Abstract
The 14-3-3 family of proteins was originally identified in 1967 as simply an abundant brain protein. However ittook almost 25 years before the ubiquitous role of 14-3-3 in cell biology was recognized when it was found to interactwith several signalling and proto-oncogene proteins. Subsequently 14-3-3 proteins were the first protein recognized tobind a discrete phosphoserine/threonine-binding motifs. In mammals the 14-3-3 protein family is comprised of seven ho-mologous isoforms. The 14-3-3 family members are expressed in all eukaryotes and although no single conserved func-tion of the 14-3-3s is apparent, their ability to bind other proteins seems a crucial characteristic. To date more than 300binding partners have been identified, of which most are phosphoproteins. Consequently, it has become clear that 14-3-3proteins are involved in the regulation of most cellular processes, including several metabolic pathways, redox-regulation,transcription, RNA processing, protein synthesis, protein folding and degradation, cell cycle, cytoskeletal organization andcellular trafficking. In this review we include recent reports on the regulation of 14-3-3 by phosphorylation, and discussthe possible functional significance of the existence of distinct 14-3-3 isoforms in light of recent proteomics studies. Inaddition we discuss 14-3-3 interaction as a possible drug target.
Keywords: 14-3-3, protein-protein interaction, phosphorylation, isoform diversity, signal transduction, proteomics
Current Pharmaceutical Biotechnology
Title: Does Isoform Diversity Explain Functional Differences in the 14-3-3Protein Family?
Volume: 7 Issue: 3
Author(s): E. Kjarland, T. J. Keen and R. Kleppe
Affiliation:
Keywords: 14-3-3, protein-protein interaction, phosphorylation, isoform diversity, signal transduction, proteomics
Abstract: The 14-3-3 family of proteins was originally identified in 1967 as simply an abundant brain protein. However ittook almost 25 years before the ubiquitous role of 14-3-3 in cell biology was recognized when it was found to interactwith several signalling and proto-oncogene proteins. Subsequently 14-3-3 proteins were the first protein recognized tobind a discrete phosphoserine/threonine-binding motifs. In mammals the 14-3-3 protein family is comprised of seven ho-mologous isoforms. The 14-3-3 family members are expressed in all eukaryotes and although no single conserved func-tion of the 14-3-3s is apparent, their ability to bind other proteins seems a crucial characteristic. To date more than 300binding partners have been identified, of which most are phosphoproteins. Consequently, it has become clear that 14-3-3proteins are involved in the regulation of most cellular processes, including several metabolic pathways, redox-regulation,transcription, RNA processing, protein synthesis, protein folding and degradation, cell cycle, cytoskeletal organization andcellular trafficking. In this review we include recent reports on the regulation of 14-3-3 by phosphorylation, and discussthe possible functional significance of the existence of distinct 14-3-3 isoforms in light of recent proteomics studies. Inaddition we discuss 14-3-3 interaction as a possible drug target.
Export Options
About this article
Cite this article as:
Kjarland E., Keen J. T. and Kleppe R., Does Isoform Diversity Explain Functional Differences in the 14-3-3Protein Family?, Current Pharmaceutical Biotechnology 2006; 7 (3) . https://dx.doi.org/10.2174/138920106777549777
DOI https://dx.doi.org/10.2174/138920106777549777 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers