Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

DFT Study of the Possible Reaction Path for Radical Promoted Esterification Mechanism of Free Fatty Acids of Soapnut Oil for the Production of Biodiesel

Author(s): Naila Ghani, Naveen Kosar, Sana Sadaf*, Tariq Mahmood, Muhammad Khalid, Khurshid Ayub*, Javed Iqbal* and Sadia Noor

Volume 19, Issue 11, 2022

Published on: 02 June, 2022

Page: [1023 - 1033] Pages: 11

DOI: 10.2174/1570178619666220406045819

Price: $65

conference banner
Abstract

Esterification of higher free fatty acids content by using a photo-catalyst has recently been proved as the most efficient method for the pretreatment of non-edible oil to synthesize biodiesel.

Methods: In the current study, mechanistic details of photo-catalyzed esterification reaction for four different fatty acids through density functional theory (DFT) calculations are explored and compared with un-catalyzed esterification reaction.

Results: Revealed that the presence of photo-catalyst lowers the activation barrier and the structure of fatty acid has no significant effect on its reactivity. Thermodynamic data also revealed that the presence of photo-catalyst lowered the activation energy from 51.67 kcal/mol to 0.7495 kcal/mol. Furthermore, Gibbs free energy changes (ΔrGm Ø) and molar enthalpy changes (ΔrHm Ø) of the photo-catalyzed esterification reaction are negative, indicating that it is a spontaneous exothermic reaction. On the other hand, free fatty acids esterification in the absence of a catalyst is a kinetically unfavorable process with positive values of ΔrGm Ø and ΔrHm Ø.

Conclusion: Our findings theoretically clarify the mechanism of the photo-catalyzed esterification reaction of FFA present in non-edible oil, which facilitates the process of biodiesel production.

Keywords: Esterification, density functional theory (DFT), reaction mechanism, soaf nut, biodiesel, photocatalyst.

Graphical Abstract

[1]
Carlucci, C.; Degennaro, L.; Luisi, R. Catalysts, 2019, 9(1), 75.
[http://dx.doi.org/10.3390/catal9010075]
[2]
Alam, J.; Wadud, Z.; Polak, J. Int. J. Environ. Sci. Technol., 2013, 10(5), 1075-1082.
[http://dx.doi.org/10.1007/s13762-013-0240-1]
[3]
Solé, J.; García-Olivares, A.; Turiel, A. Ballabrera-Poy. J. Renew. Energy, 2018, 116, 258-271.
[http://dx.doi.org/10.1016/j.renene.2017.09.035]
[4]
Singh, S.; Jain, S.; Venkateswaran, P.; Tiwari, A.K.; Nouni, M.R.; Pandey, J.K.; Goel, S. Renew. Sustain. Energy Rev., 2015, 51, 623-633.
[http://dx.doi.org/10.1016/j.rser.2015.06.040]
[5]
Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D-T.; Show, P-L. BMC Energy, 2019, 1(1), 4.
[http://dx.doi.org/10.1186/s42500-019-0004-7]
[6]
(a) Navas, M.B.; Lick, I.D.; Bolla, P.A.; Casella, M.L.; Ruggera, J.F. Chem. Eng. Sci., 2018, 187, 444-454.
[http://dx.doi.org/10.1016/j.ces.2018.04.068]
(b) Ramachandran, K.; Suganya, T.; Gandhi, N.N.; Renganathan, S. Renew. Sustain. Energy Rev., 2013, 22, 410-418.
[http://dx.doi.org/10.1016/j.rser.2013.01.057]
[7]
(a) Teo, S.H.; Rashid, U.; Taufiq-Yap, Y.H. Fuel, 2014, 136, 244-252.
[http://dx.doi.org/10.1016/j.fuel.2014.07.062]
(b) Eevera, T.; Rajendran, K.; Saradha, S. Renew. Energy, 2009, 34(3), 762-765.
[http://dx.doi.org/10.1016/j.renene.2008.04.006]
[8]
Sathya, T.; Manivannan, A. Int. J. Eng. Res. Appl., 2013, 3, 488-492.
[9]
(a) Pua, F.L.; Fang, Z.; Zakaria, S.; Guo, F.; Chia, C.H. Biotechnol. Biofuels, 2011, 4(1), 56.
[http://dx.doi.org/10.1186/1754-6834-4-56] [PMID: 22145867]
(b) Alhassan, F.H.; Yunus, R.; Rashid, U.; Sirat, K.; Islam, A.; Lee, H.; Taufiq-Yap, Y.H. Appl. Catal. A Gen., 2013, 456, 182-187.
[http://dx.doi.org/10.1016/j.apcata.2013.02.019]
[10]
Manique, M.C.; Silva, A.P.; Alves, A.K.; Bergmann, C.P. Mater. Sci. Eng. B, 2016, 206, 17-21.
[http://dx.doi.org/10.1016/j.mseb.2016.01.001]
[11]
Corro, G.; Pal, U.; Tellez, N. Appl. Catal. B, 2013, 129, 39-47.
[http://dx.doi.org/10.1016/j.apcatb.2012.09.004]
[12]
Wang, K.; Zhang, X.; Zhang, J.; Zhang, Z.; Fan, C.; Han, P. J. Mol. Graph. Model., 2016, 66, 41-46.
[http://dx.doi.org/10.1016/j.jmgm.2016.03.002] [PMID: 27023919]
[13]
Lawal, M.M.; Govender, T.; Maguire, G.E.; Kruger, H.G.; Honarparvar, B. Int. J. Quantum Chem., 2018, 118(4), e25497.
[http://dx.doi.org/10.1002/qua.25497]
[14]
(a) Becke, A.D. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
(b) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[15]
(a) Frisch, M.J.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision D. 01; Gaussian. Inc.: Wallingford, CT, 2009.
(b) Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView 5.0. 8; Gaussian Inc, 2008, p. 340.
[16]
da Silva, A.C.H.; Kuhnen, C.A.; da Silva, S.C.; Dall’Oglio, E.L.; de Sousa, P.T. Jr Fuel, 2013, 107, 387-393.
[http://dx.doi.org/10.1016/j.fuel.2012.11.028]
[17]
Dos Santos, V.M.L.; Da Silva, J.A.B.; Stragevitch, L.; Longo, R.L. Fuel, 2011, 90(2), 811-817.
[http://dx.doi.org/10.1016/j.fuel.2010.09.017]
[18]
Carey, F.A.; Sundberg, R.J. Advanced organic chemistry: part A: structure and mechanisms; Springer Science & Business Media, 2007.
[19]
Kastratović, V; Bigović, M. Chem. Ind. Chem. Eng. Q., 2018, 24(3), 283-291.
[20]
Asakuma, Y.; Maeda, K.; Kuramochi, H.; Fukui, K. Fuel, 2009, 88(5), 786-791.
[http://dx.doi.org/10.1016/j.fuel.2008.10.045]
[21]
Sharma, A.; Dalai, A.K.; Chaurasia, S.P. Eur. Int. J. Sci. Technol., 2015, 4, 128-136.
[22]
Bankole, K.S.; Aurand, G.A. Res. J. Appl. Sci. Eng. Technol., 2014, 7(22), 4671-4684.
[http://dx.doi.org/10.19026/rjaset.7.850]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy