Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Mechanisms of Compound Sophora flavescens (Kushen) Decoction for the Treatment of Ulcerative Colitis based on Network Pharmacology and Molecular Docking Technology

Author(s): Zijing Peng, Zhuoling Zheng, Min Gao, Li Qin, Lixiong Xiong, Xiaoyan Li* and Jingwen Xie*

Volume 18, Issue 3, 2022

Published on: 09 June, 2022

Page: [228 - 239] Pages: 12

DOI: 10.2174/1573409918666220406103708

Price: $65

Abstract

Background: The compound Sophora flavescenes (Kushen) decoction was found to reduce the inflammatory symptom of Ulcerative Colitis (UC). However, there exists a very limited understanding of the molecular pharmacological mechanisms.

Objective: This study aimed to explore the mechanism of compound Sophora flavescens (Kushen) decoction in treating ulcerative colitis from the perspective of network pharmacology.

Methods: Active components and potential targets of compound Sophora flavescens (Kushen) decoction were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. GeneCards and other databases were used to predict and screen ulcerative colitis-related genes. Cytoscape software was applied to construct the “drugactive component-disease-target” network. GO function and KEGG pathway enrichment analyses revealed the potential pathway of the compound Sophora flavescenes (Kushen) decoction for UC.

Results: After the screening, a total of 124 active ingredients and 163 potential therapeutic targets for UC were obtained from the compound Sophora flavescens (Kushen) decoction. Protein interaction network analysis showed that 15 key targets could be identified for the possible treatment of UC. GO and KEGG analyses showed that the active ingredients in the compound Sophora flavescens (Kushen) decoction were mainly enriched in 2556 biological processes and 172 signaling pathways.

Conclusion: The study showed that the compound Sophora flavescens (Kushen) decoction has therapeutic effects on UC through multi-component, multi-target, and multi-pathway.

Keywords: Compound Sophora flavescens (Kushen) decoction, network pharmacology, ulcerative colitis, molecular docking, traditional Chinese medicine, protein-protein interactions.

Graphical Abstract

[1]
Kornbluth, A.; Sachar, D.B. Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee. Am. J. Gastroenterol., 2010, 105(3), 501-523.
[http://dx.doi.org/10.1038/ajg.2009.727] [PMID: 20068560]
[2]
Nakase, H.; Uchino, M.; Shinzaki, S.; Matsuura, M.; Matsuoka, K.; Kobayashi, T.; Saruta, M.; Hirai, F.; Hata, K.; Hiraoka, S.; Esaki, M.; Sugimoto, K.; Fuji, T.; Watanabe, K.; Nakamura, S.; Inoue, N.; Itoh, T.; Naganuma, M.; Hisamatsu, T.; Watanabe, M.; Miwa, H.; Enomoto, N.; Shimosegawa, T.; Koike, K. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020. J. Gastroenterol., 2021, 56(6), 489-526.
[http://dx.doi.org/10.1007/s00535-021-01784-1] [PMID: 33885977]
[3]
Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet, 2017, 389(10080), 1756-1770.
[http://dx.doi.org/10.1016/S0140-6736(16)32126-2] [PMID: 27914657]
[4]
Liu, W.; Cao, Q.; Zhou, W. Operation timing and prognosis of ulcerative colitis. Chinese J. Inflamm. Bowel Dis., 2017, 1(2), 123-125.
[5]
Fukunaga, K.; Yokoyama, Y.; Kamokozuru, K.; Nagase, K.; Nakamura, S.; Miwa, H.; Matsumoto, T. Adsorptive granulocyte/monocyte apheresis for the maintenance of remission in patients with ulcerative colitis: A prospective randomized, double blind, sham-controlled clinical trial. Gut Liver, 2012, 6(4), 427-433.
[http://dx.doi.org/10.5009/gnl.2012.6.4.427] [PMID: 23170145]
[6]
Singh, S.; Murad, M.H.; Fumery, M.; Dulai, P.S.; Sandborn, W.J. First- and second-line pharmacotherapies for patients with moderate to severely active ulcerative colitis: An updated network meta-analysis. Clin. Gastroenterol. Hepatol., 2020, 18(10), 2179-2191.e6.
[http://dx.doi.org/10.1016/j.cgh.2020.01.008] [PMID: 31945470]
[7]
Le Berre, C.; Roda, G.; Nedeljkovic Protic, M.; Danese, S.; Peyrin-Biroulet, L. Modern use of 5-aminosalicylic acid compounds for ulcera-tive colitis. Expert Opin. Biol. Ther., 2020, 20(4), 363-378.
[http://dx.doi.org/10.1080/14712598.2019.1666101] [PMID: 31498003]
[8]
Tokuda, H.; Harigai, M.; Kameda, H.; Tomono, K.; Takayanagi, N.; Watanabe, A.; Tasaka, S.; Suda, T.; Tateda, K.; Kadota, J. Consensus statements for medical practice: Biological agents and lung disease. [Abridged English translation by the Japanese Respiratory Society Respir. Investig., 2017, 55(3), 229-251.
[http://dx.doi.org/ 10.1016/j.resinv.2017.01.002] [PMID: 28427750]
[9]
López-Sanromán, A.; Esplugues, J.V.; Domènech, E. Pharmacology and safety of tofacitinib in ulcerative colitis. Gastroenterol. Hepatol., 2021, 44(1), 39-48.
[PMID: 32829958]
[10]
Ford, A.C.; Bernstein, C.N.; Khan, K.J.; Abreu, M.T.; Marshall, J.K.; Talley, N.J.; Moayyedi, P. Glucocorticosteroid therapy in inflammato-ry bowel disease: Systematic review and meta-analysis. Am. J. Gastroenterol., 2011, 106(4), 590-599.
[http://dx.doi.org/10.1038/ajg.2011.70] [PMID: 21407179]
[11]
Salice, M.; Rizzello, F.; Calabrese, C.; Calandrini, L.; Gionchetti, P. A current overview of corticosteroid use in active ulcerative colitis. Expert Rev. Gastroenterol. Hepatol., 2019, 13(6), 557-561.
[http://dx.doi.org/10.1080/17474124.2019.1604219] [PMID: 30947569]
[12]
Ye, Q.; Hu, Z.; Yang, M.; Qin, K.; Zhou, Y. Effects and mechanisms of Chinese herbal medicine for ulcerative colitis: Protocol for a sys-tematic review and meta-analysis. Medicine (Baltimore), 2020, 99(16), e19768.
[http://dx.doi.org/10.1097/MD.0000000000019768] [PMID: 32311981]
[13]
Niu, W.; Chen, X.; Xu, R.; Dong, H.; Yang, F.; Wang, Y.; Zhang, Z.; Ju, J. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: A review. Carbohyd. Polym, 2021, 254(117189)
[14]
Wang, Y.; Yang, H.; Chen, L.; Jafari, M.; Tang, J. Network-based modeling of herb combinations in traditional Chinese medicine. Brief. Bioinform., 2021, 22(5), 1-14.
[http://dx.doi.org/10.1093/bib/bbab106] [PMID: 33834186]
[15]
Wen, S. A Network Pharmacology Dissection of Multiscale Mechanisms for Jiaoqi Powder in Treating Ulcerative Colitis; Guangzhou Univer-sity of Chinese Medicine, 2019.
[16]
Fan, H.; Lv, Y.; Li, S.; Tang, Q.; Liu, X.; Shou, Z.; Zhang, L.; Chen, Q.; Deng, S.; Zuo, D.; Wang, W.; Li, H. Traditional Chinese medicine oral preparation useful for treating ulcerative colitis, comprises radix sophorae flavescentis, sanguisorba, Indigo naturalis, liquorice, bletilla striata and pseudo-ginseng 2020.
[17]
Yu, T.; Hu, D.; Chu, S.; Liu, X.; Fan, H. Effect of compound sophorae decoction combined with mesalazine on the treatment of ulcerative colitis and the level of inflammatory factors. Xiandai Shengwu Yixue Jinzhan, 2021, 21(1), 50-53.
[18]
Dong, Y.; Fan, H. Clinical Analysis on 102 Cases of Ulcerative Colitis Treated by Compound Kushen Decoction. Rese. Integrated Trad. Chinese Western Med., 2016, 8(5), 248-250.
[19]
Xu, M.; Fan, H. Clinical and experimental study on compound kushen decoction in treating ulcerative colitis The 14th China Annual Conference on Basic Theory of Integrated Traditional Chinese and Western Medicine, China Tianjin, 2018, p. 9.
[20]
Liu, B.; Shi, R.B. Constituents in the alkaloid fraction of Kushen decoction. Zhongguo Zhongyao Zazhi, 2006, 31(7), 557-560.
[PMID: 16780157]
[21]
Wu, S.; Chen, S.; You, P.; Hong, Z.; Duan, X.; Fan, H. Active components of Fufang Kushen decoction for ulcerative colitis. Central South Pharmacy, 2017, 15(6), 741-744.
[22]
Wang, X.; Hong, Z.; Wu, S.; Duan, X.; Fan, H. HPLC determination of matrine and oxymatrine in compound Kushen decoction. Central South Pharmacy, 2017, 15(10), 1426-1429.
[23]
Wang, X.; Hong, Z.; Duan, X. A Study on the Fingerprint of the Effective Part of Compound Kushen Decoction. J. Hunan Uni. Chinese Medi., 2018, 38(7), 738-742.
[24]
Hong, Z.; Wu, H.; Yang, Y.; Liu, Y.; Fan, H.; Duan, X. Determination of three alkaloids in fufang kushen decoction based on LC-MS/MS. J. Hubei Uni. Chinese Medi., 2018, 20(2), 39-42.
[25]
Hong, Z. Component Analysis and Metabolomics Study of Fufang Kushen Decotion against Ulcerative Colitis; Hubei University of Chinese Medicine, 2019.
[26]
Cai, Q.; Fan, H. Determination of matrine,oxymatrineand in compound kushen decoction and the changes of serum concentration by LC-MS/MS. J. Hubei Uni. Chin. Med., 2019, 4, 42-45.
[27]
Zhuang, Y.; Cai, B.; Zhang, Z. Application progress of network pharmacology in Tradtional Chinese Medicine Research. J. Nanjing Uni. Tradt. Chinese Med., 2021, 37(1), 156-160.
[28]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A data-base of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(13), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[29]
Chen, D.; Meng, J.; Liu, J.; Zhao, Y.; Wang, J. Network pharmacology-based study on mechanism of codonopsis pilosula enhancing im-mune function. Zhonghua Zhongyiyao Xuekan, 2020, 38(02), 192-195, 296-297.
[30]
Wang, H.; Kang, X.; Zhu, Y.; Lai, P.; Yang, Y. Potential molecular mechanism of atractylodes macrocephala in the treatment of ulcerative colitis based on network pharmacology. J. Zhejiang Chinese Med. Uni., 2020, 44(09), 916-923. 928.
[31]
Meng, Z.; Liu, X.; Wu, J.; Zhou, W.; Wang, K.; Jing, Z.; Liu, S.; Ni, M.; Zhang, X. Mechanisms of compound kushen injection for the treatment of lung cancer based on network pharmacology. Evid.-based Compl. Alt., 2019, 2019(4637839), 1-15.
[32]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[33]
Al-Rasheed, N.M.; Fadda, L.M.; Attia, H.A.; Ali, H.M.; Al-Rasheed, N.M. Quercetin inhibits sodium nitrite-induced inflammation and apoptosis in different rats organs by suppressing Bax, HIF1-α, TGF-β, Smad-2, and AKT pathways. J. Biochem. Mol. Toxicol., 2017, 31(5), vii7-vii8.
[http://dx.doi.org/10.1002/jbt.21883] [PMID: 28000380]
[34]
Liu, F.; Zhou, B.; Zhang, X.; Liu, X.; Chen, F.; Liu, Y.; Zhao, H.; Liu, D. Effects of oxymatrine on energy metabolism in colitis rats. Lishizhen Med. Materia Medica Res., 2019, 30(10), 29-32.
[35]
Qu, Y.; Li, X.; Xu, F.; Zhao, S.; Wu, X.; Wang, Y.; Xie, J. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB Axis. Front. Immunol., 2021, 12, 679897.
[http://dx.doi.org/10.3389/fimmu.2021.679897] [PMID: 34367139]
[36]
Li, Y.; Shen, L. Effect of luteolin on ulcerative colitis in mice. Chin. J. Exp. Surg., 2018, 35(03), 453-456.
[37]
Feng, S.; Ning, K.; Shao, P.; Ren, G.; Sun, P.; Luo, Z. Research on the β-sitosterol and Stigmasterol Therapeutic Effect of Acute Colitis in Mice. J. Chinese Cereals Oils Asso., 2018, 33(12), 80-86.
[38]
Di, Wang Liu, L.; Liu, X. Evaluation of the active ingredients and potential targets of radix sophorae flavescentis-radix sanguisorbae in the treatment of ulcerative colitis with a network pharmacology approach. World Chinese Med., 2021, 16(16), 2401-2407.
[39]
Sun, W.; Zhang, Z.; Piao, D. Research progress of NF-κB signaling pathway inhibition on colitis and inflammation-associated colon cancer. Med. Recapitulate, 2020, 26(8), 1521-1525.
[40]
Saito, S.; Kato, J.; Hiraoka, S.; Horii, J.; Suzuki, H.; Higashi, R.; Kaji, E.; Kondo, Y.; Yamamoto, K. DNA methylation of colon mucosa in ulcerative colitis patients: Correlation with inflammatory status. Inflamm. Bowel Dis., 2011, 17(9), 1955-1965.
[http://dx.doi.org/10.1002/ibd.21573] [PMID: 21830274]
[41]
Huang, X.L.; Zheng, Y.X.; Liao, Z.B.; Yin, J.; Gan, H.T. Effects of PI3K signaling pathway on pathogenesis of ulcerative colitis. Sichuan Da Xue Xue Bao Yi Xue Ban (Medical Science Edition),, 2008, 39(3), 364-367.
[PMID: 18575316]
[42]
Camps, M.; Rückle, T.; Ji, H.; Ardissone, V.; Rintelen, F.; Shaw, J.; Ferrandi, C.; Chabert, C.; Gillieron, C.; Françon, B.; Martin, T.; Greten-er, D.; Perrin, D.; Leroy, D.; Vitte, P.A.; Hirsch, E.; Wymann, M.P.; Cirillo, R.; Schwarz, M.K.; Rommel, C. Blockade of PI3Kgamma sup-presses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat. Med., 2005, 11(9), 936-943.
[http://dx.doi.org/10.1038/nm1284] [PMID: 16127437]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy