Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Potential Neuroprotective Effect of Cannabinoids in COVID-19 Patients

Author(s): José Luis Cortes-Altamirano, Ariadna Yáñez-Pizaña, Samuel Reyes-Long, González-Maciel Angélica, Cindy Bandala, Herlinda Bonilla-Jaime and Alfonso Alfaro-Rodríguez*

Volume 22, Issue 16, 2022

Published on: 13 May, 2022

Page: [1326 - 1345] Pages: 20

DOI: 10.2174/1568026622666220405143003

Price: $65

conference banner
Abstract

The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established. However, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease and indirect inflammatory/ autoimmune origin mechanisms. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potentially promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review, we addresses the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a reduction of viral replication, and a reduction of pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.

Keywords: Cannabinoids, COVID-19, SARS-CoV-2, Neuroprotection, CB2, CB1.

Graphical Abstract

[1]
Al-Ramadan, A.; Rabab’h, O.; Shah, J.; Gharaibeh, A. Acute and post-acute neurological complications of COVID-19. Neurol. Int., 2021, 13(1), 102-119.
[http://dx.doi.org/10.3390/neurolint13010010] [PMID: 33803475]
[2]
WHO. WHO Coronavirus (COVID-19) Dashboard 2022. Available from: https://covid19.who.int/(Accessed on: February 1, 2022).
[3]
Duong, L.; Xu, P.; Liu, A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infectionin downtown los angeles. Brain Behav. Immun., 2020, 87, 33.
[http://dx.doi.org/10.1016/j.bbi.2020.04.024] [PMID: 32305574]
[4]
Huang, Y.H.; Jiang, D.; Huang, J.T. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav. Immun., 2020, 87, 149.
[http://dx.doi.org/10.1016/j.bbi.2020.05.012] [PMID: 32387508]
[5]
Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci., 2020, 11(7), 995-998.
[http://dx.doi.org/10.1021/acschemneuro.0c00122] [PMID: 32167747]
[6]
Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol., 2020, 92(7), 699-702.
[http://dx.doi.org/10.1002/jmv.25915] [PMID: 32314810]
[7]
Benameur, K.; Agarwal, A.; Auld, S.C.; Butters, M.P.; Webster, A.S.; Ozturk, T.; Howell, J.C.; Bassit, L.C.; Velasquez, A.; Schinazi, R.F.; Mullins, M.E.; Hu, W.T. Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and Coronavirus Disease, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis., 2020, 26(9), 2016-2021.
[http://dx.doi.org/10.3201/eid2609.202122] [PMID: 32487282]
[8]
Neumann, B.; Schmidbauer, M.L.; Dimitriadis, K.; Otto, S.; Knier, B.; Niesen, W-D.; Hosp, J.A.; Günther, A.; Lindemann, S.; Nagy, G.; Steinberg, T.; Linker, R.A.; Hemmer, B.; Bösel, J. Cerebrospinal fluid findings in COVID-19 patients with neurological symptoms. J. Neurol. Sci., 2020, 418, 117090.
[http://dx.doi.org/10.1016/j.jns.2020.117090] [PMID: 32805440]
[9]
Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; Vivekanandam, V.; Khoo, A.; Geraldes, R.; Chinthapalli, K.; Boyd, E.; Tuzlali, H.; Price, G.; Christofi, G.; Morrow, J.; McNamara, P.; McLoughlin, B.; Lim, S.T.; Mehta, P.R.; Levee, V.; Keddie, S.; Yong, W.; Trip, S.A.; Foulkes, A.J.M.; Hotton, G.; Miller, T.D.; Everitt, A.D.; Carswell, C.; Davies, N.W.S.; Yoong, M.; Attwell, D.; Sreedharan, J.; Silber, E.; Schott, J.M.; Chandratheva, A.; Perry, R.J.; Simister, R.; Checkley, A.; Longley, N.; Farmer, S.F.; Carletti, F.; Houlihan, C.; Thom, M.; Lunn, M.P.; Spillane, J.; Howard, R.; Vincent, A.; Werring, D.J.; Hoskote, C.; Jäger, H.R.; Manji, H.; Zandi, M.S. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain, 2020, 143(10), 3104-3120.
[http://dx.doi.org/10.1093/brain/awaa240] [PMID: 32637987]
[10]
Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol., 2020, 215, 108427.
[http://dx.doi.org/10.1016/j.clim.2020.108427] [PMID: 32325252]
[11]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[12]
Collantes, M.E.V.; Espiritu, A.I.; Sy, M.C.C.; Anlacan, V.M.M.; Jamora, R.D.G. Neurological manifestations in COVID-19 infection: A systematic review and meta-analysis. Can. J. Neurol. Sci., 2021, 48(1), 66-76.
[http://dx.doi.org/10.1017/cjn.2020.146] [PMID: 32665054]
[13]
Chen, X.; Laurent, S.; Onur, O.A.; Kleineberg, N.N.; Fink, G.R.; Schweitzer, F.; Warnke, C. A systematic review of neurological symptoms and complications of COVID-19. J. Neurol., 2021, 268(2), 392-402.
[http://dx.doi.org/10.1007/s00415-020-10067-3] [PMID: 32691236]
[14]
Li, Y.; Wang, M.; Zhou, Y. Acute cerebrovascular disease following COVID-19: A single center, retrospective, observational study. SSRN Electron J., 2020, 5(3), 279-284.
[http://dx.doi.org/10.1136/svn-2020-000431]
[15]
Li, Y.C.; Bai, W.Z.; Hashikawa, T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol., 2020, 92(6), 552-555.
[http://dx.doi.org/10.1002/jmv.25728]
[16]
Beghi, E.; Feigin, V.; Caso, V.; Santalucia, P.; Logroscino, G. COVID-19 infection and neurological complications: Present findings and future predictions. Neuroepidemiology, 2020, 54(5), 364-369.
[http://dx.doi.org/10.1159/000508991] [PMID: 32610334]
[17]
Wei, H.; Yin, H.; Huang, M.; Guo, Z. The 2019 novel cornoavirus pneumonia with onset of oculomotor nerve palsy: A case study. J. Neurol., 2020, 267(5), 1550-1553.
[http://dx.doi.org/10.1007/s00415-020-09773-9] [PMID: 32100124]
[18]
Gane, S.B.; Kelly, C.; Hopkins, C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology, 2020, 58(3), 299-301.
[http://dx.doi.org/10.4193/Rhin20.114] [PMID: 32240279]
[19]
Dewey, W.L. Cannabinoid pharmacology. Pharmacol. Rev., 1986, 38(2), 151-178.
[PMID: 3529128]
[20]
Howlett, A.C.; Bidaut-Russell, M.; Devane, W.A.; Melvin, L.S.; Johnson, M.R.; Herkenham, M. The cannabinoid receptor: Biochemical, anatomical and behavioral characterization. Trends Neurosci., 1990, 13(10), 420-423.
[http://dx.doi.org/10.1016/0166-2236(90)90124-S] [PMID: 1700516]
[21]
Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; Mechoulam, R.; Pertwee, R.G. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54(2), 161-202.
[http://dx.doi.org/10.1124/pr.54.2.161] [PMID: 12037135]
[22]
Devane, W.A.; Axelrod, J. Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proc. Natl. Acad. Sci. USA, 1994, 91(14), 6698-6701.
[http://dx.doi.org/10.1073/pnas.91.14.6698] [PMID: 8022836]
[23]
Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 1992, 258(5090), 1946-1949.
[http://dx.doi.org/10.1126/science.1470919] [PMID: 1470919]
[24]
Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 1997, 74(2), 129-180.
[http://dx.doi.org/10.1016/S0163-7258(97)82001-3] [PMID: 9336020]
[25]
Pertwee, R.G. Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr. Med. Chem., 2010, 17(14), 1360-1381.
[http://dx.doi.org/10.2174/092986710790980050] [PMID: 20166927]
[26]
Fernández-Ruiz, J.; García, C.; Sagredo, O.; Gómez-Ruiz, M.; de Lago, E. The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin. Ther. Targets, 2010, 14(4), 387-404.
[http://dx.doi.org/10.1517/14728221003709792] [PMID: 20230193]
[27]
Fernández-Ruiz, J.; Moro, M.A.; Martínez-Orgado, J. Cannabinoids in neurodegenerative disorders and stroke/brain trauma: From preclinical models to clinical applications. Neurotherapeutics, 2015, 12(4), 793-806.
[http://dx.doi.org/10.1007/s13311-015-0381-7] [PMID: 26260390]
[28]
Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med., 2020, 26(4), 450-452.
[http://dx.doi.org/10.1038/s41591-020-0820-9]
[29]
Niazkar, H.R.; Zibaee, B.; Nasimi, A.; Bahri, N. The neurological manifestations of COVID-19: A review article. Neurol. Sci., 2020, 41(7), 1667-1671.
[http://dx.doi.org/10.1007/s10072-020-04486-3] [PMID: 32483687]
[30]
Bulfamante, G.; Bocci, T.; Falleni, M.; Campiglio, L.; Coppola, S.; Tosi, D.; Chiumello, D.; Priori, A. Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung. J. Neurol., 2021, 268(12), 4486-4491.
[http://dx.doi.org/10.1007/s00415-021-10604-8] [PMID: 34003372]
[31]
Bulfamante, G.; Chiumello, D.; Canevini, M.P.; Priori, A.; Mazzanti, M.; Centanni, S.; Felisati, G. First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol., 2020, 86(6), 678-679.
[http://dx.doi.org/10.23736/S0375-9393.20.14772-2] [PMID: 32401000]
[32]
Bohmwald, K.; Gálvez, N.M.S.; Ríos, M.; Kalergis, A.M. Neurologic alterations due to respiratory virus infections. Front. Cell. Neurosci., 2018, 12, 386.
[http://dx.doi.org/10.3389/fncel.2018.00386] [PMID: 30416428]
[33]
Bandala, C.; Cortes-Altamirano, J.L.; Reyes-Long, S.; Lara-Padilla, E.; Ilizaliturri-Flores, I.; Alfaro-Rodríguez, A. Putative mechanism of neurological damage in COVID-19 infection. Acta Neurobiol. Exp. (Warsz.), 2021, 81(1), 69-79.
[http://dx.doi.org/10.21307/ane-2021-008] [PMID: 33949163]
[34]
Jackson, L.; Eldahshan, W.; Fagan, S.C.; Ergul, A. Within the brain: The renin angiotensin system. Int. J. Mol. Sci., 2018, 19(3), E876.
[http://dx.doi.org/10.3390/ijms19030876] [PMID: 29543776]
[35]
Dubé, M.; Le Coupanec, A.; Wong, A.H.M.; Rini, J.M.; Desforges, M.; Talbot, P.J. Axonal transport enables neuron-to-neuron propagation of human Coronavirus OC43. J. Virol., 2018, 92(17), e00404-e00418.
[http://dx.doi.org/10.1128/JVI.00404-18] [PMID: 29925652]
[36]
Jacomy, H.; Talbot, P.J. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology, 2003, 315(1), 20-33.
[http://dx.doi.org/10.1016/S0042-6822(03)00323-4] [PMID: 14592756]
[37]
Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; Lehmann, M.; Hassan, O.; Aschman, T.; Schumann, E.; Chua, R.L.; Conrad, C.; Eils, R.; Stenzel, W.; Windgassen, M.; Rößler, L.; Goebel, H.H.; Gelderblom, H.R.; Martin, H.; Nitsche, A.; Schulz-Schaeffer, W.J.; Hakroush, S.; Winkler, M.S.; Tampe, B.; Scheibe, F.; Körtvélyessy, P.; Reinhold, D.; Siegmund, B.; Kühl, A.A.; Elezkurtaj, S.; Horst, D.; Oesterhelweg, L.; Tsokos, M.; Ingold-Heppner, B.; Stadelmann, C.; Drosten, C.; Corman, V.M.; Radbruch, H.; Heppner, F.L. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci., 2021, 24(2), 168-175.
[http://dx.doi.org/10.1038/s41593-020-00758-5] [PMID: 33257876]
[38]
Dey, J.; Alam, M.T.; Chandra, S.; Gupta, J.; Ray, U.; Srivastava, A.K.; Tripathi, P.P. Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. J. Med. Virol., 2021, 93(3), 1296-1303.
[http://dx.doi.org/10.1002/jmv.26521] [PMID: 32964419]
[39]
Khan, S.; Gomes, J. Neuropathogenesis of SARS-CoV-2 infection. eLife, 2020, 9, 1-9.
[http://dx.doi.org/10.7554/eLife.59136] [PMID: 32729463]
[40]
Lima, M.; Siokas, V.; Aloizou, A.M.; Liampas, I.; Mentis, A.A.; Tsouris, Z.; Papadimitriou, A.; Mitsias, P.D.; Tsatsakis, A.; Bogdanos, D.P.; Baloyannis, S.J.; Dardiotis, E. Unraveling the possible routes of SARS-COV-2 invasion into the Central Nervous System. Curr. Treat. Options Neurol., 2020, 22(11), 37.
[http://dx.doi.org/10.1007/s11940-020-00647-z] [PMID: 32994698]
[41]
Pouga, L. Encephalitic syndrome and anosmia in COVID-19: Do these clinical presentations really reflect SARS-CoV-2 neurotropism? A theory based on the review of 25 COVID-19 cases. J. Med. Virol., 2021, 93(1), 550-558.
[http://dx.doi.org/10.1002/jmv.26309] [PMID: 32672843]
[42]
Bergmann, C.C.; Lane, T.E.; Stohlman, S.A. Coronavirus infection of the central nervous system: Host-virus stand-off. Nat. Rev. Microbiol., 2006, 4(2), 121-132.
[http://dx.doi.org/10.1038/nrmicro1343] [PMID: 16415928]
[43]
Solomon, T. Neurological infection with SARS-CoV-2 - the story so far. Natl. Rev., 2021, 17(2), 65-66.
[http://dx.doi.org/10.1038/s41582-020-00453-w]
[44]
Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O.E.; Liu, F.; Dai, Y.; Szigeti-Buck, K.; Yasumoto, Y.; Wang, G.; Castaldi, C.; Heltke, J.; Ng, E.; Wheeler, J.; Alfajaro, M.M.; Levavasseur, E.; Fontes, B.; Ravindra, N.G.; Van Dijk, D.; Mane, S.; Gunel, M.; Ring, A.; Kazmi, S.A.J.; Zhang, K.; Wilen, C.B.; Horvath, T.L.; Plu, I.; Haik, S.; Thomas, J.L.; Louvi, A.; Farhadian, S.F.; Huttner, A.; Seilhean, D.; Renier, N.; Bilguvar, K.; Iwasaki, A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. Exp. Med., 2021, 218(3), e20202135.
[http://dx.doi.org/10.1084/jem.20202135] [PMID: 33433624]
[45]
Micale, V.; Drago, F. Endocannabinoid system, stress and HPA axis. Eur. J. Pharmacol., 2018, 834, 230-239.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.039] [PMID: 30036537]
[46]
Micale, V.; Mazzola, C.; Drago, F. Endocannabinoids and neurodegenerative diseases. In: Pharmacol. Res; , 2007; 56, pp. (5)382-392.
[http://dx.doi.org/10.1016/j.phrs.2007.09.008] [PMID: 17950616]
[47]
Di Marzo, V.; Fontana, A.; Cadas, H.; Schinelli, S.; Cimino, G.; Schwartz, J.C.; Piomelli, D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature, 1994, 372(6507), 686-691.
[http://dx.doi.org/10.1038/372686a0] [PMID: 7990962]
[48]
Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci., 2015, 16(1), 30-42.
[http://dx.doi.org/10.1038/nrn3876] [PMID: 25524120]
[49]
Di Marzo, V. Targeting the endocannabinoid system: To enhance or reduce? Nat. Rev. Drug Discov., 2008, 7(5), 438-455.
[http://dx.doi.org/10.1038/nrd2553] [PMID: 18446159]
[50]
Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-Arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun., 1995, 215(1), 89-97.
[http://dx.doi.org/10.1006/bbrc.1995.2437] [PMID: 7575630]
[51]
Sugiura, T.; Kondo, S.; Sukagawa, A.; Tonegawa, T.; Nakane, S.; Yamashita, A.; Waku, K. Enzymatic synthesis of anandamide, an endogenous cannabinoid receptor ligand, through N-acylphosphatidylethanolamine pathway in testis: involvement of Ca(2+)-dependent transacylase and phosphodiesterase activities. Biochem. Biophys. Res. Commun., 1996, 218(1), 113-117.
[http://dx.doi.org/10.1006/bbrc.1996.0020] [PMID: 8573114]
[52]
Cravatt, B.F.; Giang, D.K.; Mayfield, S.P.; Boger, D.L.; Lerner, R.A.; Gilula, N.B. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature, 1996, 384(6604), 83-87.
[http://dx.doi.org/10.1038/384083a0] [PMID: 8900284]
[53]
Blankman, J.L.; Simon, G.M.; Cravatt, B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol., 2007, 14(12), 1347-1356.
[http://dx.doi.org/10.1016/j.chembiol.2007.11.006] [PMID: 18096503]
[54]
Kozak, K.R.; Rowlinson, S.W.; Marnett, L.J. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J. Biol. Chem., 2000, 275(43), 33744-33749.
[http://dx.doi.org/10.1074/jbc.M007088200] [PMID: 10931854]
[55]
van der Stelt, M.; Fox, S.H.; Hill, M.; Crossman, A.R.; Petrosino, S.; Di Marzo, V.; Brotchie, J.M. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. FASEB J., 2005, 19(9), 1140-1142.
[http://dx.doi.org/10.1096/fj.04-3010fje] [PMID: 15894565]
[56]
van der Stelt, M.; Mazzola, C.; Esposito, G.; Matias, I.; Petrosino, S.; De Filippis, D.; Micale, V.; Steardo, L.; Drago, F.; Iuvone, T.; Di Marzo, V. Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: Effect of pharmacological elevation of endocannabinoid levels. Cell. Mol. Life Sci., 2006, 63(12), 1410-1424.
[http://dx.doi.org/10.1007/s00018-006-6037-3] [PMID: 16732431]
[57]
Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 1990, 346(6284), 561-564.
[http://dx.doi.org/10.1038/346561a0] [PMID: 2165569]
[58]
Hua, T.; Vemuri, K.; Nikas, S.P.; Laprairie, R.B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J-H.; Han, G.W.; Ding, K.; Li, X.; Liu, H.; Hanson, M.A.; Zhao, S.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 2017, 547(7664), 468-471.
[http://dx.doi.org/10.1038/nature23272] [PMID: 28678776]
[59]
Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature, 1993, 365(6441), 61-65.
[http://dx.doi.org/10.1038/365061a0] [PMID: 7689702]
[60]
Li, X.; Hua, T.; Vemuri, K.; Ho, J.H.; Wu, Y.; Wu, L.; Popov, P.; Benchama, O.; Zvonok, N.; Locke, K.; Qu, L.; Han, G.W.; Iyer, M.R.; Cinar, R.; Coffey, N.J.; Wang, J.; Wu, M.; Katritch, V.; Zhao, S.; Kunos, G.; Bohn, L.M.; Makriyannis, A.; Stevens, R.C.; Liu, Z.J. Crystal Structure of the Human Cannabinoid Receptor CB2. Cell, 2019, 176(3), 459-467.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.011] [PMID: 30639103]
[61]
Tsou, K.; Brown, S.; Sañudo-Peña, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 1998, 83(2), 393-411.
[http://dx.doi.org/10.1016/S0306-4522(97)00436-3] [PMID: 9460749]
[62]
Marinelli, S.; Pacioni, S.; Bisogno, T.; Di Marzo, V.; Prince, D.A.; Huguenard, J.R.; Bacci, A. The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J. Neurosci., 2008, 28(50), 13532-13541.
[http://dx.doi.org/10.1523/JNEUROSCI.0847-08.2008]
[63]
Koch, M.; Varela, L.; Kim, J.G.; Kim, J.D.; Hernández-Nuño, F.; Simonds, S.E.; Castorena, C.M.; Vianna, C.R.; Elmquist, J.K.; Morozov, Y.M.; Rakic, P.; Bechmann, I.; Cowley, M.A.; Szigeti-Buck, K.; Dietrich, M.O.; Gao, X.B.; Diano, S.; Horvath, T.L. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature, 2015, 519(7541), 45-50.
[http://dx.doi.org/10.1038/nature14260]
[64]
Martín-Moreno, A.M.; Brera, B.; Spuch, C.; Carro, E.; García-García, L.; Delgado, M.; Pozo, M.A.; Innamorato, N.G.; Cuadrado, A.; de Ceballos, M.L. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation, 2012, 9(1), 8.
[http://dx.doi.org/10.1186/1742-2094-9-8] [PMID: 22248049]
[65]
Stempel, A.V.; Stumpf, A.; Zhang, H.Y.; Özdoğan, T.; Pannasch, U.; Theis, A.K.; Otte, D.M.; Wojtalla, A.; Rácz, I.; Ponomarenko, A.; Xi, Z.X.; Zimmer, A.; Schmitz, D. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron, 2016, 90(4), 795-809.
[http://dx.doi.org/10.1016/j.neuron.2016.03.034] [PMID: 27133464]
[66]
Stumpf, A.; Parthier, D.; Sammons, R.P.; Stempel, A.V.; Breustedt, J.; Rost, B.R.; Schmitz, D. Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons. Neuropharmacology, 2018, 139, 217-225.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.020] [PMID: 30025920]
[67]
Aso, E.; Palomer, E.; Juvés, S.; Maldonado, R.; Muñoz, F.J.; Ferrer, I. CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AβPP/PS1 mice. J. Alzheimers Dis., 2012, 30(2), 439-459.
[http://dx.doi.org/10.3233/JAD-2012-111862] [PMID: 22451318]
[68]
Castillo, P.E.; Younts, T.J.; Chávez, A.E.; Hashimotodani, Y. Endocannabinoid signaling and synaptic function. Neuron, 2012, 76(1), 70-81.
[http://dx.doi.org/10.1016/j.neuron.2012.09.020] [PMID: 23040807]
[69]
Castillo, A.; Tolón, M.R.; Fernández-Ruiz, J.; Romero, J.; Martinez-Orgado, J. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol. Dis., 2010, 37(2), 434-440.
[http://dx.doi.org/10.1016/j.nbd.2009.10.023] [PMID: 19900555]
[70]
Hebert-Chatelain, E.; Marsicano, G.; Desprez, T. Cannabinoids and mitochondria.Endocannabinoids and lipid mediators in brain functions; Melis, M., Ed.; Springer: Cham, 2017, pp. 211-235.
[http://dx.doi.org/10.1007/978-3-319-57371-7_8]
[71]
Bénard, G.; Massa, F.; Puente, N.; Lourenço, J.; Bellocchio, L.; Soria-Gómez, E.; Matias, I.; Delamarre, A.; Metna-Laurent, M.; Cannich, A.; Hebert-Chatelain, E.; Mulle, C.; Ortega-Gutiérrez, S.; Martín-Fontecha, M.; Klugmann, M.; Guggenhuber, S.; Lutz, B.; Gertsch, J.; Chaouloff, F.; López-Rodríguez, M.L.; Grandes, P.; Rossignol, R.; Marsicano, G. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci., 2012, 15(4), 558-564.
[http://dx.doi.org/10.1038/nn.3053]
[72]
Maldonado, R.; Valverde, O.; Berrendero, F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci., 2006, 29(4), 225-232.
[http://dx.doi.org/10.1016/j.tins.2006.01.008] [PMID: 16483675]
[73]
Kim, S.H.; Won, S.J.; Mao, X.O.; Jin, K.; Greenberg, D.A. Molecular mechanisms of cannabinoid protection from neuronal excitotoxicity. Mol. Pharmacol., 2006, 69(3), 691-696.
[http://dx.doi.org/10.1124/mol.105.016428] [PMID: 16299067]
[74]
Kim, J.; Li, Y. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission. J. Physiol., 2015, 593(4), 871-886.
[http://dx.doi.org/10.1113/jphysiol.2014.286633] [PMID: 25504573]
[75]
Schmöle, A-C.; Lundt, R.; Toporowski, G.; Hansen, J.N.; Beins, E.; Halle, A.; Zimmer, A. Cannabinoid receptor 2-deficiency ameliorates disease symptoms in a mouse model with alzheimer’s disease-like pathology. J. Alzheimers Dis., 2018, 64(2), 379-392.
[http://dx.doi.org/10.3233/JAD-180230] [PMID: 29865078]
[76]
Van Sickle, M.D.; Duncan, M.; Kingsley, P.J.; Mouihate, A.; Urbani, P.; Mackie, K.; Stella, N.; Makriyannis, A.; Piomelli, D.; Davison, J.S.; Marnett, L.J.; Di Marzo, V.; Pittman, Q.J.; Patel, K.D.; Sharkey, K.A. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science, 2005, 310(5746), 329-332.
[http://dx.doi.org/10.1126/science.1115740] [PMID: 16224028]
[77]
Joshi, N.; Onaivi, E.S. Endocannabinoid system components: overview and tissue distribution. Adv. Exp. Med. Biol., 2019, 1162, 1-12.
[http://dx.doi.org/10.1007/978-3-030-21737-2_1] [PMID: 31332731]
[78]
Luongo, L.; Maione, S.; Di Marzo, V. Endocannabinoids and neuropathic pain: focus on neuron-glia and endocannabinoid-neurotrophin interactions. Eur. J. Neurosci., 2014, 39(3), 401-408.
[http://dx.doi.org/10.1111/ejn.12440] [PMID: 24494680]
[79]
Luongo, L.; Starowicz, K.; Maione, S.; Di Marzo, V. Allodynia lowering induced by cannabinoids and endocannabinoids (ALICE). Pharmacol. Res., 2017, 119, 272-277.
[http://dx.doi.org/10.1016/j.phrs.2017.02.019] [PMID: 28237514]
[80]
Abu Aboud, O.; Chen, C.H.; Senapedis, W.; Baloglu, E.; Argueta, C.; Weiss, R.H. Dual and specific inhibition of NAMPT and PAK4 By KPT-9274 decreases kidney cancer growth. Mol. Cancer Ther., 2016, 15(9), 2119-2129.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0197] [PMID: 27390344]
[81]
Nelson, K.M.; Bisson, J.; Singh, G.; Graham, J.G.; Chen, S.N.; Friesen, J.B.; Dahlin, J.L.; Niemitz, M.; Walters, M.A.; Pauli, G.F. The essential medicinal chemistry of Cannabidiol (CBD). J. Med. Chem., 2020, 63(21), 12137-12155.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00724]
[82]
Silvestri, C.; Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab., 2013, 17(4), 475-490.
[http://dx.doi.org/10.1016/j.cmet.2013.03.001]
[83]
Mazzola, C.; Micale, V.; Drago, F. Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur. J. Pharmacol., 2003, 477(3), 219-225.
[http://dx.doi.org/10.1016/j.ejphar.2003.08.026]
[84]
Huang, S.; Goplen, N.P.; Zhu, B.; Cheon, I.S.; Son, Y.; Wang, Z.; Li, C.; Dai, Q.; Jiang, L.; Xiang, M.; Carmona, E.M.; Vassallo, R.; Limper, A.H.; Sun, J. Macrophage PPAR-γ suppresses long-term lung fibrotic sequelae following acute influenza infection. PLoS One, 2019, 14(10), e0223430.
[http://dx.doi.org/10.1371/journal.pone.0223430] [PMID: 31584978]
[85]
Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol., 2020, 16(1), 9-29.
[http://dx.doi.org/10.1038/s41582-019-0284-z] [PMID: 31831863]
[86]
Kelly, R.; Joers, V.; Tansey, M.G.; McKernan, D.P.; Dowd, E. Microglial phenotypes and their relationship to the cannabinoid system: therapeutic implications for parkinson’s disease. Molecules, 2020, 25(3), 453.
[http://dx.doi.org/10.3390/molecules25030453] [PMID: 31973235]
[87]
Maccarrone, M.; Bab, I.; Bíró, T.; Cabral, G.A.; Dey, S.K.; Di Marzo, V.; Konje, J.C.; Kunos, G.; Mechoulam, R.; Pacher, P.; Sharkey, K.A.; Zimmer, A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci., 2015, 36(5), 277-296.
[http://dx.doi.org/10.1016/j.tips.2015.02.008] [PMID: 25796370]
[88]
Zou, S.; Kumar, U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int. J. Mol. Sci., 2018, 19(3), 833.
[http://dx.doi.org/10.3390/ijms19030833] [PMID: 29533978]
[89]
Jung, K.M.; Astarita, G.; Yasar, S.; Vasilevko, V.; Cribbs, D.H.; Head, E.; Cotman, C.W.; Piomelli, D. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer’s disease. Neurobiol. Aging, 2012, 33(8), 1522-1532.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.012] [PMID: 21546126]
[90]
Altamura, C.; Ventriglia, M.; Martini, M.G.; Montesano, D.; Errante, Y.; Piscitelli, F.; Scrascia, F.; Quattrocchi, C.; Palazzo, P.; Seccia, S.; Vernieri, F.; Di Marzo, V. Elevation of Plasma 2-Arachidonoylglycerol levels in Alzheimer’s Disease patients as a potential protective mechanism against neurodegenerative decline. J. Alzheimers Dis., 2015, 46(2), 497-506.
[http://dx.doi.org/10.3233/JAD-142349] [PMID: 25818503]
[91]
Di Iorio, G.; Lupi, M.; Sarchione, F.; Matarazzo, I.; Santacroce, R.; Petruccelli, F.; Martinotti, G.; Di Giannantonio, M. The endocannabinoid system: a putative role in neurodegenerative diseases. Int. J. High Risk Behav. Addict., 2013, 2(3), 100-106.
[http://dx.doi.org/10.5812/ijhrba.9222] [PMID: 24971285]
[92]
Bilsland, L.G.; Dick, J.R.; Pryce, G.; Petrosino, S.; Di Marzo, V.; Baker, D.; Greensmith, L.; Bilsland, L.G.; Dick, J.R.T.; Pryce, G.; Petrosino, S.; Di Marzo, V.; Baker, D.; Greensmith, L. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. FASEB J., 2006, 20(7), 1003-1005.
[http://dx.doi.org/10.1096/fj.05-4743fje] [PMID: 16571781]
[93]
Pisani, A.; Fezza, F.; Galati, S.; Battista, N.; Napolitano, S.; Finazzi-Agrò, A.; Bernardi, G.; Brusa, L.; Pierantozzi, M.; Stanzione, P.; Maccarrone, M. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson’s disease patients. Ann. Neurol., 2005, 57(5), 777-779.
[http://dx.doi.org/10.1002/ana.20462] [PMID: 15852389]
[94]
Pisani, V.; Moschella, V.; Bari, M.; Fezza, F.; Galati, S.; Bernardi, G.; Stanzione, P.; Pisani, A.; Maccarrone, M. Dynamic changes of anandamide in the cerebrospinal fluid of Parkinson’s disease patients. Mov. Disord., 2010, 25(7), 920-924.
[http://dx.doi.org/10.1002/mds.23014]
[95]
Brotchie, J.M. CB1 cannabinoid receptor signalling in Parkinson’s disease. Curr. Opin. Pharmacol., 2003, 3(1), 54-61.
[http://dx.doi.org/10.1016/S1471-4892(02)00011-5] [PMID: 12550742]
[96]
García-Arencibia, M.; González, S.; de Lago, E.; Ramos, J.A.; Mechoulam, R.; Fernández-Ruiz, J. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res., 2007, 1134(1), 162-170.
[http://dx.doi.org/10.1016/j.brainres.2006.11.063]
[97]
Aso, E.; Andrés-Benito, P.; Carmona, M.; Maldonado, R.; Ferrer, I. Cannabinoid receptor 2 participates in Amyloid-β processing in a mouse model of Alzheimer’s Disease but plays a minor role in the therapeutic properties of a Cannabis-Based medicine. J. Alzheimers Dis., 2016, 51(2), 489-500.
[http://dx.doi.org/10.3233/JAD-150913] [PMID: 26890764]
[98]
Milton, N.G.N. Anandamide and noladin ether prevent neurotoxicity of the human amyloid-beta peptide. Neurosci. Lett., 2002, 332(2), 127-130.
[http://dx.doi.org/10.1016/S0304-3940(02)00936-9] [PMID: 12384227]
[99]
Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J. Neurosci., 2003, 23(35), 11136-11141.
[http://dx.doi.org/10.1523/JNEUROSCI.23-35-11136.2003] [PMID: 14657172]
[100]
Glass, M.; Dragunow, M.; Faull, R.L.M. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 2000, 97(3), 505-519.
[http://dx.doi.org/10.1016/S0306-4522(00)00008-7] [PMID: 10828533]
[101]
Horne, E.A.; Coy, J.; Swinney, K.; Fung, S.; Cherry, A.E.T.; Marrs, W.R.; Naydenov, A.V.; Lin, Y.H.; Sun, X.; Keene, C.D.; Grouzmann, E.; Muchowski, P.; Bates, G.P.; Mackie, K.; Stella, N. Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington’s disease and mouse models. Eur. J. Neurosci., 2013, 37(3), 429-440.
[http://dx.doi.org/10.1111/ejn.12045] [PMID: 23167744]
[102]
Mievis, S.; Blum, D.; Ledent, C. Worsening of Huntington disease phenotype in CB1 receptor knockout mice. Neurobiol. Dis., 2011, 42(3), 524-529.
[http://dx.doi.org/10.1016/j.nbd.2011.03.006] [PMID: 21406230]
[103]
Blázquez, C.; Chiarlone, A.; Sagredo, O.; Aguado, T.; Pazos, M.R.; Resel, E.; Palazuelos, J.; Julien, B.; Salazar, M.; Börner, C.; Benito, C.; Carrasco, C.; Diez-Zaera, M.; Paoletti, P.; Díaz-Hernández, M.; Ruiz, C.; Sendtner, M.; Lucas, J.J.; de Yébenes, J.G.; Marsicano, G.; Monory, K.; Lutz, B.; Romero, J.; Alberch, J.; Ginés, S.; Kraus, J.; Fernández-Ruiz, J.; Galve-Roperh, I.; Guzmán, M. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain, 2011, 134, 119-136.
[http://dx.doi.org/10.1093/brain/awq278] [PMID: 20929960]
[104]
Cassano, T.; Calcagnini, S.; Pace, L.; De Marco, F.; Romano, A.; Gaetani, S. Cannabinoid receptor 2 signaling in neurodegenerative disorders: From pathogenesis to a promising therapeutic target. Front. Neurosci., 2017, 11, 30.
[http://dx.doi.org/10.3389/fnins.2017.00030] [PMID: 28210207]
[105]
Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Le Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem., 1995, 232(1), 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[106]
Liu, Q-R.; Pan, C-H.; Hishimoto, A.; Li, C-Y.; Xi, Z-X.; Llorente-Berzal, A.; Viveros, M-P.; Ishiguro, H.; Arinami, T.; Onaivi, E.S.; Uhl, G.R. Species differences in cannabinoid receptor 2 (CNR2 gene): Identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav., 2009, 8(5), 519-530.
[http://dx.doi.org/10.1111/j.1601-183X.2009.00498.x] [PMID: 19496827]
[107]
Núñez, E.; Benito, C.; Pazos, M.R.; Barbachano, A.; Fajardo, O.; González, S.; Tolón, R.M.; Romero, J. Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: An immunohistochemical study. Synapse, 2004, 53(4), 208-213.
[http://dx.doi.org/10.1002/syn.20050] [PMID: 15266552]
[108]
Walter, L.; Franklin, A.; Witting, A.; Wade, C.; Xie, Y.; Kunos, G.; Mackie, K.; Stella, N. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci., 2003, 23(4), 1398-1405.
[http://dx.doi.org/10.1523/JNEUROSCI.23-04-01398.2003] [PMID: 12598628]
[109]
Franklin, A.; Stella, N. Arachidonylcyclopropylamide increases microglial cell migration through cannabinoid CB2 and abnormal-cannabidiol-sensitive receptors. Eur. J. Pharmacol., 2003, 474(2-3), 195-198.
[http://dx.doi.org/10.1016/S0014-2999(03)02074-0] [PMID: 12921861]
[110]
Palazuelos, J.; Ortega, Z.; Díaz-Alonso, J.; Guzmán, M.; Galve-Roperh, I. CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J. Biol. Chem., 2012, 287(2), 1198-1209.
[http://dx.doi.org/10.1074/jbc.M111.291294]
[111]
Chung, Y.C.; Shin, W.H.; Baek, J.Y.; Cho, E.J.; Baik, H.H.; Kim, S.R.; Won, S.Y.; Jin, B.K. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease. Exp. Mol. Med., 2016, 48(1), e205.
[http://dx.doi.org/10.1038/emm.2015.100]
[112]
Marchalant, Y.; Brownjohn, P.W.; Bonnet, A.; Kleffmann, T.; Ashton, J.C. Validating antibodies to the Cannabinoid CB2 receptor: Antibody sensitivity is not evidence of antibody specificity. J. Histochem. Cytochem., 2014, 62(6), 395-404.
[http://dx.doi.org/10.1369/0022155414530995] [PMID: 24670796]
[113]
Soethoudt, M.; Grether, U.; Fingerle, J.; Grim, T.W.; Fezza, F.; de Petrocellis, L.; Ullmer, C.; Rothenhäusler, B.; Perret, C.; van Gils, N.; Finlay, D.; MacDonald, C.; Chicca, A.; Gens, M.D.; Stuart, J.; de Vries, H.; Mastrangelo, N.; Xia, L.; Alachouzos, G.; Baggelaar, M.P.; Martella, A.; Mock, E.D.; Deng, H.; Heitman, L.H.; Connor, M.; Di Marzo, V.; Gertsch, J.; Lichtman, A.H.; Maccarrone, M.; Pacher, P.; Glass, M.; van der Stelt, M. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun., 2017, 3(8), 13958.
[http://dx.doi.org/10.1038/ncomms13958]
[114]
Molina-Holgado, F.; Pinteaux, E.; Moore, J.D.; Molina-Holgado, E.; Guaza, C.; Gibson, R.M.; Rothwell, N.J. Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J. Neurosci., 2003, 23(16), 6470-6474.
[http://dx.doi.org/10.1523/JNEUROSCI.23-16-06470.2003] [PMID: 12878687]
[115]
García, C.; Palomo-Garo, C.; García-Arencibia, M.; Ramos, J.; Pertwee, R.; Fernández-Ruiz, J. Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ9-THCV in animal models of Parkinson’s disease. Br. J. Pharmacol., 2011, 163(7), 1495-1506.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01278.x] [PMID: 21323909]
[116]
Vuolo, F.; Abreu, S.C.; Michels, M.; Xisto, D.G.; Blanco, N.G.; Hallak, J.E.; Pizzichinni, E. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma. Eur. J. Pharmacol., 2019, 843, 251-259.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.029]
[117]
Cheng, D.; Low, J.K.; Logge, W.; Garner, B.; Karl, T. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice. Psychopharmacology (Berl.), 2014, 231(15), 3009-3017.
[http://dx.doi.org/10.1007/s00213-014-3478-5] [PMID: 24577515]
[118]
Koppel, J.; Vingtdeux, V.; Marambaud, P.; d’Abramo, C.; Jimenez, H.; Stauber, M.; Friedman, R.; Davies, P. CB2 receptor deficiency increases amyloid pathology and alters tau processing in a transgenic mouse model of Alzheimer’s disease. Mol. Med., 2013, 19(1), 357-364.
[http://dx.doi.org/10.2119/molmed.2013.00140] [PMID: 24408112]
[119]
Bouchard, J.; Truong, J.; Bouchard, K.; Dunkelberger, D.; Desrayaud, S.; Moussaoui, S.; Tabrizi, S.J.; Stella, N.; Muchowski, P.J. Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J. Neurosci., 2012, 32(50), 18259-18268.
[http://dx.doi.org/10.1523/JNEUROSCI.4008-12.2012] [PMID: 23238740]
[120]
Cabañero, D.; Ramírez-López, A.; Drews, E.; Schmöle, A.; Otte, D.M.; Wawrzczak-Bargiela, A.; Huerga Encabo, H.; Kummer, S.; Ferrer-Montiel, A.; Przewlocki, R.; Zimmer, A.; Maldonado, R. Protective role of neuronal and lymphoid cannabinoid CB2 receptors in neuropathic pain. eLife, 2020, 20(9), e55582.
[http://dx.doi.org/10.7554/eLife.55582]
[121]
Turcotte, C.; Blanchet, M.R.; Laviolette, M.; Flamand, N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci., 2016, 73(23), 4449-4470.
[http://dx.doi.org/10.1007/s00018-016-2300-4] [PMID: 27402121]
[122]
Tahamtan, A.; Tavakoli-Yaraki, M.; Rygiel, T.P.; Mokhtari-Azad, T.; Salimi, V. Effects of cannabinoids and their receptors on viral infections. J. Med. Virol., 2016, 88(1), 1-12.
[http://dx.doi.org/10.1002/jmv.24292] [PMID: 26059175]
[123]
Rom, S.; Persidsky, Y. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J. Neuroimmune Pharmacol., 2013, 8(3), 608-620.
[http://dx.doi.org/10.1007/s11481-013-9445-9] [PMID: 23471521]
[124]
Lowe, H.I.; Toyang, N.J.; McLaughlin, W. Potential of cannabidiol for the treatment of viral hepatitis. Pharmacognosy Res., 2017, 9(1), 116-118.
[http://dx.doi.org/10.4103/0974-8490.199780] [PMID: 28250664]
[125]
Tahamtan, A.; Tavakoli-Yaraki, M.; Shadab, A.; Rezaei, F.; Marashi, S.M.; Shokri, F.; Mokhatri-Azad, T.; Salimi, V. The role of Cannabinoid Receptor 1 in the immunopathology of respiratory syncytial virus. Viral Immunol., 2018, 31(4), 292-298.
[http://dx.doi.org/10.1089/vim.2017.0098] [PMID: 29461930]
[126]
Anil, S.M.; Shalev, N.; Vinayaka, A.C.; Nadarajan, S.; Namdar, D.; Belausov, E.; Shoval, I.; Mani, K.A.; Mechrez, G.; Koltai, H. Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci. Rep., 2021, 11(1), 1462.
[http://dx.doi.org/10.1038/s41598-021-81049-2] [PMID: 33446817]
[127]
Rieder, S.A.; Chauhan, A.; Singh, U.; Nagarkatti, M.; Nagarkatti, P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology, 2010, 215(8), 598-605.
[http://dx.doi.org/10.1016/j.imbio.2009.04.001] [PMID: 19457575]
[128]
O’Sullivan, S.E.; Kendall, D.A. Cannabinoid activation of peroxisome proliferator-activated receptors: Potential for modulation of inflammatory disease. Immunobiology, 2010, 215(8), 611-616.
[http://dx.doi.org/10.1016/j.imbio.2009.09.007] [PMID: 19833407]
[129]
Orzalli, M.H.; Kagan, J.C. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol., 2017, 27(11), 800-809.
[http://dx.doi.org/10.1016/j.tcb.2017.05.007] [PMID: 28642032]
[130]
Tanasescu, R.; Constantinescu, C.S. Cannabinoids and the immune system: An overview. Immunobiology, 2010, 215(8), 588-597.
[http://dx.doi.org/10.1016/j.imbio.2009.12.005] [PMID: 20153077]
[131]
Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med., 2013, 19(5), 557-566.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[132]
Esposito, G.; Pesce, M.; Seguella, L.; Sanseverino, W.; Lu, J.; Corpetti, C.; Sarnelli, G. The potential of cannabidiol in the COVID-19 pandemic. Br. J. Pharmacol., 2020, 177(21), 4967-4970.
[http://dx.doi.org/10.1111/bph.15157] [PMID: 32519753]
[133]
Nagarkatti, P.S.; Nagarkatti, M. Use of cannabidiol in the treatment of autoimmune hepatitis. 2012. Available from: http://www.google.com/patents/US8242178
[134]
Gautier, E.L.; Chow, A.; Spanbroek, R.; Marcelin, G.; Greter, M.; Jakubzick, C.; Bogunovic, M.; Leboeuf, M.; van Rooijen, N.; Habenicht, A.J.; Merad, M.; Randolph, G.J. Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J. Immunol., 2012, 189(5), 2614-2624.
[http://dx.doi.org/10.4049/jimmunol.1200495] [PMID: 22855714]
[135]
Yano, M.; Matsumura, T.; Senokuchi, T.; Ishii, N.; Murata, Y.; Taketa, K.; Motoshima, H.; Taguchi, T.; Sonoda, K.; Kukidome, D.; Takuwa, Y.; Kawada, T.; Brownlee, M.; Nishikawa, T.; Araki, E. Statins activate peroxisome proliferator-activated receptor gamma through extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent cyclooxygenase-2 expression in macrophages. Circ. Res., 2007, 100(10), 1442-1451.
[http://dx.doi.org/10.1161/01.RES.0000268411.49545.9c] [PMID: 17463321]
[136]
Demuth, D.G.; Molleman, A. Cannabinoid signalling. Life Sci., 2006, 78(6), 549-563.
[http://dx.doi.org/10.1016/j.lfs.2005.05.055] [PMID: 16109430]
[137]
Maor, Y.; Yu, J.; Kuzontkoski, P.M.; Dezube, B.J.; Zhang, X.; Groopman, J.E. Cannabidiol inhibits growth and induces programmed cell death in kaposi sarcoma-associated herpesvirus-infected endothelium. Genes Cancer, 2012, 3(7-8), 512-520.
[http://dx.doi.org/10.1177/1947601912466556] [PMID: 23264851]
[138]
Patra, P.H.; Barker-Haliski, M.; White, H.S.; Whalley, B.J.; Glyn, S.; Sandhu, H.; Jones, N.; Bazelot, M.; Williams, C.M.; McNeish, A.J. Cannabidiol reduces seizures and associated behavioral comorbidities in a range of animal seizure and epilepsy models. Epilepsia, 2019, 60(2), 303-314.
[http://dx.doi.org/10.1111/epi.14629] [PMID: 30588604]
[139]
Patel, D.C.; Wallis, G.; Fujinami, R.S.; Wilcox, K.S.; Smith, M.D. Cannabidiol reduces seizures following CNS infection with Theiler’s murine encephalomyelitis virus. Epilepsia Open, 2019, 4(3), 431-442.
[http://dx.doi.org/10.1002/epi4.12351] [PMID: 31440724]
[140]
Buchweitz, J.P.; Karmaus, P.W.; Williams, K.J.; Harkema, J.R.; Kaminski, N.E. Targeted deletion of cannabinoid receptors CB1 and CB2 produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Delta9-tetrahydrocannabinol. J. Leukoc. Biol., 2008, 83(3), 785-796.
[http://dx.doi.org/10.1189/jlb.0907618] [PMID: 18073275]
[141]
Karmaus, P.W.; Chen, W.; Crawford, R.B.; Harkema, J.R.; Kaplan, B.L.F.; Kaminski, N.E. Deletion of cannabinoid receptors 1 and 2 exacerbates APC function to increase inflammation and cellular immunity during influenza infection. J. Leukoc. Biol., 2011, 90(5), 983-995.
[http://dx.doi.org/10.1189/jlb.0511219] [PMID: 21873455]
[142]
Reiss, C.S. Cannabinoids and viral infections. Pharmaceuticals (Basel), 2010, 3(6), 1873-1886.
[http://dx.doi.org/10.3390/ph3061873] [PMID: 20634917]
[143]
Hernández-Cervantes, R.; Méndez-Díaz, M.; Prospéro-García, Ó.; Morales-Montor, J. Immunoregulatory role of cannabinoids during infectious disease. Neuroimmunomodulation, 2017, 24(4-5), 183-199.
[http://dx.doi.org/10.1159/000481824] [PMID: 29151103]
[144]
Kicman, A.; Toczek, M. The effects of cannabidiol, a non-intoxicating compound of cannabis, on the cardiovascular system in health and disease. Int. J. Mol. Sci., 2020, 21(18), 6740.
[http://dx.doi.org/10.3390/ijms21186740] [PMID: 32937917]
[145]
Britch, S.C.; Babalonis, S.; Walsh, S.L. Cannabidiol: pharmacology and therapeutic targets. Psychopharmacology (Berl.), 2021, 238(1), 9-28.
[http://dx.doi.org/10.1007/s00213-020-05712-8] [PMID: 33221931]
[146]
Wang, B.; Kovalchuk, A.; Li, D.; Rodriguez-Juarez, R.; Ilnytskyy, Y.; Kovalchuk, I.; Kovalchuk, O. In search of preventive strategies: novel high-CBD Cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging (Albany NY), 2020, 12(22), 22425-22444.
[http://dx.doi.org/10.18632/aging.202225] [PMID: 33221759]
[147]
Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci., 2020, 12(1), 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[148]
Chatow, L.; Nudel, A.; Nesher, I.; Hayo Hemo, D.; Rozenberg, P.; Voropaev, H.; Winkler, I.; Levy, R.; Kerem, Z.; Yaniv, Z.; Eyal, N. In vitro evaluation of the activity of terpenes and cannabidiol against Human Coronavirus E229. Life (Basel), 2021, 11(4), 290.
[http://dx.doi.org/10.3390/life11040290] [PMID: 33805385]
[149]
Borah, P.; Deb, P.K.; Chandrasekaran, B.; Goyal, M.; Bansal, M.; Hussain, S.; Shinu, P.; Venugopala, K.N.; Al-Shar’i, N.A.; Deka, S.; Singh, V. Neurological consequences of SARS-CoV-2 infection and concurrence of treatment-induced neuropsychiatric adverse events in COVID-19 patients: Navigating the uncharted. Front. Mol. Biosci., 2021, 8, 627723.
[http://dx.doi.org/10.3389/fmolb.2021.627723] [PMID: 33681293]
[150]
Sexton, M. Cannabis in the time of coronavirus disease 2019: The Yin and Yang of the endocannabinoid system in immunocompetence. J. Altern. Complement. Med., 2020, 26(6), 444-448.
[http://dx.doi.org/10.1089/acm.2020.0144] [PMID: 32380847]
[151]
Shover, C.L.; Humphreys, K. Debunking cannabidiol as a treatment for COVID-19: Time for the FDA to adopt a focused deterrence model? Cureus, 2020, 12(6), e8671.
[http://dx.doi.org/10.7759/cureus.8671] [PMID: 32699671]
[152]
Raj, V.; Park, J.G.; Cho, K.H.; Choi, P.; Kim, T.; Ham, J.; Lee, J. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int. J. Biol. Macromol., 2021, 168, 474-485.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.020] [PMID: 33290767]
[153]
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[154]
Peng, M. Outbreak of COVID-19: An emerging global pandemic threat. Biomed. Pharmacother., 2020, 129, 110499.
[http://dx.doi.org/10.1016/j.biopha.2020.110499] [PMID: 32768974]
[155]
Khodadadi, H.; Salles, É.L.; Jarrahi, A.; Chibane, F.; Costigliola, V.; Yu, J.C.; Vaibhav, K.; Hess, D.C.; Dhandapani, K.M.; Baban, B. Cannabidiol modulates cytokine storm in acute respiratory distress syndrome induced by simulated viral infection using synthetic RNA. Cannabis Cannabinoid Res., 2020, 5(3), 197-201.
[http://dx.doi.org/10.1089/can.2020.0043] [PMID: 32923657]
[156]
Mecha, M.; Feliú, A.; Iñigo, P.M.; Mestre, L.; Carrillo-Salinas, F.J.; Guaza, C. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol. Dis., 2013, 59, 141-150.
[http://dx.doi.org/10.1016/j.nbd.2013.06.016] [PMID: 23851307]
[157]
Mecha, M.; Carrillo-Salinas, F.J.; Feliú, A.; Mestre, L.; Guaza, C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol. Ther., 2016, 166, 40-55.
[http://dx.doi.org/10.1016/j.pharmthera.2016.06.011] [PMID: 27373505]
[158]
Salles, É.L.; Khodadadi, H.; Jarrahi, A.; Ahluwalia, M.; Paffaro, V.A., Jr; Costigliola, V.; Yu, J.C.; Hess, D.C.; Dhandapani, K.M.; Baban, B. Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome. J. Cell. Mol. Med., 2020, 24(21), 12869-12872.
[http://dx.doi.org/10.1111/jcmm.15883] [PMID: 33058425]
[159]
Sadowska, O.; Baranowska-Kuczko, M.; Gromotowicz-Popławska, A.; Biernacki, M.; Kicman, A.; Malinowska, B.; Kasacka, I.; Krzyżewska, A.; Kozłowska, H. Cannabidiol ameliorates monocrotaline-induced pulmonary hypertension in rats. Int. J. Mol. Sci., 2020, 21(19), 7077.
[http://dx.doi.org/10.3390/ijms21197077] [PMID: 32992900]
[160]
Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Alhakamy, N.A.; Md, S.; Nair, A.B.; Deb, P.K. Combating the pandemic COVID-19: Clinical trials, therapies and perspectives. Front. Mol. Biosci., 2020, 7, 606393.
[161]
Borah, P.; Deb, P.K.; Deka, S.; Venugopala, K.N.; Singh, V.; Mailavaram, R.P.; Tekade, R.K. Current scenario and future prospect in the management of COVID-19. Current medicinal chemistry, 2021, 28(2), 284-307.
[http://dx.doi.org/10.2174/0929867327666200908113642]
[162]
Dudášová, A.; Keir, S.D.; Parsons, M.E.; Molleman, A.; Page, C.P. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig. Pulm. Pharmacol. Ther., 2013, 26(3), 373-379.
[http://dx.doi.org/10.1016/j.pupt.2013.02.002] [PMID: 23428645]
[163]
Gáll, Z.; Farkas, S.; Albert, Á.; Ferencz, E.; Vancea, S.; Urkon, M.; Kolcsár, M. Effects of chronic cannabidiol treatment in the rat chronic unpredictable mild stress model of depression. Biomolecules, 2020, 10(5), 801.
[http://dx.doi.org/10.3390/biom10050801] [PMID: 32455953]
[164]
Kossakowski, R.; Schlicker, E.; Toczek, M.; Weresa, J.; Malinowska, B. Cannabidiol affects the Bezold-Jarisch reflex via TRPV1 and 5-HT3 receptors and has peripheral sympathomimetic effects in spontaneously hypertensive and normotensive rats. Front. Pharmacol., 2019, 10, 500.
[http://dx.doi.org/10.3389/fphar.2019.00500] [PMID: 31178718]
[165]
Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; Wang, T.T.; Schwartz, R.E.; Lim, J.K.; Albrecht, R.A.; tenOever, B.R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5), 1036-1045.
[http://dx.doi.org/10.1016/j.cell.2020.04.026]
[166]
Zhou, Q.; Chen, V.; Shannon, C.P.; Wei, X.S.; Xiang, X.; Wang, X.; Wang, Z.H.; Tebbutt, S.J.; Kollmann, T.R.; Fish, E.N. Interferon-α2b treatment for COVID-19. Front. Immunol., 2020, 15(11), 1061.
[http://dx.doi.org/10.3389/fimmu.2020.01061]
[167]
Muthumalage, T.; Rahman, I. Cannabidiol differentially regulates basal and LPS-induced inflammatory responses in macrophages, lung epithelial cells, and fibroblasts. Toxicol. Appl. Pharmacol., 2019, 382, 114713.
[http://dx.doi.org/10.1016/j.taap.2019.114713]
[168]
Nguyen, L.C.; Yang, D.; Nicolaescu, V.; Best, T.J.; Ohtsuki, T.; Chen, S.N.; Friesen, J.B.; Drayman, N.; Mohamed, A.; Dann, C.; Silva, D.; Gula, H.; Jones, K.A.; Millis, J.M.; Dickinson, B.C.; Tay, S.; Oakes, S.A.; Pauli, G.F.; Meltzer, D.O.; Randall, G.; Rosner, M.R. Cannabidiol inhibits SARS-CoV-2 replication and promotes the host innate immune response. bioRxiv, 2021, 03(10), 432967.
[http://dx.doi.org/10.1101/2021.03.10.432967]
[169]
Peng, J.; Fan, M.; An, C.; Ni, F.; Huang, W.; Luo, J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic Clin. Pharmacol. Toxicol., 2022. Epub ahead of print
[http://dx.doi.org/10.1111/bcpt.13710] [PMID: 35083862]
[170]
Crippa, J.A.S.; Zuardi, A.W.; Guimarães, F.S.; Campos, A.C.; de Lima Osório, F.; Loureiro, S.R.; Dos Santos, R.G.; Souza, J.D.S.; Ushirohira, J.M.; Pacheco, J.C.; Ferreira, R.R.; Mancini Costa, K.C.; Scomparin, D.S.; Scarante, F.F.; Pires-Dos-Santos, I.; Mechoulam, R.; Kapczinski, F.; Fonseca, B.A.L.; Esposito, D.L.A.; Pereira-Lima, K.; Sen, S.; Andraus, M.H.; Hallak, J.E.C.; Litcanov, D.C.; Rodrigues, L.; Alves, T.F.; Coutinho, B.M. Efficacy and safety of cannabidiol plus standard care vs. standard care alone for the treatment of emotional exhaustion and burnout among frontline health care workers during the COVID-19 pandemic: A randomized clinical trial. JAMA Netw. Open, 2021, 4(8), e2120603.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.20603] [PMID: 34387679]
[171]
Vrechi, T.A.; Crunfli, F.; Costa, A.P.; Torrão, A.S. Cannabinoid Receptor Type 1 Agonist ACEA protects neurons from death and attenuates endoplasmic reticulum stress-related apoptotic pathway signaling. Neurotox. Res., 2018, 33(4), 846-855.
[http://dx.doi.org/10.1007/s12640-017-9839-1] [PMID: 29134561]
[172]
Kasatkina, L.A.; Rittchen, S.; Sturm, E.M. Neuroprotective and immunomodulatory action of the endocannabinoid system under neuroinflammation. Int. J. Mol. Sci., 2021, 22(11), 5431.
[http://dx.doi.org/10.3390/ijms22115431] [PMID: 34063947]
[173]
Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener., 2009, 4(1), 47.
[http://dx.doi.org/10.1186/1750-1326-4-47] [PMID: 19917131]
[174]
Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12, 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[175]
Domingues, A.V.; Pereira, I.M.; Vilaça-Faria, H.; Salgado, A.J.; Rodrigues, A.J.; Teixeira, F.G. Glial cells in Parkinson’s disease: Protective or deleterious? Cell. Mol. Life Sci., 2020, 77(24), 5171-5188.
[http://dx.doi.org/10.1007/s00018-020-03584-x] [PMID: 32617639]
[176]
Patricio, F.; Morales-Andrade, A.A.; Patricio-Martínez, A.; Limón, I.D. Cannabidiol as a therapeutic target: Evidence of its neuroprotective and neuromodulatory function in Parkinson’s disease. Front. Pharmacol., 2020, 11, 595635.
[http://dx.doi.org/10.3389/fphar.2020.595635] [PMID: 33384602]
[177]
Colombo, E.; Farina, C. Astrocytes: key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620.
[http://dx.doi.org/10.1016/j.it.2016.06.006] [PMID: 27443914]
[178]
Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487.
[http://dx.doi.org/10.1038/nature21029] [PMID: 28099414]
[179]
Benito, C.; Kim, W.K.; Chavarría, I.; Hillard, C.J.; Mackie, K.; Tolón, R.M.; Williams, K.; Romero, J. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J. Neurosci., 2005, 25(10), 2530-2536.
[http://dx.doi.org/10.1523/JNEUROSCI.3923-04.2005] [PMID: 15758162]
[180]
Stella, N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia, 2010, 58(9), 1017-1030.
[http://dx.doi.org/10.1002/glia.20983] [PMID: 20468046]
[181]
Oh, Y.T.; Lee, J.Y.; Lee, J.; Lee, J.H.; Kim, J.E.; Ha, J.; Kang, I. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells. Neurosci. Lett., 2010, 474(3), 148-153.
[http://dx.doi.org/10.1016/j.neulet.2010.03.026] [PMID: 20298753]
[182]
Vendel, E.; de Lange, E.C. Functions of the CB1 and CB 2 receptors in neuroprotection at the level of the blood-brain barrier. Neuromolecular Med., 2014, 16(3), 620-642.
[http://dx.doi.org/10.1007/s12017-014-8314-x] [PMID: 24929655]
[183]
Ehrhart, J.; Obregon, D.; Mori, T.; Hou, H.; Sun, N.; Bai, Y.; Klein, T.; Fernandez, F.; Tan, J.; Shytle, R.D. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation, 2005, 2(1), 29.
[http://dx.doi.org/10.1186/1742-2094-2-29] [PMID: 16343349]
[184]
Ma, L.; Jia, J.; Liu, X.; Bai, F.; Wang, Q.; Xiong, L. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling. Biochem. Biophys. Res. Commun., 2015, 458(1), 92-97.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.073] [PMID: 25637536]
[185]
Costa, B.; Giagnoni, G.; Franke, C.; Trovato, A.E.; Colleoni, M. Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation. Br. J. Pharmacol., 2004, 143(2), 247-250.
[http://dx.doi.org/10.1038/sj.bjp.0705920] [PMID: 15313881]
[186]
Premkumar, L.S.; Bishnoi, M. Disease-related changes in TRPV1 expression and its implications for drug development. Curr. Top. Med. Chem., 2011, 11(17), 2192-2209.
[http://dx.doi.org/10.2174/156802611796904834] [PMID: 21671875]
[187]
Singh, J.; Neary, J.P. Neuroprotection following concussion: The potential role for Cannabidiol. Can. J. Neurol. Sci., 2020, 47(3), 289-300.
[http://dx.doi.org/10.1017/cjn.2020.23] [PMID: 32029015]
[188]
Maroon, J.; Bost, J. Review of the neurological benefits of phytocannabinoids. Surg. Neurol. Int., 2018, 9(1), 91.
[http://dx.doi.org/10.4103/sni.sni_45_18] [PMID: 29770251]
[189]
Garcia-Garcia, A.L.; Meng, Q.; Canetta, S.; Gardier, A.M.; Guiard, B.P.; Kellendonk, C.; Dranovsky, A.; Leonardo, E.D. Serotonin signaling through prefrontal cortex 5-HT(1A) receptors during adolescence can determine baseline mood-related behaviors. Cell Rep., 2017, 18(5), 1144-1156.
[http://dx.doi.org/10.1016/j.celrep.2017.01.021] [PMID: 28147271]
[190]
Malinowska, B.; Baranowska-Kuczko, M.; Kicman, A.; Schlicker, E. Opportunities, challenges and pitfalls of using cannabidiol as an adjuvant drug in COVID-19. Int. J. Mol. Sci., 2021, 22(4), 1986.
[http://dx.doi.org/10.3390/ijms22041986] [PMID: 33671463]
[191]
Chapman, R.L.; Andurkar, S.V. A review of natural products, their effects on SARS-CoV-2 and their utility as lead compounds in the discovery of drugs for the treatment of COVID-19. Med. Chem. Res., 2021, 31(1), 1-12.
[http://dx.doi.org/10.1007/s00044-021-02826-2] [PMID: 34873386]
[192]
Corpetti, C.; Del Re, A.; Seguella, L.; Palenca, I.; Rurgo, S.; De Conno, B.; Pesce, M.; Sarnelli, G.; Esposito, G. Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2 cell line. Phytother. Res., 2021, 35(12), 6893-6903.
[http://dx.doi.org/10.1002/ptr.7302] [PMID: 34643000]
[193]
Russo, E.B.; Burnett, A.; Hall, B.; Parker, K.K. Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem. Res., 2005, 30(8), 1037-1043.
[http://dx.doi.org/10.1007/s11064-005-6978-1] [PMID: 16258853]
[194]
Pazos, M.R.; Mohammed, N.; Lafuente, H.; Santos, M.; Martínez-Pinilla, E.; Moreno, E.; Valdizan, E.; Romero, J.; Pazos, A.; Franco, R.; Hillard, C.J.; Alvarez, F.J.; Martínez-Orgado, J. Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology, 2013, 71, 282-291.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.027] [PMID: 23587650]
[195]
Bernardo, A.; Bianchi, D.; Magnaghi, V.; Minghetti, L. Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J. Neuropathol. Exp. Neurol., 2009, 68(7), 797-808.
[http://dx.doi.org/10.1097/NEN.0b013e3181aba2c1] [PMID: 19535992]
[196]
Scuderi, C.; Steardo, L.; Esposito, G. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement. Phytother. Res., 2014, 28(7), 1007-1013.
[http://dx.doi.org/10.1002/ptr.5095] [PMID: 24288245]
[197]
O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol., 2016, 173(12), 1899-1910.
[http://dx.doi.org/10.1111/bph.13497]
[198]
Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res., 2011, 2(4), 236-240.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[199]
Wang, D.; Shi, L.; Xin, W.; Xu, J.; Xu, J.; Li, Q.; Xu, Z.; Wang, J.; Wang, G.; Yao, W.; He, B.; Yang, Y.; Hu, M. Activation of PPARγ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo. Biochem. Biophys. Res. Commun., 2017, 486(3), 726-731.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.106] [PMID: 28342874]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy