Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

A Hypoxia-Regulated Retinal Pigment Epithelium-Specific Gene Therapy Vector Reduces Choroidal Neovascularization in a Mouse Model

Author(s): Yun Yuan*, Wen Kong, Xiao-Mei Liu and Guo-Hua Shi

Volume 22, Issue 5, 2022

Published on: 29 April, 2022

Page: [417 - 426] Pages: 10

DOI: 10.2174/1566523222666220405135135

Price: $65

Abstract

Background: Wet age-related macular degeneration (wAMD) is characterized by the presence of choroidal neovascularization (CNV). Although there are some clinical drugs targeting vascular endothelial growth factor (VEGF) and inhibiting CNV, two major side effects limit their application, including the excessive activity of anti-VEGF and frequent intraocular injections. To explore better treatment strategies, researchers developed a hypoxic modulator retinal pigment epithelium (RPE)- specific adeno-associated virus (AAV) vector expressing endostatin to inhibit CNV. However, the mechanism of endostatin is complex. Instead, soluble fms-like tyrosine kinase-1 (sFlt-1) can inhibit VEGF-induced angiogenesis through two simple and clear mechanisms, giving rise to sequestration of VEGF and forming an inactive heterodimer with the membrane-spanning isoforms of the VEGF receptor Flt-1 and kinase insert domain-containing receptor.

Objective: In this study, we chose sFlt-1 as a safer substitute to treat wAMD by inhibiting VEGFinduced angiogenesis.

Methods: The AAV2/8-Y733F-REG-RPE-sFlt-1 vector was delivered by intravitreal injection to the eyes of mice. AAV2/8-Y733F vector is a mutant of the AAV2/8 vector, and the REG-RPE promoter is a hypoxia-regulated RPE-specific promoter. Two animal models were used to evaluate the function of the vector.

Results: In the cobalt chloride-induced hypoxia model, the results demonstrated that the AAV2/8- Y733F-REG-RPE-sFlt-1 vector induced the expression of the sFlt-1 gene in RPE cells through hypoxia. In the laser-induced CNV model, the results demonstrated that the AAV2/8-Y733F-REG-RPE-sFlt- 1 vector reduced laser-induced CNV.

Conclusion: Hypoxia regulated, RPE-specific AAV vector-mediated sFlt-1 gene is a hypoxiaregulated antiangiogenic vector for wAMD.

Keywords: Age-related macular degeneration, choroidal neovascularization, hypoxia responsive elements, soluble fms-like tyrosine kinase-1, adeno-associated virus vector, gene therapy.

Graphical Abstract

[1]
Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med 2008; 358(24): 2606-17.
[http://dx.doi.org/10.1056/NEJMra0801537] [PMID: 18550876]
[2]
DeAngelis MM, Owen LA, Morrison MA, et al. Genetics of age-related macular degeneration (AMD). Hum Mol Genet 2017; 26(R1): R45-50.
[http://dx.doi.org/10.1093/hmg/ddx228] [PMID: 28854576]
[3]
Sorbera LA, Leeson PA, Bayes M. Ranibizumab - Treatment of age-related macular degeneration humanized monoclonal anti-VEGF antibodiy angiogenesis inhibitor. Drugs Future 2003; 28(6): 541-5.
[http://dx.doi.org/10.1358/dof.2003.028.06.738510]
[4]
Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, Venkatraman AS. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology 2005; 112(6): 1035-47.
[http://dx.doi.org/10.1016/j.ophtha.2005.02.007] [PMID: 15936441]
[5]
Dixon JA, Oliver SCN, Olson JL, Mandava N. VEGF Trap-Eye for the treatment of neovascular age-related macular degeneration. Expert Opin Investig Drugs 2009; 18(10): 1573-80.
[http://dx.doi.org/10.1517/13543780903201684] [PMID: 19694600]
[6]
Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye (Lond) 2013; 27(7): 787-94.
[http://dx.doi.org/10.1038/eye.2013.107] [PMID: 23722722]
[7]
Tabatabaii A, Ahmadraji A, Khodabande A, Mansouri M. Acute bilateral endophthalmitis following bilateral intravitreal bevacizumab (avastin) injection. Middle East Afr J Ophthalmol 2013; 20(1): 87-8.
[http://dx.doi.org/10.4103/0974-9233.106402] [PMID: 23580860]
[8]
Mozayan A, Farah S. Acute anterior uveitis following intravitreal injection of bevacizumab. Ophthalmic Surg Lasers Imaging Retina 2013; 44(1): 25-7.
[http://dx.doi.org/10.3928/23258160-20121221-08] [PMID: 23418730]
[9]
Williams PD, Chong D, Fuller T, Callanan D. NONINFEctious vitritis after intravitreal injection of anti-vegf agents: Variations in rates and presentation by medication. Retina 2016; 36(5): 909-13.
[http://dx.doi.org/10.1097/IAE.0000000000000801] [PMID: 27115856]
[10]
Ozsutcu M, Gulkilik G, Ayintap E, Altinisik M, Demirci G, Aras C. Intravitreal bevacizumab may increase diabetic macular edema in eyes with attached posterior vitreous. Case Rep Ophthalmol 2013; 4(1): 7-10.
[http://dx.doi.org/10.1159/000342873] [PMID: 23467022]
[11]
Tufan HA, Gencer B, Kara S. Macular hole after intravitreal bevacizumab injection for choroidal neovascularisation. Clin Exp Optom 2014; 97(2): 178-80.
[http://dx.doi.org/10.1111/cxo.12009] [PMID: 23331251]
[12]
Shin JY, Choi M, Chung B, Byeon SH. Pigment epithelial tears after ranibizumab injection in polypoidal choroidal vasculopathy and typical age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2015; 253(12): 2151-60.
[http://dx.doi.org/10.1007/s00417-015-2977-3] [PMID: 25744335]
[13]
Xu D, Hu L, Wang B, Wang F. Sudden visual loss in the untreated eye of a patient with neovascular glaucoma following an intravitreal bevacizumab injection: A case report. Oncol Lett 2013; 6(2): 445-7.
[http://dx.doi.org/10.3892/ol.2013.1382] [PMID: 24137344]
[14]
Caglar C, Kocamis SI, Durmus M. Isolated sixth nerve palsy after intravitreal ranibizumab injection. Cutan Ocul Toxicol 2016; 35(3): 248-50.
[http://dx.doi.org/10.3109/15569527.2015.1075998] [PMID: 26340018]
[15]
Grunwald JE, Daniel E, Huang J, et al. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2014; 121(1): 150-61.
[http://dx.doi.org/10.1016/j.ophtha.2013.08.015] [PMID: 24084496]
[16]
Arjamaa O, Nikinmaa M, Salminen A, Kaarniranta K. Regulatory role of HIF-1alpha in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev 2009; 8(4): 349-58.
[http://dx.doi.org/10.1016/j.arr.2009.06.002] [PMID: 19589398]
[17]
Cimmino F, Avitabile M, Lasorsa VA, et al. HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia. BMC Med Genet 2019; 20(1): 37.
[http://dx.doi.org/10.1186/s12881-019-0767-1] [PMID: 30808328]
[18]
Boast K, Binley K, Iqball S, et al. Characterization of physiologically regulated vectors for the treatment of ischemic disease. Hum Gene Ther 1999; 10(13): 2197-208.
[http://dx.doi.org/10.1089/10430349950017185] [PMID: 10498251]
[19]
Dougherty CJ, Smith GW, Dorey CK, Prentice HM, Webster KA, Blanks JC. Robust hypoxia-selective regulation of a retinal pigment epithelium-specific adeno-associated virus vector. Mol Vis 2008; 14: 471-80.
[PMID: 18334957]
[20]
Biswal MR, Prentice HM. Cell-specific gene therapy driven by an optimized hypoxia-regulated vector reduces choroidal neovascularization. J Mol Med (Berl) 2018; 96(10): 1107-18.
[http://dx.doi.org/10.1007/s00109-018-1683-0]
[21]
Bainbridge JW, Mistry A, Binley K, et al. Hypoxia-regulated transgene expression in experimental retinal and choroidal neovascularization. Gene Ther 2003; 10(12): 1049-54.
[http://dx.doi.org/10.1038/sj.gt.3301945] [PMID: 12776163]
[22]
Wang D, Tai PWL. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 2019; 18(5): 358-78.
[http://dx.doi.org/10.1038/s41573-019-0012-9]
[23]
Askou AL, Jakobsen TS, Corydon TJ. Retinal gene therapy: An eye-opener of the 21st century. Gene Ther 2021; 28(5): 209-16.
[http://dx.doi.org/10.1038/s41434-020-0168-2]
[24]
Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther 2002; 9(12): 804-13.
[http://dx.doi.org/10.1038/sj.gt.3301695] [PMID: 12040462]
[25]
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta 2015; 1850(12): 2422-38.
[http://dx.doi.org/10.1016/j.bbagen.2015.09.007] [PMID: 26367079]
[26]
Altiok EI, Browne S, Khuc E, et al. sFlt Multivalent conjugates inhibit angiogenesis and improve half-life in vivo. PLoS One 2016; 11(6): e0155990.
[http://dx.doi.org/10.1371/journal.pone.0155990] [PMID: 27257918]
[27]
Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993; 90(22): 10705-9.
[http://dx.doi.org/10.1073/pnas.90.22.10705] [PMID: 8248162]
[28]
Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996; 226(2): 324-8.
[http://dx.doi.org/10.1006/bbrc.1996.1355] [PMID: 8806634]
[29]
Rakoczy EP, Magno AL, Lai CM, et al. Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age-related macular degeneration. Am J Ophthalmol 2019; 204: 113-23.
[http://dx.doi.org/10.1016/j.ajo.2019.03.006] [PMID: 30878487]
[30]
Constable IJ, Pierce CM, Lai CM, et al. Phase 2a randomized clinical trial: Safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine 2016; 14: 168-75.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.016] [PMID: 27865764]
[31]
Chen H. Intron splicing-mediated expression of AAV Rep and Cap genes and production of AAV vectors in insect cells. Mol Ther 2008; 16(5): 924-30.
[http://dx.doi.org/10.1038/mt.2008.35]
[32]
Wang F, Cui X, Wang M, Xiao W, Xu R. A reliable and feasible qPCR strategy for titrating AAV vectors. Med Sci Monit Basic Res 2013; 19: 187-93.
[http://dx.doi.org/10.12659/MSMBR.883968] [PMID: 23828206]
[33]
He Y, Li H, Lu J, Shi GH, Zhang YD. Retina imaging by using compact line scanning quasi-confocal ophthalmoscope. Chin Opt Lett 2013; 11(2): 021101-3.
[http://dx.doi.org/10.3788/COL201311.021101]
[34]
Xi L, Taher M, Yin C, Salloum F, Kukreja RC. Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 2004; 287(6): H2369-75.
[http://dx.doi.org/10.1152/ajpheart.00422.2004] [PMID: 15284066]
[35]
Hickmott JW, Chen CY, Arenillas DJ, et al. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev 2016; 3: 16051.
[http://dx.doi.org/10.1038/mtm.2016.51] [PMID: 27556059]
[36]
Chen M, Rajapakse D, Fraczek M, Luo C, Forrester JV, Xu H. Retinal pigment epithelial cell multinucleation in the aging eye - a mechanism to repair damage and maintain homoeostasis. Aging Cell 2016; 15(3): 436-45.
[http://dx.doi.org/10.1111/acel.12447] [PMID: 26875723]
[37]
Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc 2006; 1(3): 1559-82.
[http://dx.doi.org/10.1038/nprot.2006.236] [PMID: 17406449]
[38]
Alegria-Schaffer A, Lodge A, Vattem K. Performing and optimizing Western blots with an emphasis on chemiluminescent detection. Methods Enzymol 2009; 463: 573-99.
[http://dx.doi.org/10.1016/S0076-6879(09)63033-0] [PMID: 19892193]
[39]
Tanaka K, Watanabe M, Tanigaki S, Iwashita M, Kobayashi Y. Tumor necrosis factor-α regulates angiogenesis of BeWo cells via synergy of PlGF/VEGFR1 and VEGF-A/VEGFR2 axes. Placenta 2018; 74: 20-7.
[http://dx.doi.org/10.1016/j.placenta.2018.12.009] [PMID: 30591201]
[40]
Lambert V, Lecomte J, Hansen S, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 2013; 8(11): 2197-211.
[http://dx.doi.org/10.1038/nprot.2013.135] [PMID: 24136346]
[41]
Shah RS, Soetikno BT, Lajko M, Fawzi AA. A mouse model for laser-induced choroidal neovascularization. J Vis Exp 2015. e53502(106): e53502.
[http://dx.doi.org/10.3791/53502] [PMID: 26779879]
[42]
Claybon A, Bishop AJ. Dissection of a mouse eye for a whole mount of the retinal pigment epithelium. J Vis Exp 2011; (48): 2563.
[http://dx.doi.org/10.3791/2563] [PMID: 21403630]
[43]
Mori K, Ando A, Gehlbach P, et al. Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am J Pathol 2001; 159(1): 313-20.
[http://dx.doi.org/10.1016/S0002-9440(10)61697-5] [PMID: 11438478]
[44]
Zhong L, Li B, Mah CS, et al. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105(22): 7827-32.
[http://dx.doi.org/10.1073/pnas.0802866105] [PMID: 18511559]
[45]
Yuan Y, Hilliard G, Ferguson T, Millhorn DE. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem 2003; 278(18): 15911-6.
[http://dx.doi.org/10.1074/jbc.M300463200] [PMID: 12606543]
[46]
Lai CM, Shen WY, Brankov M, et al. Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol Ther 2005; 12: 659-68.
[http://dx.doi.org/10.1016/j.ymthe.2005.04.022]
[47]
Schor IE, Gómez Acuña LI, Kornblihtt AR. Coupling between transcription and alternative splicing. Cancer Treat Res 2013; 158: 1-24.
[http://dx.doi.org/10.1007/978-3-642-31659-3_1] [PMID: 24222352]
[48]
Aslanzadeh V, Huang Y, Sanguinetti G, Beggs JD. Corrigendum: Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast. Genome Res 2018. 28: 606.602.
[http://dx.doi.org/10.1101/gr.236265.118]
[49]
Nevo O, Lee DK, Caniggia I. Attenuation of VEGFR-2 expression by sFlt-1 and low oxygen in human placenta. PLoS One 2013; 8(11): e81176.
[http://dx.doi.org/10.1371/journal.pone.0081176] [PMID: 24260556]
[50]
Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors. Nat Protoc 2006; 1(3): 1412-28.
[http://dx.doi.org/10.1038/nprot.2006.207] [PMID: 17406430]
[51]
Madrakhimov SB, Yang JY, Ahn DH, Han JW, Ha TH, Park TK. Peripapillary intravitreal injection improves aav-mediated retinal transduction. Mol Ther Methods Clin Dev 2020; 17: 647-56.
[http://dx.doi.org/10.1016/j.omtm.2020.03.018] [PMID: 32300611]
[52]
Takahashi K, Igarashi T, Miyake K, et al. Improved intravitreal AAV-mediated inner retinal gene transduction after surgical internal limiting membrane peeling in cynomolgus monkeys. Genome Res 2017; 25: 296-302.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.008]
[53]
Georgiadis A, Duran Y, Ribeiro J, et al. Development of an optimized AAV2/5 gene therapy vector for Leber congenital amaurosis owing to defects in RPE65. Gene Ther 2016; 23(12): 857-62.
[http://dx.doi.org/10.1038/gt.2016.66] [PMID: 27653967]
[54]
Huang S, Liang J, Yam GH, Lu Z, Pang CP, Chen H. Comparison of dextran perfusion and GSI-B4 isolectin staining in a mouse model of oxygen-induced retinopathy. Eye Sci 2015; 30(2): 70-4.
[PMID: 26902065]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy