Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

生长抑制剂 4 (ING4) 通过核因子 Kappa-B (NF-kB)/DNA 甲基转移酶 1 (DNMT1) 轴介导的醛脱氢酶 1A2 (ALDH1A2) 调节在口腔鳞状细胞癌中发挥肿瘤抑制作用

卷 22, 期 9, 2022

发表于: 30 June, 2022

页: [771 - 783] 页: 13

弟呕挨: 10.2174/1568009622666220406104732

价格: $65

摘要

背景:据报道,头颈部鳞状细胞癌 (HNSC) 组织中生长抑制剂 4 (ING4) 水平降低,然而,尚不清楚 ING4 是否以及如何参与调节口腔鳞状细胞癌 (OSCC) 的发展。目的:本研究旨在探讨ING4在OSCC中的作用和机制。 方法:在两种OSCC细胞系中,ING4被强制上调或下调,并在体外研究其对OSCC细胞恶性行为的影响。通过免疫共沉淀测量 ING4 上调细胞中 NF-kB p65 的泛素化水平。此外,通过甲基化特异性聚合酶链反应(MSP)测定评估了ING4对ALDH1A2甲基化水平的影响。在裸鼠中观察到ING4在体内OSCC生长中的作用。 结果:我们的结果表明,ING4在OSCC细胞系中的表达低于正常口腔角质形成细胞中的表达。在体外,ING4 过表达抑制 OSCC 细胞系的增殖、迁移和侵袭,而 ING4 沉默表现出相反的结果。我们还证明了 ING4 过表达促进了 P65 的泛素化和降解,并降低了 DNA 甲基转移酶 1 (DNMT1) 的表达和醛脱氢酶 1A2 (ALDH1A2) 的甲基化。此外,p65 的过表达挽救了由 ING4 过表达诱导的恶性行为的抑制。此外,ING4 负向调节体内 OSCC 异种移植肿瘤的生长。 结论:我们的数据证明 ING4 通过 NF-κB/DNMT1/ALDH1A2 轴在体内和体外在 OSCC 中发挥肿瘤抑制作用。

关键词: NG4、NF-κB/P65、DNMT1、ALDH1A2、口腔鳞状细胞癌、恶性表型。

« Previous
图形摘要

[1]
Choi, S.; Myers, J.N. Molecular pathogenesis of oral squamous cell carcinoma: Implications for therapy. J. Dent. Res., 2008, 87(1), 14-32.
[http://dx.doi.org/10.1177/154405910808700104] [PMID: 18096889]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Hannen, E.J.; Riediger, D. The quantification of angiogenesis in relation to metastasis in oral cancer: A review. Int. J. Oral Maxillofac. Surg., 2004, 33(1), 2-7.
[http://dx.doi.org/10.1054/ijom.2003.0433] [PMID: 14690652]
[4]
Irani, S. Distant metastasis from oral cancer: A review and molecular biologic aspects. J. Int. Soc. Prev. Community Dent., 2016, 6(4), 265-271.
[http://dx.doi.org/10.4103/2231-0762.186805] [PMID: 27583211]
[5]
Matsuura, D.; Valim, T.D.; Kulcsar, M.A.V.; Pinto, F.R.; Brandão, L.G.; Cernea, C.R.; Matos, L.L. Risk factors for salvage surgery failure in oral cavity squamous cell carcinoma. Laryngoscope, 2018, 128(5), 1113-1119.
[http://dx.doi.org/10.1002/lary.26935] [PMID: 28988428]
[6]
SHahinas, J; Hysi, D Methods and risk of bias in molecular marker prognosis studies in oral squamous cell carcinoma. Oral Dis., 2018, 24(1-2), 115-119.
[http://dx.doi.org/10.1111/odi.12753] [PMID: 29480595]
[7]
Nanding, A.; Tang, L.; Cai, L.; Chen, H.; Geng, J.; Liu, X.; Ning, X.; Li, X.; Zhang, Q. Low ING4 protein expression detected by paraffin-section immunohistochemistry is associated with poor prognosis in untreated patients with gastrointestinal stromal tumors. Gastric Cancer, 2014, 17(1), 87-96.
[http://dx.doi.org/10.1007/s10120-013-0248-8] [PMID: 23504291]
[8]
Cui, S.; Gao, Y.; Zhang, K.; Chen, J.; Wang, R.; Chen, L. The emerging role of inhibitor of growth 4 as a tumor suppressor in multiple human cancers. Cell. Physiol. Biochem., 2015, 36(2), 409-422.
[http://dx.doi.org/10.1159/000430108] [PMID: 25968091]
[9]
Xie, Y.; Zhang, H.; Sheng, W.; Xiang, J.; Ye, Z.; Yang, J. Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett., 2008, 271(1), 105-116.
[http://dx.doi.org/10.1016/j.canlet.2008.05.050] [PMID: 18789575]
[10]
Gong, A.; Ye, S.; Xiong, E.; Guo, W.; Zhang, Y.; Peng, W.; Shao, G.; Jin, J.; Zhang, Z.; Yang, J.; Gao, J. Autophagy contributes to ING4-induced glioma cell death. Exp. Cell Res., 2013, 319(12), 1714-1723.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.004] [PMID: 23684856]
[11]
Shen, J.C.; Unoki, M.; Ythier, D.; Duperray, A.; Varticovski, L.; Kumamoto, K.; Pedeux, R.; Harris, C.C. Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1. Cancer Res., 2007, 67(6), 2552-2558.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3870] [PMID: 17363573]
[12]
Li, J.; Martinka, M.; Li, G. Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis, 2008, 29(7), 1373-1379.
[http://dx.doi.org/10.1093/carcin/bgn086] [PMID: 18375955]
[13]
Qu, H.; Yin, H.; Yan, S.; Tao, M.; Xie, Y.; Chen, W. Inhibitor of growth 4 suppresses colorectal cancer growth and invasion by inducing G1 arrest, inhibiting tumor angiogenesis and reversing epithelial-mesenchymal transition. Oncol. Rep., 2016, 35(5), 2927-2935.
[http://dx.doi.org/10.3892/or.2016.4626] [PMID: 26936485]
[14]
Garkavtsev, I.; Kozin, S.V.; Chernova, O.; Xu, L.; Winkler, F.; Brown, E.; Barnett, G.H.; Jain, R.K. The candidate tumour suppressor pro-tein ING4 regulates brain tumour growth and angiogenesis. Nature, 2004, 428(6980), 328-332.
[http://dx.doi.org/10.1038/nature02329] [PMID: 15029197]
[15]
Colla, S.; Tagliaferri, S.; Morandi, F.; Lunghi, P.; Donofrio, G.; Martorana, D.; Mancini, C.; Lazzaretti, M.; Mazzera, L.; Ravanetti, L.; Bonomini, S.; Ferrari, L.; Miranda, C.; Ladetto, M.; Neri, T.M.; Neri, A.; Greco, A.; Mangoni, M.; Bonati, A.; Rizzoli, V.; Giuliani, N. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myelo-ma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: Involvement in myeloma-induced angiogenesis. Blood, 2007, 110(13), 4464-4475.
[http://dx.doi.org/10.1182/blood-2007-02-074617] [PMID: 17848618]
[16]
Zhang, X.; Xu, L.S.; Wang, Z.Q.; Wang, K.S.; Li, N.; Cheng, Z.H.; Huang, S.Z.; Wei, D.Z.; Han, Z.G. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Lett., 2004, 570(1-3), 7-12.
[http://dx.doi.org/10.1016/j.febslet.2004.06.010] [PMID: 15251430]
[17]
Wang, R.; Huang, J.; Feng, B.; De, W.; Chen, L. Identification of ING4 (inhibitor of growth 4) as a modulator of docetaxel sensitivity in human lung adenocarcinoma. Mol. Med., 2012, 18(5), 874-886.
[http://dx.doi.org/10.2119/molmed.2011.00230] [PMID: 22460125]
[18]
Ling, C.; Xie, Y.; Zhao, D.; Zhu, Y.; Xiang, J.; Yang, J. Enhanced radiosensitivity of Non-Small-Cell Lung Cancer (NSCLC) by adenovi-rus-mediated ING4 gene therapy. Cancer Gene Ther., 2012, 19(10), 697-706.
[http://dx.doi.org/10.1038/cgt.2012.50] [PMID: 22863759]
[19]
Zhao, Y.; Su, C.; Zhai, H.; Tian, Y.; Sheng, W.; Miao, J.; Yang, J. Synergistic antitumor effect of adenovirus-mediated hING4 gene therapy and (125)I radiation therapy on pancreatic cancer. Cancer Lett., 2012, 316(2), 211-218.
[http://dx.doi.org/10.1016/j.canlet.2011.11.003] [PMID: 22075380]
[20]
Li, X.H.; Kikuchi, K.; Zheng, Y.; Noguchi, A.; Takahashi, H.; Nishida, T.; Masuda, S.; Yang, X.H.; Takano, Y. Downregulation and trans-location of nuclear ING4 is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma. Oral Oncol., 2011, 47(3), 217-223.
[http://dx.doi.org/10.1016/j.oraloncology.2011.01.004] [PMID: 21310648]
[21]
Gudas, L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta, 2012, 1821(1), 213-221.
[http://dx.doi.org/10.1016/j.bbalip.2011.08.002] [PMID: 21855651]
[22]
Bushue, N.; Wan, Y.J. Retinoid pathway and cancer therapeutics. Adv. Drug Deliv. Rev., 2010, 62(13), 1285-1298.
[http://dx.doi.org/10.1016/j.addr.2010.07.003] [PMID: 20654663]
[23]
Tang, X.H.; Gudas, L.J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol., 2011, 6(1), 345-364.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130303] [PMID: 21073338]
[24]
Marcato, P.; Dean, C.A.; Giacomantonio, C.A.; Lee, P.W. Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle, 2011, 10(9), 1378-1384.
[http://dx.doi.org/10.4161/cc.10.9.15486] [PMID: 21552008]
[25]
Vasiliou, V.; Nebert, D.W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum. Genomics, 2005, 2(2), 138-143.
[http://dx.doi.org/10.1186/1479-7364-2-2-138] [PMID: 16004729]
[26]
Seidensaal, K.; Nollert, A.; Feige, A.H.; Muller, M.; Fleming, T.; Gunkel, N.; Zaoui, K.; Grabe, N.; Weichert, W.; Weber, K.J.; Plinkert, P.; Simon, C.; Hess, J. Impaired aldehyde dehydrogenase 1 subfamily member 2A-dependent retinoic acid signaling is related with a mesen-chymal-like phenotype and an unfavorable prognosis of head and neck squamous cell carcinoma. Mol. Cancer, 2015, 14(1), 204.
[http://dx.doi.org/10.1186/s12943-015-0476-0] [PMID: 26634247]
[27]
Kim, H.; Lapointe, J.; Kaygusuz, G.; Ong, D.E.; Li, C.; van de Rijn, M.; Brooks, J.D.; Pollack, J.R. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res., 2005, 65(18), 8118-8124.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4562] [PMID: 16166285]
[28]
Kostareli, E.; Hielscher, T.; Zucknick, M.; Baboci, L.; Wichmann, G.; Holzinger, D.; Mücke, O.; Pawlita, M.; Del Mistro, A.; Boscolo-Rizzo, P.; Da Mosto, M.C.; Tirelli, G.; Plinkert, P.; Dietz, A.; Plass, C.; Weichenhan, D.; Hess, J. Gene promoter methylation signature pre-dicts survival of head and neck squamous cell carcinoma patients. Epigenetics, 2016, 11(1), 61-73.
[http://dx.doi.org/10.1080/15592294.2015.1137414] [PMID: 26786582]
[29]
Ducasse, M.; Brown, M.A. Epigenetic aberrations and cancer. Mol. Cancer, 2006, 5(1), 60.
[http://dx.doi.org/10.1186/1476-4598-5-60] [PMID: 17092350]
[30]
Laird, P.W. Cancer epigenetics. Hum. Mol. Genet., 2005, 14(Spec No 1)(Suppl. 1), R65-R76.
[http://dx.doi.org/10.1093/hmg/ddi113] [PMID: 15809275]
[31]
Paluszczak, J.; Baer-Dubowska, W. Epigenetic diagnostics of cancer--the application of DNA methylation markers. J. Appl. Genet., 2006, 47(4), 365-375.
[http://dx.doi.org/10.1007/BF03194647] [PMID: 17132902]
[32]
Rajabi, H.; Tagde, A.; Alam, M.; Bouillez, A.; Pitroda, S.; Suzuki, Y.; Kufe, D. DNA methylation by DNMT1 and DNMT3b methyltrans-ferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene, 2016, 35(50), 6439-6445.
[http://dx.doi.org/10.1038/onc.2016.180] [PMID: 27212035]
[33]
Hou, Y.; Zhang, Z.; Xu, Q.; Wang, H.; Xu, Y.; Chen, K. Inhibitor of growth 4 induces NFκB/p65 ubiquitin-dependent degradation. Oncogene, 2014, 33(15), 1997-2003.
[http://dx.doi.org/10.1038/onc.2013.135] [PMID: 23624912]
[34]
Shiah, S.G.; Hsiao, J.R.; Chang, H.J.; Hsu, Y.M.; Wu, G.H.; Peng, H.Y.; Chou, S.T.; Kuo, C.C.; Chang, J.Y. MiR-30a and miR-379 modu-late retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J. Biomed. Sci., 2020, 27(1), 46.
[http://dx.doi.org/10.1186/s12929-020-00644-z] [PMID: 32238162]
[35]
Du, Y.; Cheng, Y.; Su, G. The essential role of tumor suppressor gene ING4 in various human cancers and non-neoplastic disorders. Biosci. Rep., 2019, 39(1), 39.
[http://dx.doi.org/10.1042/BSR20180773] [PMID: 30643005]
[36]
Li, M.; Zhu, Y.; Zhang, H.; Li, L.; He, P.; Xia, H.; Zhang, Y.; Mao, C. Delivery of Inhibitor of Growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells. Sci. Rep., 2014, 4(1), 7380.
[http://dx.doi.org/10.1038/srep07380] [PMID: 25490312]
[37]
Xu, M.; Xie, Y.; Sheng, W.; Miao, J.; Yang, J. Adenovirus-mediated ING4 gene transfer in osteosarcoma suppresses tumor growth via induction of apoptosis and inhibition of tumor angiogenesis. Technol. Cancer Res. Treat., 2015, 14(5), 617-626.
[http://dx.doi.org/10.7785/tcrt.2012.500424] [PMID: 24750000]
[38]
Shao, B.; Liu, E. Expression of ING4 is negatively correlated with cellular proliferation and microvessel density in human glioma. Oncol. Lett., 2017, 14(3), 3663-3668.
[http://dx.doi.org/10.3892/ol.2017.6618] [PMID: 28927128]
[39]
Byron, S.A.; Min, E.; Thal, T.S.; Hostetter, G.; Watanabe, A.T.; Azorsa, D.O.; Little, T.H.; Tapia, C.; Kim, S. Negative regulation of NF-κB by the ING4 tumor suppressor in breast cancer. PLoS One, 2012, 7(10)e46823
[http://dx.doi.org/10.1371/journal.pone.0046823] [PMID: 23056468]
[40]
Li, J.; Li, G. Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Res., 2010, 70(24), 10445-10453.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3040] [PMID: 21056991]
[41]
Choi, J.A.; Kwon, H.; Cho, H.; Chung, J.Y.; Hewitt, S.M.; Kim, J.H. ALDH1A2 is a candidate tumor suppressor gene in ovarian cancer. Cancers (Basel), 2019, 11(10), 11.
[http://dx.doi.org/10.3390/cancers11101553] [PMID: 31615043]
[42]
Wu, S.; Xue, W.; Huang, X.; Yu, X.; Luo, M.; Huang, Y.; Liu, Y.; Bi, Z.; Qiu, X.; Bai, S. Distinct prognostic values of ALDH1 isoenzymes in breast cancer. Tumour Biol., 2015, 36(4), 2421-2426.
[http://dx.doi.org/10.1007/s13277-014-2852-6] [PMID: 25582316]
[43]
Touma, S.E.; Perner, S.; Rubin, M.A.; Nanus, D.M.; Gudas, L.J. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem. Pharmacol., 2009, 78(9), 1127-1138.
[http://dx.doi.org/10.1016/j.bcp.2009.06.022] [PMID: 19549509]
[44]
Plass, C.; Pfister, S.M.; Lindroth, A.M.; Bogatyrova, O.; Claus, R.; Lichter, P. Mutations in regulators of the epigenome and their connec-tions to global chromatin patterns in cancer. Nat. Rev. Genet., 2013, 14(11), 765-780.
[http://dx.doi.org/10.1038/nrg3554] [PMID: 24105274]
[45]
Wong, K.K. DNMT1 as a therapeutic target in pancreatic cancer: Mechanisms and clinical implications. Cell Oncol. (Dordr.), 2020, 43(5), 779-792.
[http://dx.doi.org/10.1007/s13402-020-00526-4] [PMID: 32504382]
[46]
Liu, H.; Song, Y.; Qiu, H.; Liu, Y.; Luo, K.; Yi, Y.; Jiang, G.; Lu, M.; Zhang, Z.; Yin, J.; Zeng, S.; Chen, X.; Deng, M.; Jia, X.; Gu, Y.; Chen, D.; Zheng, G.; He, Z. Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis. Cell Death Differ., 2020, 27(3), 966-983.
[http://dx.doi.org/10.1038/s41418-019-0389-3] [PMID: 31296961]
[47]
Wang, Y.; Hu, Y.; Guo, J.; Wang, L. miR-148a-3p suppresses the proliferation and invasion of esophageal cancer by targeting DNMT1. Genet. Test. Mol. Biomarkers, 2019, 23(2), 98-104.
[http://dx.doi.org/10.1089/gtmb.2018.0285] [PMID: 30735457]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy