B.; Ting, J.P.Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med., 2015, 21(7), 677-687.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[10]
Malik, A.; Kanneganti, T.D. Inflammasome activation and assembly at a glance. J. Cell Sci., 2017, 130(23), 3955-3963.
[http://dx.doi.org/10.1242/jcs.207365] [PMID: 29196474]
[11]
Broz, P.; Dixit, V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol., 2016, 16(7), 407-420.
[http://dx.doi.org/10.1038/nri.2016.58] [PMID: 27291964]
[12]
Hornung, V.; Ablasser, A.; Charrel-Dennis, M.; Bauernfeind, F.; Horvath, G.; Caffrey, D.R.; Latz, E.; Fitzgerald, K.A. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 2009, 458(7237), 514-518.
[http://dx.doi.org/10.1038/nature07725] [PMID: 19158675]
[13]
Wang, B.; Yin, Q. AIM2 inflammasome activation and regulation: A structural perspective. J. Struct. Biol., 2017, 200(3), 279-282.
[http://dx.doi.org/10.1016/j.jsb.2017.08.001] [PMID: 28813641]
[14]
Zheng, F.; Xing, S.; Gong, Z.; Xing, Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ., 2013, 22(9), 746-750.
[http://dx.doi.org/10.1016/j.hlc.2013.01.012] [PMID: 23462287]
[15]
Paramel Varghese, G.; Folkersen, L.; Strawbridge, R.J.; Halvorsen, B.; Yndestad, A.; Ranheim, T.; Krohg-Sørensen, K.; Skjelland, M.; Espevik, T.; Aukrust, P.; Lengquist, M.; Hedin, U.; Jansson, J.H.; Fransén, K.; Hansson, G.K.; Eriksson, P.; Sirsjö, A. NLRP3 Inflammasome expression and activation in human atherosclerosis. J. Am. Heart Assoc., 2016, 5(5), e003031.
[http://dx.doi.org/10.1161/JAHA.115.003031] [PMID: 27207962]
[16]
Shi, X.; Xie, W.L.; Kong, W.W.; Chen, D.; Qu, P. Expression of the NLRP3 inflammasome in carotid atherosclerosis. J. Stroke Cerebrovasc. Dis., 2015, 24(11), 2455-2466.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2015.03.024] [PMID: 26381780]
[17]
Kastbom, A.; Ärlestig, L.; Rantapää-Dahlqvist, S. Genetic variants of the NLRP3 inflammasome are associated with stroke in patients with rheumatoid arthritis. J. Rheumatol., 2015, 42(10), 1740-1745.
[http://dx.doi.org/10.3899/jrheum.141529] [PMID: 26178285]
[18]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[19]
Wang, R.; Wang, Y.; Mu, N.; Lou, X.; Li, W.; Chen, Y.; Fan, D.; Tan, H. Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice. Lab. Invest., 2017, 97(8), 922-934.
[http://dx.doi.org/10.1038/labinvest.2017.30] [PMID: 28394319]
[20]
van der Heijden, T.; Kritikou, E.; Venema, W.; van Duijn, J.; van Santbrink, P.J.; Slütter, B.; Foks, A.C.; Bot, I.; Kuiper, J. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler. Thromb. Vasc. Biol., 2017, 37(8), 1457-1461.
[http://dx.doi.org/10.1161/ATVBAHA.117.309575] [PMID: 28596375]
[21]
Menu, P.; Pellegrin, M.; Aubert, J.F.; Bouzourene, K.; Tardivel, A.; Mazzolai, L.; Tschopp, J. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis., 2011, 2(3), e137-e137.
[http://dx.doi.org/10.1038/cddis.2011.18] [PMID: 21451572]
[22]
Zahid, A.; Li, B.; Kombe, A.J.K.; Jin, T.; Tao, J. Pharmacological inhibitors of the NLRP3 inflammasome. Front. Immunol., 2019, 10, 2538.
[http://dx.doi.org/10.3389/fimmu.2019.02538] [PMID: 31749805]
[23]
Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[24]
Sharma, D.; Kanneganti, T-D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, 213(6), 617-629.
[http://dx.doi.org/10.1083/jcb.201602089] [PMID: 27325789]
[25]
Moon, J-S.; Nakahira, K.; Chung, K-P.; DeNicola, G.M.; Koo, M.J.; Pabón, M.A.; Rooney, K.T.; Yoon, J-H.; Ryter, S.W.; Stout-Delgado, H.; Choi, A.M.K. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med., 2016, 22(9), 1002-1012.
[http://dx.doi.org/10.1038/nm.4153] [PMID: 27455510]
[26]
Karasawa, T.; Kawashima, A.; Usui-Kawanishi, F.; Watanabe, S.; Kimura, H.; Kamata, R.; Shirasuna, K.; Koyama, Y.; Sato-Tomita, A.; Matsuzaka, T.; Tomoda, H.; Park, S-Y.; Shibayama, N.; Shimano, H.; Kasahara, T.; Takahashi, M. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler. Thromb. Vasc. Biol., 2018, 38(4), 744-756.
[http://dx.doi.org/10.1161/ATVBAHA.117.310581] [PMID: 29437575]
[27]
Guo, C.; Chi, Z.; Jiang, D.; Xu, T.; Yu, W.; Wang, Z.; Chen, S.; Zhang, L.; Liu, Q.; Guo, X.; Zhang, X.; Li, W.; Lu, L.; Wu, Y.; Song, B-L.; Wang, D. Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages. Immunity, 2018, 49(5), 842-856.e7.
[http://dx.doi.org/10.1016/j.immuni.2018.08.021] [PMID: 30366764]
[28]
Wang, R.; Wu, W.; Li, W.; Huang, S.; Li, Z.; Liu, R.; Shan, Z.; Zhang, C.; Li, W.; Wang, S. Activation of NLRP3 inflammasome promotes foam cell formation in vascular smooth muscle cells and atherogenesis via HMGB1. J. Am. Heart Assoc., 2018, 7(19), e008596.
[http://dx.doi.org/10.1161/JAHA.118.008596] [PMID: 30371306]
[29]
Hoseini, Z.; Sepahvand, F.; Rashidi, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J. Cell. Physiol., 2018, 233(3), 2116-2132.
[http://dx.doi.org/10.1002/jcp.25930] [PMID: 28345767]
[30]
Varghese, J.F.; Patel, R.; Yadav, U.C.S. Sterol regulatory element binding protein (SREBP) -1 mediates oxidized low-density lipoprotein (oxLDL) induced macrophage foam cell formation through NLRP3 inflammasome activation. Cell. Signal., 2019, 53, 316-326.
[http://dx.doi.org/10.1016/j.cellsig.2018.10.020] [PMID: 30389501]
[31]
Stachon, P.; Heidenreich, A.; Merz, J.; Hilgendorf, I.; Wolf, D.; Willecke, F.; von Garlen, S.; Albrecht, P.; Härdtner, C.; Ehrat, N.; Hoppe, N.; Reinöhl, J.; von Zur Mühlen, C.; Bode, C.; Idzko, M.; Zirlik, A. P2X7 Deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation, 2017, 135(25), 2524-2533.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027400] [PMID: 28377486]
[32]
Karmakar, M.; Katsnelson, M.A.; Dubyak, G.R.; Pearlman, E. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat. Commun., 2016, 7(1), 10555.
[http://dx.doi.org/10.1038/ncomms10555] [PMID: 26877061]
[33]
Xiao, H.; Lu, M.; Lin, T.Y.; Chen, Z.; Chen, G.; Wang, W.C.; Marin, T.; Shentu, T.P.; Wen, L.; Gongol, B.; Sun, W.; Liang, X.; Chen, J.; Huang, H.D.; Pedra, J.H.; Johnson, D.A.; Shyy, J.Y. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation, 2013, 128(6), 632-642.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002714] [PMID: 23838163]
[34]
Zhong, Z.; Liang, S.; Sanchez-Lopez, E.; He, F.; Shalapour, S.; Lin, X.J.; Wong, J.; Ding, S.; Seki, E.; Schnabl, B.; Hevener, A.L.; Greenberg, H.B.; Kisseleva, T.; Karin, M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560(7717), 198-203.
[http://dx.doi.org/10.1038/s41586-018-0372-z] [PMID: 30046112]
[35]
Förstermann, U.; Xia, N.; Li, H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ. Res., 2017, 120(4), 713-735.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[36]
Hakimi, M.; Peters, A.; Becker, A.; Böckler, D.; Dihlmann, S. Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J. Vasc. Surg., 2014, 59(3), 794-803.
[http://dx.doi.org/10.1016/j.jvs.2013.03.048] [PMID: 23790454]
[37]
Paulin, N.; Viola, J.R.; Maas, S.L.; de Jong, R.; Fernandes-Alnemri, T.; Weber, C.; Drechsler, M.; Döring, Y.; Soehnlein, O. Double-strand DNA sensing aim2 inflammasome regulates atherosclerotic plaque vulnerability. Circulation, 2018, 138(3), 321-323.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.033098] [PMID: 30012706]
[38]
Hansson, G.K.; Libby, P.; Tabas, I. Inflammation and plaque vulnerability. J. Intern. Med., 2015, 278(5), 483-493.
[http://dx.doi.org/10.1111/joim.12406] [PMID: 26260307]
[39]
Lutgens, E.; van Suylen, R-J.; Faber, B.C.; Gijbels, M.J.; Eurlings, P.M.; Bijnens, A-P.; Cleutjens, K.B.; Heeneman, S.; Daemen, M.J. Atherosclerotic plaque rupture: Local or systemic process? Arterioscler. Thromb. Vasc. Biol., 2003, 23(12), 2123-2130.
[http://dx.doi.org/10.1161/01.ATV.0000097783.01596.E2] [PMID: 14512372]
[40]
Fidler, T.P.; Xue, C.; Yalcinkaya, M.; Hardaway, B.; Abramowicz, S.; Xiao, T.; Liu, W.; Thomas, D.G.; Hajebrahimi, M.A.; Pircher, J.; Silvestre-Roig, C.; Kotini, A.G.; Luchsinger, L.L.; Wei, Y.; Westerterp, M.; Snoeck, H.W.; Papapetrou, E.P.; Schulz, C.; Massberg, S.; Soehnlein, O.; Ebert, B.; Levine, R.L.; Reilly, M.P.; Libby, P.; Wang, N.; Tall, A.R. The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature, 2021, 592(7853), 296-301.
[http://dx.doi.org/10.1038/s41586-021-03341-5] [PMID: 33731931]
[41]
Pan, J.; Han, L.; Guo, J.; Wang, X.; Liu, D.; Tian, J.; Zhang, M.; An, F. AIM2 accelerates the atherosclerotic plaque progressions in ApoE-/- mice. Biochem. Biophys. Res. Commun., 2018, 498(3), 487-494.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.005] [PMID: 29510138]
[42]
Pan, J.; Lu, L.; Wang, X.; Liu, D.; Tian, J.; Liu, H.; Zhang, M.; Xu, F.; An, F. AIM2 regulates vascular smooth muscle cell migration in atherosclerosis. Biochem. Biophys. Res. Commun., 2018, 497(1), 401-409.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.094] [PMID: 29448104]
[43]
Gotsman, I.; Lichtman, A.H. Targeting interferon-γ to treat atherosclerosis. Circ. Res., 2007, 101(4), 333-334.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.155838] [PMID: 17702979]
[44]
Skoog, T.; Dichtl, W.; Boquist, S.; Skoglund-Andersson, C.; Karpe, F.; Tang, R.; Bond, M.G.; de Faire, U.; Nilsson, J.; Eriksson, P.; Hamsten, A. Plasma tumour necrosis factor-α and early carotid atherosclerosis in healthy middle-aged men. Eur. Heart J., 2002, 23(5), 376-383.
[http://dx.doi.org/10.1053/euhj.2001.2805] [PMID: 11846495]
[45]
Borborema, M.E.A.; Crovella, S.; Oliveira, D.; de Azevêdo Silva, J. Inflammasome activation by NLRP1 and NLRC4 in patients with coronary stenosis. Immunobiology, 2020, 225(3), 151940.
[http://dx.doi.org/10.1016/j.imbio.2020.151940] [PMID: 32276737]
[46]
Schnappauf, O.; Chae, J.J.; Kastner, D.L.; Aksentijevich, I. The pyrin inflammasome in health and disease. Front. Immunol., 2019, 10, 1745.
[http://dx.doi.org/10.3389/fimmu.2019.01745] [PMID: 31456795]
[47]
Minkiewicz, J.; de Rivero Vaccari, J.P.; Keane, R.W. Human astrocytes express a novel NLRP2 inflammasome. Glia, 2013, 61(7), 1113-1121.
[http://dx.doi.org/10.1002/glia.22499] [PMID: 23625868]
[48]
Zhu, S.; Ding, S.; Wang, P.; Wei, Z.; Pan, W.; Palm, N.W.; Yang, Y.; Yu, H.; Li, H.B.; Wang, G.; Lei, X.; de Zoete, M.R.; Zhao, J.; Zheng, Y.; Chen, H.; Zhao, Y.; Jurado, K.A.; Feng, N.; Shan, L.; Kluger, Y.; Lu, J.; Abraham, C.; Fikrig, E.; Greenberg, H.B.; Flavell, R.A. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature, 2017, 546(7660), 667-670.
[http://dx.doi.org/10.1038/nature22967] [PMID: 28636595]
[49]
Khare, S.; Dorfleutner, A.; Bryan, N.B.; Yun, C.; Radian, A.D.; de Almeida, L.; Rojanasakul, Y.; Stehlik, C. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity, 2012, 36(3), 464-476.
[http://dx.doi.org/10.1016/j.immuni.2012.02.001] [PMID: 22361007]
[50]
Levy, M.; Thaiss, C.A.; Zeevi, D.; Dohnalová, L.; Zilberman-Schapira, G.; Mahdi, J.A.; David, E.; Savidor, A.; Korem, T.; Herzig, Y.; Pevsner-Fischer, M.; Shapiro, H.; Christ, A.; Harmelin, A.; Halpern, Z.; Latz, E.; Flavell, R.A.; Amit, I.; Segal, E.; Elinav, E. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell, 2015, 163(6), 1428-1443.
[http://dx.doi.org/10.1016/j.cell.2015.10.048] [PMID: 26638072]
[51]
Istvan, E.S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 2001, 292(5519), 1160-1164.
[http://dx.doi.org/10.1126/science.1059344] [PMID: 11349148]
[52]
Wang, C-Y.; Liu, P-Y.; Liao, J.K. Pleiotropic effects of statin therapy: Molecular mechanisms and clinical results. Trends Mol. Med., 2008, 14(1), 37-44.
[http://dx.doi.org/10.1016/j.molmed.2007.11.004] [PMID: 18068482]
[53]
Satoh, M.; Tabuchi, T.; Itoh, T.; Nakamura, M. NLRP3 inflammasome activation in coronary artery disease: Results from prospective and randomized study of treatment with atorvastatin or rosuvastatin. Clin. Sci. (Lond.), 2014, 126(3), 233-241.
[http://dx.doi.org/10.1042/CS20130043] [PMID: 23944632]
[54]
Xu, J-F.; Washko, G.R.; Nakahira, K.; Hatabu, H.; Patel, A.S.; Fernandez, I.E.; Nishino, M.; Okajima, Y.; Yamashiro, T.; Ross, J.C.; Estépar, R.S.; Diaz, A.A.; Li, H-P.; Qu, J-M.; Himes, B.E.; Come, C.E.; D’Aco, K.; Martinez, F.J.; Han, M.K.; Lynch, D.A.; Crapo, J.D.; Morse, D.; Ryter, S.W.; Silverman, E.K.; Rosas, I.O.; Choi, A.M.K.; Hunninghake, G.M. COPDGene Investigators. Statins and pulmonary fibrosis: The potential role of NLRP3 inflammasome activation. Am. J. Respir. Crit. Care Med., 2012, 185(5), 547-556.
[http://dx.doi.org/10.1164/rccm.201108-1574OC] [PMID: 22246178]
[55]
Mitchell, P.; Marette, A. Statin-induced insulin resistance through inflammasome activation: Sailing between Scylla and Charybdis. Diabetes, 2014, 63(11), 3569-3571.
[http://dx.doi.org/10.2337/db14-1059] [PMID: 25342725]
[56]
Henriksbo, B.D.; Tamrakar, A.K.; Phulka, J.S.; Barra, N.G.; Schertzer, J.D. Statins activate the NLRP3 inflammasome and impair insulin signaling via p38 and mTOR. Am. J. Physiol. Endocrinol. Metab., 2020, 319(1), E110-E116.
[http://dx.doi.org/10.1152/ajpendo.00125.2020] [PMID: 32421368]
[57]
Wu, L-M.; Wu, S-G.; Chen, F.; Wu, Q.; Wu, C-M.; Kang, C-M.; He, X.; Zhang, R-Y.; Lu, Z-F.; Li, X-H.; Xu, Y-J.; Li, L-M.; Ding, L.; Bai, H-L.; Liu, X-H.; Hu, Y-W.; Zheng, L. Atorvastatin inhibits pyroptosis through the lncRNA NEXN-AS1/NEXN pathway in human vascular endothelial cells. Atherosclerosis, 2020, 293, 26-34.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.033] [PMID: 31830726]
[58]
Patrono, C.; García Rodríguez, L.A.; Landolfi, R.; Baigent, C. Low-dose aspirin for the prevention of atherothrombosis. N. Engl. J. Med., 2005, 353(22), 2373-2383.
[http://dx.doi.org/10.1056/NEJMra052717] [PMID: 16319386]
[59]
Zhou, X.; Wu, Y.; Ye, L.; Wang, Y.; Zhang, K.; Wang, L.; Huang, Y.; Wang, L.; Xian, S.; Zhang, Y.; Chen, Y. Aspirin alleviates endothelial gap junction dysfunction through inhibition of NLRP3 inflammasome activation in LPS-induced vascular injury. Acta Pharm. Sin. B, 2019, 9(4), 711-723.
[http://dx.doi.org/10.1016/j.apsb.2019.02.008] [PMID: 31384532]
[60]
De Haro, J.; Bleda, S.; Laime, I.V.; Carballido, B.; Uyaguari, J.; Acin, F. Aspirin-dependent platelet inflammatory inhibition in healthy subjects decreases NLRP-1 inflammasome. Ann. Vasc. Surg., 2019, 59, 244-247.
[http://dx.doi.org/10.1016/j.avsg.2019.02.008] [PMID: 31009712]
[61]
Li, Q.; Tian, Y.; Wang, Z.F.; Liu, S.B.; Mi, W.L.; Ma, H.J.; Wu, G.C.; Wang, J.; Yu, J.; Wang, Y.Q. Involvement of the spinal NALP1 inflammasome in neuropathic pain and aspirin-triggered-15-epi-lipoxin A4 induced analgesia. Neuroscience, 2013, 254, 230-240.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.028] [PMID: 24076348]
[62]
Jones, W.S.; Mulder, H.; Wruck, L.M.; Pencina, M.J.; Kripalani, S.; Muñoz, D.; Crenshaw, D.L.; Effron, M.B.; Re, R.N.; Gupta, K.; Anderson, R.D.; Pepine, C.J.; Handberg, E.M.; Manning, B.R.; Jain, S.K.; Girotra, S.; Riley, D.; DeWalt, D.A.; Whittle, J.; Goldberg, Y.H.; Roger, V.L.; Hess, R.; Benziger, C.P.; Farrehi, P.; Zhou, L.; Ford, D.E.; Haynes, K.; VanWormer, J.J.; Knowlton, K.U.; Kraschnewski, J.L.; Polonsky, T.S.; Fintel, D.J.; Ahmad, F.S.; McClay, J.C.; Campbell, J.R.; Bell, D.S.; Fonarow, G.C.; Bradley, S.M.; Paranjape, A.; Roe, M.T.; Robertson, H.R.; Curtis, L.H.; Sharlow, A.G.; Berdan, L.G.; Hammill, B.G.; Harris, D.F.; Qualls, L.G.; Marquis-Gravel, G.; Modrow, M.F.; Marcus, G.M.; Carton, T.W.; Nauman, E.; Waitman, L.R.; Kho, A.N.; Shenkman, E.A.; McTigue, K.M.; Kaushal, R.; Masoudi, F.A.; Antman, E.M.; Davidson, D.R.; Edgley, K.; Merritt, J.G.; Brown, L.S.; Zemon, D.N.; McCormick, T.E., III; Alikhaani, J.D.; Gregoire, K.C.; Rothman, R.L.; Harrington, R.A.; Hernandez, A.F. ADAPTABLE Team. Comparative effectiveness of aspirin dosing in cardiovascular disease. N. Engl. J. Med., 2021, 384(21), 1981-1990.
[http://dx.doi.org/10.1056/NEJMoa2102137] [PMID: 33999548]
[63]
Tamai, H.; Katoh, O.; Suzuki, S.; Fujii, K.; Aizawa, T.; Takase, S-i.; Kurogane, H.; Nishikawa, H.; Sone, T.; Sakai, K.; Suzuki, T. Impact of tranilast on restenosis after coronary angioplasty: Tranilast restenosis following angioplasty trial (TREAT). Am. Heart J., 1999, 138(5 Pt 1), 968-975.
[http://dx.doi.org/10.1016/S0002-8703(99)70025-6] [PMID: 10539831]
[64]
Nidorf, S.M.; Eikelboom, J.W.; Budgeon, C.A.; Thompson, P.L. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol., 2013, 61(4), 404-410.
[http://dx.doi.org/10.1016/j.jacc.2012.10.027] [PMID: 23265346]
[65]
Nidorf, S.M.; Fiolet, A.T.L.; Mosterd, A.; Eikelboom, J.W.; Schut, A.; Opstal, T.S.J.; The, S.H.K.; Xu, X.F.; Ireland, M.A.; Lenderink, T.; Latchem, D.; Hoogslag, P.; Jerzewski, A.; Nierop, P.; Whelan, A.; Hendriks, R.; Swart, H.; Schaap, J.; Kuijper, A.F.M.; van Hessen, M.W.J.; Saklani, P.; Tan, I.; Thompson, A.G.; Morton, A.; Judkins, C.; Bax, W.A.; Dirksen, M.; Alings, M.; Hankey, G.J.; Budgeon, C.A.; Tijssen, J.G.P.; Cornel, J.H. Thompson, PL Colchicine in Patients with Chronic Coronary Disease. N. Engl. J. Med., 2020, 383, 1838-1847.
[http://dx.doi.org/10.1056/NEJMoa2021372] [PMID: 32865380]
[66]
Marzo-Mas, A.; Barbier, P.; Breuzard, G.; Allegro, D.; Falomir, E.; Murga, J.; Carda, M.; Peyrot, V.; Marco, J.A. Interactions of long-chain homologues of colchicine with tubulin. Eur. J. Med. Chem., 2017, 126, 526-535.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.049] [PMID: 27915168]
[67]
Van Gorp, H.; Saavedra, P.H.; de Vasconcelos, N.M.; Van Opdenbosch, N.; Vande Walle, L.; Matusiak, M.; Prencipe, G.; Insalaco, A.; Van Hauwermeiren, F.; Demon, D.; Bogaert, D.J.; Dullaers, M.; De Baere, E.; Hochepied, T.; Dehoorne, J.; Vermaelen, K.Y.; Haerynck, F.; De Benedetti, F.; Lamkanfi, M. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proc. Natl. Acad. Sci. USA, 2016, 113(50), 14384-14389.
[http://dx.doi.org/10.1073/pnas.1613156113] [PMID: 27911804]
[68]
Fiolet, A.T.L.; Opstal, T.S.J.; Mosterd, A.; Eikelboom, J.W.; Jolly, S.S.; Keech, A.C.; Kelly, P.; Tong, D.C.; Layland, J.; Nidorf, S.M.; Thompson, P.L.; Budgeon, C.; Tijssen, J.G.P.; Cornel, J.H. Efficacy and safety of low-dose colchicine in patients with coronary disease: A systematic review and meta-analysis of randomized trials. Eur. Heart J., 2021, 42(28), 2765-2775.
[69]
Darakhshan, S.; Pour, A.B. Tranilast: A review of its therapeutic applications. Pharmacol. Res., 2015, 91, 15-28.
[http://dx.doi.org/10.1016/j.phrs.2014.10.009] [PMID: 25447595]
[70]
Matsumura, T.; Kugiyama, K.; Sugiyama, S.; Ota, Y.; Doi, H.; Ogata, N.; Oka, H.; Yasue, H. Suppression of atherosclerotic development in Watanabe heritable hyperlipidemic rabbits treated with an oral antiallergic drug, tranilast. Circulation, 1999, 99(7), 919-924.
[http://dx.doi.org/10.1161/01.CIR.99.7.919] [PMID: 10027816]
[71]
Chen, S.; Wang, Y.; Pan, Y.; Liu, Y.; Zheng, S.; Ding, K.; Mu, K.; Yuan, Y.; Li, Z.; Song, H.; Jin, Y.; Fu, J. Novel role for tranilast in regulating nlrp3 ubiquitination, vascular inflammation, and atherosclerosis. J. Am. Heart Assoc., 2020, 9(12), e015513.
[http://dx.doi.org/10.1161/JAHA.119.015513] [PMID: 32476536]
[72]
Huang, Y.; Jiang, H.; Chen, Y.; Wang, X.; Yang, Y.; Tao, J.; Deng, X.; Liang, G.; Zhang, H.; Jiang, W.; Zhou, R. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol. Med., 2018, 10(4), 10.
[http://dx.doi.org/10.15252/emmm.201708689] [PMID: 29531021]
[73]
Tamai, H.; Katoh, K.; Yamaguchi, T.; Hayakawa, H.; Kanmatsuse, K.; Haze, K.; Aizawa, T.; Nakanishi, S.; Suzuki, S.; Suzuki, T.; Takase, S.; Nishikawa, H.; Katoh, O. The impact of tranilast on restenosis after coronary angioplasty: The Second Tranilast Restenosis Following Angioplasty Trial (TREAT-2). Am. Heart J., 2002, 143(3), 506-513.
[http://dx.doi.org/10.1067/mhj.2002.120770] [PMID: 11868058]
[74]
Holmes, D.; Fitzgerald, P.; Goldberg, S.; LaBlanche, J.; Lincoff, A.M.; Savage, M.; Serruys, P.W.; Willerson, J.; Granett, J.R.; Chan, R.; Shusterman, N.H.; Poland, M. The PRESTO (Prevention of restenosis with tranilast and its outcomes) protocol: A double-blind, placebo-controlled trial. Am. Heart J., 2000, 139(1 Pt 1), 23-31.
[http://dx.doi.org/10.1016/S0002-8703(00)90304-1] [PMID: 10618558]
[75]
Coll, R.C.; Robertson, A.A.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; Croker, D.E.; Butler, M.S.; Haneklaus, M.; Sutton, C.E.; Núñez, G.; Latz, E.; Kastner, D.L.; Mills, K.H.; Masters, S.L.; Schroder, K.; Cooper, M.A.; O’Neill, L.A. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med., 2015, 21(3), 248-255.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[76]
Coll, R.C.; Hill, J.R.; Day, C.J.; Zamoshnikova, A.; Boucher, D.; Massey, N.L.; Chitty, J.L.; Fraser, J.A.; Jennings, M.P.; Robertson, A.A.B.; Schroder, K. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol., 2019, 15(6), 556-559.
[http://dx.doi.org/10.1038/s41589-019-0277-7] [PMID: 31086327]
[77]
Zhang, X.; Xu, A.; Lv, J.; Zhang, Q.; Ran, Y.; Wei, C.; Wu, J. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur. J. Med. Chem., 2020, 185, 111822.
[http://dx.doi.org/10.1016/j.ejmech.2019.111822] [PMID: 31699536]
[78]
Primiano, M.J.; Lefker, B.A.; Bowman, M.R.; Bree, A.G.; Hubeau, C.; Bonin, P.D.; Mangan, M.; Dower, K.; Monks, B.G.; Cushing, L.; Wang, S.; Guzova, J.; Jiao, A.; Lin, L-L.; Latz, E.; Hepworth, D.; Hall, J.P. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J. Immunol., 2016, 197(6), 2421-2433.
[http://dx.doi.org/10.4049/jimmunol.1600035] [PMID: 27521339]
[79]
Dempsey, C.; Rubio Araiz, A.; Bryson, K.J.; Finucane, O.; Larkin, C.; Mills, E.L.; Robertson, A.A.B.; Cooper, M.A.; O’Neill, L.A.J.; Lynch, M.A. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun., 2017, 61, 306-316.
[http://dx.doi.org/10.1016/j.bbi.2016.12.014] [PMID: 28003153]
[80]
Chen, L.; Huang, C.F.; Li, Y.C.; Deng, W.W.; Mao, L.; Wu, L.; Zhang, W.F.; Zhang, L.; Sun, Z.J. Blockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma. Cell. Mol. Life Sci., 2018, 75(11), 2045-2058.
[http://dx.doi.org/10.1007/s00018-017-2720-9] [PMID: 29184980]
[81]
Ren, P.; Wu, D.; Appel, R.; Zhang, L.; Zhang, C.; Luo, W.; Robertson, A.A.B.; Cooper, M.A.; Coselli, J.S.; Milewicz, D.M.; Shen, Y.H.; LeMaire, S.A. Targeting the NLRP3 Inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice. J. Am. Heart Assoc., 2020, 9(7), e014044.
[http://dx.doi.org/10.1161/JAHA.119.014044] [PMID: 32223388]
[82]
van Hout, G.P.J.; Bosch, L.; Ellenbroek, G.H.J.M.; de Haan, J.J.; van Solinge, W.W.; Cooper, M.A.; Arslan, F.; de Jager, S.C.A.; Robertson, A.A.B.; Pasterkamp, G.; Hoefer, I.E. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J., 2017, 38(11), 828-836.
[PMID: 27432019]
[83]
Lone, S.H.; Bhat, K.A.; Khuroo, M.A. Arglabin: From isolation to antitumor evaluation. Chem. Biol. Interact., 2015, 240, 180-198.
[http://dx.doi.org/10.1016/j.cbi.2015.08.015] [PMID: 26327249]
[84]
Abderrazak, A.; Couchie, D.; Mahmood, D.F.; Elhage, R.; Vindis, C.; Laffargue, M.; Matéo, V.; Büchele, B.; Ayala, M.R.; El Gaafary, M.; Syrovets, T.; Slimane, M-N.; Friguet, B.; Fulop, T.; Simmet, T.; El Hadri, K.; Rouis, M. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation, 2015, 131(12), 1061-1070.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013730] [PMID: 25613820]
[85]
Youm, Y.H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.D.; Kang, S.; Horvath, T.L.; Fahmy, T.M.; Crawford, P.A.; Biragyn, A.; Alnemri, E.; Dixit, V.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med., 2015, 21(3), 263-269.
[http://dx.doi.org/10.1038/nm.3804] [PMID: 25686106]
[86]
Kong, G.; Liu, J.; Li, R.; Lin, J.; Huang, Z.; Yang, Z.; Wu, X.; Huang, Z.; Zhu, Q.; Wu, X. Ketone metabolite β-hydroxybutyrate ameliorates inflammation after spinal cord injury by inhibiting the NLRP3 inflammasome. Neurochem. Res., 2021, 46(2), 213-229.
[http://dx.doi.org/10.1007/s11064-020-03156-2] [PMID: 33108630]
[87]
Deng, Y.; Xie, M.; Li, Q.; Xu, X.; Ou, W.; Zhang, Y.; Xiao, H.; Yu, H.; Zheng, Y.; Liang, Y.; Jiang, C.; Chen, G.; Du, D.; Zheng, W.; Wang, S.; Gong, M.; Chen, Y.; Tian, R.; Li, T. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate Mitigates HFpEF. Circ. Res., 2021, 128(2), 232-245.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317933] [PMID: 33176578]
[88]
López-Franco, O.; Hernández-Vargas, P.; Ortiz-Muñoz, G.; Sanjuán, G.; Suzuki, Y.; Ortega, L.; Blanco, J.; Egido, J.; Gómez-Guerrero, C. Parthenolide modulates the NF-kappaB-mediated inflammatory responses in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(8), 1864-1870.
[http://dx.doi.org/10.1161/01.ATV.0000229659.94020.53] [PMID: 16741149]
[89]
Wang, Z.; Liu, B.; Zhu, J.; Wang, D.; Wang, Y. Nicotine-mediated autophagy of vascular smooth muscle cell accelerates atherosclerosis via nAChRs/ROS/NF-κB signaling pathway. Atherosclerosis, 2019, 284, 1-10.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.02.008] [PMID: 30856513]
[90]
Juliana, C.; Fernandes-Alnemri, T.; Wu, J.; Datta, P.; Solorzano, L.; Yu, J-W.; Meng, R.; Quong, A.A.; Latz, E.; Scott, C.P.; Alnemri, E.S. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem., 2010, 285(13), 9792-9802.
[http://dx.doi.org/10.1074/jbc.M109.082305] [PMID: 20093358]
[91]
Vora, S.M.; Lieberman, J.; Wu, H. Inflammasome activation at the crux of severe COVID-19. Nat. Rev. Immunol., 2021, 21(11), 694-703.
[http://dx.doi.org/10.1038/s41577-021-00588-x] [PMID: 34373622]
[92]
Kadosh, B.S.; Garshick, M.S.; Gaztanaga, J.; Moore, K.J.; Newman, J.D.; Pillinger, M.; Ramasamy, R.; Reynolds, H.R.; Shah, B.; Hochman, J.; Fishman, G.I.; Katz, S.D. COVID-19 and the heart and vasculature: Novel approaches to reduce virus-induced inflammation in patients with cardiovascular disease. Arterioscler. Thromb. Vasc. Biol., 2020, 40(9), 2045-2053.
[http://dx.doi.org/10.1161/ATVBAHA.120.314513] [PMID: 32687400]
[93]
Sharif, H.; Wang, L.; Wang, W.L.; Magupalli, V.G.; Andreeva, L.; Qiao, Q.; Hauenstein, A.V.; Wu, Z.; Núñez, G.; Mao, Y.; Wu, H. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019, 570(7761), 338-343.
[http://dx.doi.org/10.1038/s41586-019-1295-z] [PMID: 31189953]
[94]
Tang, J.; Tu, S.; Lin, G.; Guo, H.; Yan, C.; Liu, Q.; Huang, L.; Tang, N.; Xiao, Y.; Pope, R.M.; Rajaram, M.V.S.; Amer, A.O.; Ahmer, B.M.; Gunn, J.S.; Wozniak, D.J.; Tao, L.; Coppola, V.; Zhang, L.; Langdon, W.Y.; Torrelles, J.B.; Lipkowitz, S.; Zhang, J. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J. Exp. Med., 2020, 217(4), 217.
[http://dx.doi.org/10.1084/jem.20182091] [PMID: 31999304]
[95]
Chen, J.; Chen, Z.J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature, 2018, 564(7734), 71-76.
[http://dx.doi.org/10.1038/s41586-018-0761-3] [PMID: 30487600]
[96]
Magupalli, V.G.; Negro, R.; Tian, Y.; Hauenstein, A.V.; Di Caprio, G.; Skillern, W.; Deng, Q.; Orning, P.; Alam, H.B.; Maliga, Z.; Sharif, H.; Hu, J.J.; Evavold, C.L.; Kagan, J.C.; Schmidt, F.I.; Fitzgerald, K.A.; Kirchhausen, T.; Li, Y.; Wu, H. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science, 2020, 369(6510), 369.
[http://dx.doi.org/10.1126/science.aas8995] [PMID: 32943500]
[97]
Klück, V.; Jansen, T.L.T.A.; Janssen, M.; Comarniceanu, A.; Efdé, M.; Tengesdal, I.W.; Schraa, K.; Cleophas, M.C.P.; Scribner, C.L.; Skouras, D.B.; Marchetti, C.; Dinarello, C.A.; Joosten, L.A.B. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol., 2020, 2(5), e270-e280.
[http://dx.doi.org/10.1016/S2665-9913(20)30065-5] [PMID: 33005902]
[98]
Jiang, H.; He, H.; Chen, Y.; Huang, W.; Cheng, J.; Ye, J.; Wang, A.; Tao, J.; Wang, C.; Liu, Q.; Jin, T.; Jiang, W.; Deng, X.; Zhou, R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, 214(11), 3219-3238.
[http://dx.doi.org/10.1084/jem.20171419] [PMID: 29021150]
[99]
Misawa, T.; Takahama, M.; Kozaki, T.; Lee, H.; Zou, J.; Saitoh, T.; Akira, S. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol., 2013, 14(5), 454-460.
[http://dx.doi.org/10.1038/ni.2550] [PMID: 23502856]
[100]
Goldberg, E.L. Asher, J.L.; Molony, R.D.; Shaw, A.C.; Zeiss, C.J.; Wang, C.; Morozova-Roche, L.A.; Herzog, R.I.; Iwasaki, A.; Dixit, V.D. β-hydroxybutyrate deactivates neutrophil nlrp3 inflammasome to relieve gout flares. Cell Rep., 2017, 18(9), 2077-2087.
[http://dx.doi.org/10.1016/j.celrep.2017.02.004] [PMID: 28249154]
[101]
Shippy, D.C. Wilhelm, C.; Viharkumar, P.A.; Raife, T.J.; Ulland, T.K. β-Hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. J. Neuroinflammation, 2020, 17(1), 280.
[http://dx.doi.org/10.1186/s12974-020-01948-5] [PMID: 32958021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy