Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

miR-638: A Promising Cancer Biomarker with Therapeutic Potential

Author(s): Elham Hasheminasabgorji, Mohammad Amir Mishan, Mohammad Amin Khazeei Tabari and Abouzar Bagheri*

Volume 23, Issue 5, 2023

Published on: 15 July, 2022

Page: [377 - 389] Pages: 13

DOI: 10.2174/1566524022666220405125900

Price: $65

Abstract

Background: There is an unmet need to improve the diagnosis of cancer with precise treatment strategies. Therefore, more powerful diagnostic, prognostic, and therapeutic biomarkers are needed to overcome tumor cells. microRNAs (miRNAs, miRs), as a class of small non-coding RNAs, play essential roles in cancer through the tumor-suppressive or oncogenic effects by post-transcriptional regulation of their targets. Many studies have provided shreds of evidence on aberrantly expressed miRNAs in numerous cancers and have shown that miRNAs could play potential roles as diagnostic, prognostic, and even therapeutic biomarkers in patients with cancers. Findings have revealed that miR-638 over or underexpression might play a critical role in cancer initiation, development, and progression. However, the mechanistic effects of miR-638 on cancer cells are still controversial.

Conclusion: In the present review, we have focused on the diagnostic, prognostic, and therapeutic potentials of miR-638 and discussed its mechanistic roles in various types of cancers.

Keywords: Cancer, prognosis, miR-638, diagnosis, gene regulation, biomarker.

Next »
[1]
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin Epigenetics 2018; 10(1): 59.
[http://dx.doi.org/10.1186/s13148-018-0492-1] [PMID: 29713393]
[2]
Karley D, Gupta D, Tiwari A. Biomarker for cancer: A great promise for future. World J Oncol 2011; 2(4): 151-7.
[PMID: 29147241]
[3]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[4]
Mishan MA, Khazeei Tabari MA, Zargari M, Bagheri A. MicroRNAs in the anticancer effects of celecoxib: A systematic review. Eur J Pharmacol 2020; 882: 173325.
[http://dx.doi.org/10.1016/j.ejphar.2020.173325] [PMID: 32615181]
[5]
Hosseini SM, Soltani BM, Tavallaei M, et al. Clinically significant dysregulation of hsa-miR-30d-5p and hsa-let-7b expression in patients with surgically resected non-small cell lung cancer. Avicenna J Med Biotechnol 2018; 10(2): 98-104.
[PMID: 29849986]
[6]
Ghalehnoei H, Bagheri A, Fakhar M, Mishan MA. Circulatory microRNAs: Promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur J Clin Microbiol Infect Dis 2020; 39(3): 395-402.
[http://dx.doi.org/10.1007/s10096-019-03715-8] [PMID: 31617024]
[7]
Mahrooz A, Mackness M, Bagheri A, Ghaffari-Cherati M, Masoumi P. The epigenetic regulation of paraoxonase 1 (PON1) as an important enzyme in HDL function: The missing link between environmental and genetic regulation. Clin Biochem 2019; 73: 1-10.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.07.010] [PMID: 31351988]
[8]
Akbari Kordkheyli V, Khonakdar Tarsi A, Mishan MA, et al. Effects of quercetin on microRNAs: A mechanistic review. J Cell Biochem 2019; 120(8): 12141-55.
[http://dx.doi.org/10.1002/jcb.28663] [PMID: 30957271]
[9]
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59(12): 722-35.
[http://dx.doi.org/10.1002/gcc.22889] [PMID: 32706406]
[10]
Wang F, Lou JF, Cao Y, et al. miR-638 is a new biomarker for outcome prediction of non-small cell lung cancer patients receiving chemotherapy. Exp Mol Med 2015; 47(5): e162.
[http://dx.doi.org/10.1038/emm.2015.17] [PMID: 25952770]
[11]
Tan X, Peng J, Fu Y, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res 2014; 16(5): 435.
[http://dx.doi.org/10.1186/s13058-014-0435-5] [PMID: 25228385]
[12]
Xu B, Teng LH, Silva SD, et al. The significance of dynamin 2 expression for prostate cancer progression, prognostication, and therapeutic targeting. Cancer Med 2014; 3(1): 14-24.
[http://dx.doi.org/10.1002/cam4.168] [PMID: 24402972]
[13]
Jaiswal R, Luk F, Gong J, Mathys J-M, Grau GER, Bebawy M. Microparticle conferred microRNA profiles--implications in the transfer and dominance of cancer traits. Mol Cancer 2012; 11(1): 37.
[http://dx.doi.org/10.1186/1476-4598-11-37] [PMID: 22682234]
[14]
Tay Y, Tan SM, Karreth FA, Lieberman J, Pandolfi PP. Characterization of dual PTEN and p53-targeting microRNAs identifies microRNA-638/Dnm2 as a two-hit oncogenic locus. Cell Rep 2014; 8(3): 714-22.
[http://dx.doi.org/10.1016/j.celrep.2014.06.064] [PMID: 25088422]
[15]
Feng H, Liu KW, Guo P, et al. Dynamin 2 mediates PDGFRα-SHP-2-promoted glioblastoma growth and invasion. Oncogene 2012; 31(21): 2691-702.
[http://dx.doi.org/10.1038/onc.2011.436] [PMID: 21996738]
[16]
Eppinga RD, Krueger EW, Weller SG, Zhang L, Cao H, McNiven MA. Increased expression of the large GTPase dynamin 2 potentiates metastatic migration and invasion of pancreatic ductal carcinoma. Oncogene 2012; 31(10): 1228-41.
[http://dx.doi.org/10.1038/onc.2011.329] [PMID: 21841817]
[17]
Shi M, Jiang Y, Yang L, Yan S, Wang YG, Lu XJ. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J Cell Biochem 2018; 119(6): 4711-6.
[http://dx.doi.org/10.1002/jcb.26650] [PMID: 29278659]
[18]
Cheng J, Chen Y, Zhao P, et al. Dysregulation of miR-638 in hepatocellular carcinoma and its clinical significance. Oncol Lett 2017; 13(5): 3859-65.
[http://dx.doi.org/10.3892/ol.2017.5882] [PMID: 28529597]
[19]
Shigoka M, Tsuchida A, Matsudo T, et al. Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol Int 2010; 60(5): 351-7.
[http://dx.doi.org/10.1111/j.1440-1827.2010.02526.x] [PMID: 20518884]
[20]
Zhang Y, Zhang D, Jiang J, Dong L. Loss of miR-638 promotes invasion and epithelial-mesenchymal transition by targeting SOX2 in hepatocellular carcinoma. Oncol Rep 2017; 37(1): 323-32.
[http://dx.doi.org/10.3892/or.2016.5273] [PMID: 27878280]
[21]
Ye W, Li J, Fang G, et al. Expression of microRNA 638 and sex-determining region Y-box 2 in hepatocellular carcinoma: Association between clinicopathological features and prognosis. Oncol Lett 2018; 15(5): 7255-64.
[http://dx.doi.org/10.3892/ol.2018.8208] [PMID: 29731884]
[22]
Liu X, Wang T, Wakita T, Yang W. Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology 2010; 398(1): 57-67.
[http://dx.doi.org/10.1016/j.virol.2009.11.036] [PMID: 20006370]
[23]
Tamori A, Murakami Y, Kubo S, et al. MicroRNA expression in hepatocellular carcinoma after the eradication of chronic hepatitis virus C infection using interferon therapy. Hepatol Res 2016; 46(3): E26-35.
[http://dx.doi.org/10.1111/hepr.12518] [PMID: 25788219]
[24]
Wan Y, Cui R, Gu J, et al. Identification of four oxidative stress-responsive microRNAs miR-34a-5p miR-1915-3p miR-638 and miR-150-3p in hepatocellular carcinoma. Oxid Med Cell Longev 2017; 2017: 5189138.
[http://dx.doi.org/10.1155/2017/5189138] [PMID: 28811864]
[25]
Cheng J, Chen Y, Zhao P, et al. Downregulation of miRNA-638 promotes angiogenesis and growth of hepatocellular carcinoma by targeting VEGF. Oncotarget 2016; 7(21): 30702-11.
[http://dx.doi.org/10.18632/oncotarget.8930] [PMID: 27120793]
[26]
Sun-Wada G-H, Wada Y. Vacuolar-type proton pump ATPases: Acidification and pathological relationships. Histol Histopathol 2013; 28(7): 805-15.
[PMID: 23460142]
[27]
Morimura T, Fujita K, Akita M, Nagashima M, Satomi A. The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma. Pediatr Surg Int 2008; 24(10): 1087-94.
[http://dx.doi.org/10.1007/s00383-008-2229-2] [PMID: 18712525]
[28]
Lu X, Chen L, Chen Y, Shao Q, Qin W. Bafilomycin A1 inhibits the growth and metastatic potential of the BEL-7402 liver cancer and HO-8910 ovarian cancer cell lines and induces alterations in their microRNA expression. Exp Ther Med 2015; 10(5): 1829-34.
[http://dx.doi.org/10.3892/etm.2015.2758] [PMID: 26640557]
[29]
Lu Y, Zhang R, Liu S, Zhao Y, Gao J, Zhu L. ZT-25, a new vacuolar H(+)-ATPase inhibitor, induces apoptosis and protective autophagy through ROS generation in HepG2 cells. Eur J Pharmacol 2016; 771: 130-8.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.026] [PMID: 26689625]
[30]
Li J, Wang Y, Wang L, et al. Identification of rifampin-regulated functional modules and related microRNAs in human hepatocytes based on the protein interaction network. BMC Genomics 2016; 17(7) (Suppl. 7): 517.
[http://dx.doi.org/10.1186/s12864-016-2909-6] [PMID: 27557147]
[31]
Kubota S, Chiba M, Watanabe M, Sakamoto M, Watanabe N. Secretion of small/microRNAs including miR-638 into extracellular spaces by sphingomyelin phosphodiesterase 3. Oncol Rep 2015; 33(1): 67-73.
[http://dx.doi.org/10.3892/or.2014.3605] [PMID: 25394686]
[32]
Liu X-N, Wang S, Yang Q, Wang Y-J, Chen D-X, Zhu X-X. ESC reverses epithelial mesenchymal transition induced by transforming growth factor-β via inhibition of Smad signal pathway in HepG2 liver cancer cells. Cancer Cell Int 2015; 15(1): 114.
[http://dx.doi.org/10.1186/s12935-015-0265-2] [PMID: 26692820]
[33]
Liu X, Yang Q, Zhang G, et al. Anti-tumor pharmacological evaluation of extracts from stellera chamaejasme L based on hollow fiber assay. BMC Complement Altern Med 2014; 14(1): 116.
[http://dx.doi.org/10.1186/1472-6882-14-116] [PMID: 24684953]
[34]
Zhao P, Zhang BL, Liu K, Qin B, Li ZH. Overexpression of miR-638 attenuated the effects of hypoxia/reoxygenation treatment on cell viability, cell apoptosis and autophagy by targeting ATG5 in the human cardiomyocytes. Eur Rev Med Pharmacol Sci 2018; 22(23): 8462-71.
[PMID: 30556888]
[35]
Morii A, Ogawa R, Watanabe A, et al. Utilization of microRNAs with decreased expression levels in response to X-ray irradiation for fine-tuning radiation-controlled gene regulation. Int J Mol Med 2013; 32(1): 9-16.
[http://dx.doi.org/10.3892/ijmm.2013.1360] [PMID: 23612713]
[36]
Xu Q, Zhang Q, Dong M, Yu Y. MicroRNA-638 inhibits the progression of breast cancer through targeting HOXA9 and suppressing Wnt/β-cadherin pathway. World J Surg Oncol 2021; 19(1): 247.
[http://dx.doi.org/10.1186/s12957-021-02363-7] [PMID: 34416888]
[37]
Li M, Wang J, Liu H. Downregulation of miR-638 promotes progression of breast cancer and is associated with prognosis of breast cancer patients. OncoTargets Ther 2018; 11: 6871-7.
[http://dx.doi.org/10.2147/OTT.S182034] [PMID: 30349320]
[38]
Nicoloso MS, Sun H, Spizzo R, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res 2010; 70(7): 2789-98.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3541] [PMID: 20332227]
[39]
Zavala V, Pérez-Moreno E, Tapia T, Camus M, Carvallo P. miR-146a and miR-638 in BRCA1-deficient triple negative breast cancer tumors, as potential biomarkers for improved overall survival. Cancer Biomark 2016; 16(1): 99-107.
[http://dx.doi.org/10.3233/CBM-150545] [PMID: 26835710]
[40]
Shi M, Ma F, Liu J, et al. A functional BRCA1 coding sequence genetic variant contributes to prognosis of triple-negative breast cancer, especially after radiotherapy. Breast Cancer Res Treat 2017; 166(1): 109-16.
[http://dx.doi.org/10.1007/s10549-017-4395-1] [PMID: 28744749]
[41]
Zhang Y, Han G, Fan B, et al. Green tea (-)-epigallocatechin-3-gallate down-regulates VASP expression and inhibits breast cancer cell migration and invasion by attenuating Rac1 activity. Eur J Pharmacol 2009; 606(1-3): 172-9.
[http://dx.doi.org/10.1016/j.ejphar.2008.12.033] [PMID: 19171136]
[42]
Wu Q, Wang C, Lu Z, Guo L, Ge Q. Analysis of serum genome-wide microRNAs for breast cancer detection. Clin Chim Acta 2012; 413(13-14): 1058-65.
[http://dx.doi.org/10.1016/j.cca.2012.02.016] [PMID: 22387599]
[43]
Tang M, Tian Y, Li D, et al. TNF-α mediated increase of HIF-1α inhibits VASP expression, which reduces alveolar-capillary barrier function during acute lung injury (ALI). PLoS One 2014; 9(7): e102967.
[http://dx.doi.org/10.1371/journal.pone.0102967] [PMID: 25051011]
[44]
Su K, Tian Y, Wang J, et al. HIF-1α acts downstream of TNF-α to inhibit vasodilator-stimulated phosphoprotein expression and modulates the adhesion and proliferation of breast cancer cells. DNA Cell Biol 2012; 31(6): 1078-87.
[http://dx.doi.org/10.1089/dna.2011.1563] [PMID: 22320863]
[45]
Han G, Fan B, Zhang Y, et al. Positive regulation of migration and invasion by vasodilator-stimulated phosphoprotein via Rac1 pathway in human breast cancer cells. Oncol Rep 2008; 20(4): 929-39.
[PMID: 18813837]
[46]
Hu P-C, Li K, Tian Y-H, et al. CREB1/Lin28/miR-638/VASP Interactive Network Drives the Development of Breast Cancer. Int J Biol Sci 2019; 15(12): 2733-49.
[http://dx.doi.org/10.7150/ijbs.36854] [PMID: 31754343]
[47]
Lin Q-Y, Wang J-Q, Wu L-L, Zheng W-E, Chen P-R. miR-638 represses the stem cell characteristics of breast cancer cells by targeting E2F2. Breast Cancer 2019; 1-12.
[PMID: 31410735]
[48]
Ko CCH, Chia WK, Selvarajah GT, Cheah YK, Wong YP, Tan GC. The role of breast cancer stem cell-related biomarkers as prognostic factors. Diagnostics (Basel) 2020; 10(9): 721.
[http://dx.doi.org/10.3390/diagnostics10090721] [PMID: 32961774]
[49]
Ghafouri-Fard S, Hajiesmaeili M, Shoorei H, Bahroudi Z, Taheri M, Sharifi G. The impact of lncRNAs and miRNAs in regulation of function of cancer stem cells and progression of cancer. Front Cell Dev Biol 2021; 9: 696820.
[http://dx.doi.org/10.3389/fcell.2021.696820] [PMID: 34368145]
[50]
Ren Y, Chen Y, Liang X, Lu Y, Pan W, Yang M. MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett 2017; 390: 126-36.
[http://dx.doi.org/10.1016/j.canlet.2017.01.009] [PMID: 28108314]
[51]
Zhao G, Li Y, Wang T. Potentiation of docetaxel sensitivity by miR-638 via regulation of STARD10 pathway in human breast cancer cells. Biochem Biophys Res Commun 2017; 487(2): 255-61.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.045] [PMID: 28412359]
[52]
Ma K, Pan X, Fan P, et al. Loss of miR-638 in vitro promotes cell invasion and a mesenchymal-like transition by influencing SOX2 expression in colorectal carcinoma cells. Mol Cancer 2014; 13(1): 118.
[http://dx.doi.org/10.1186/1476-4598-13-118] [PMID: 24885288]
[53]
Zhang J, Fei B, Wang Q, et al. MicroRNA-638 inhibits cell proliferation, invasion and regulates cell cycle by targeting tetraspanin 1 in human colorectal carcinoma. Oncotarget 2014; 5(23): 12083-96.
[http://dx.doi.org/10.18632/oncotarget.2499] [PMID: 25301729]
[54]
Kahlert C, Klupp F, Brand K, et al. Invasion front-specific expression and prognostic significance of microRNA in colorectal liver metastases. Cancer Sci 2011; 102(10): 1799-807.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02023.x] [PMID: 21722265]
[55]
Gattolliat C-H, Uguen A, Pesson M, et al. MicroRNA and targeted mRNA expression profiling analysis in human colorectal adenomas and adenocarcinomas. Eur J Cancer 2015; 51(3): 409-20.
[http://dx.doi.org/10.1016/j.ejca.2014.12.007] [PMID: 25586944]
[56]
Yin Y, Song M, Gu B, et al. Systematic analysis of key miRNAs and related signaling pathways in colorectal tumorigenesis. Gene 2016; 578(2): 177-84.
[http://dx.doi.org/10.1016/j.gene.2015.12.015] [PMID: 26692142]
[57]
Lu M, Zhou X, Zheng C-G, Liu F-J. Expression profiling of miR-96 miR-584 and miR-422a in colon cancer and their potential involvement in colon cancer pathogenesis. Trop J Pharm Res 2016; 15(12): 2535-42.
[http://dx.doi.org/10.4314/tjpr.v15i12.1]
[58]
Ogata-Kawata H, Izumiya M, Kurioka D, et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 2014; 9(4): e92921.
[http://dx.doi.org/10.1371/journal.pone.0092921] [PMID: 24705249]
[59]
Hosseini M, Khatamianfar S, Hassanian SM, et al. Exosome-encapsulated microRNAs as potential circulating biomarkers in colon cancer. Curr Pharm Des 2017; 23(11): 1705-9.
[http://dx.doi.org/10.2174/1381612822666161201144634] [PMID: 27908272]
[60]
Yan S, Han B, Gao S, et al. Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer. Oncotarget 2017; 8(36): 60149-58.
[http://dx.doi.org/10.18632/oncotarget.18557] [PMID: 28947960]
[61]
Yan S, Dang G, Zhang X, et al. Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients. Oncotarget 2017; 8(42): 72220-6.
[http://dx.doi.org/10.18632/oncotarget.19689] [PMID: 29069781]
[62]
Chiba M, Kawamura C, Kubota S, Sato K, Sakai A. Exosomes released from pancreatic cancer cells are heterogeneous particle populations. Biomed Res (Aligarh) 2018; 29(14): 2988-91.
[63]
Zhang W, Huang Z, Huang M, Zeng J. Predicting severe enterovirus 71-infected hand foot and mouth disease: Cytokines and chemokines. Mediators Inflamm 2020.
[64]
Nie Z, Cao F, Li B, Yuan L. EV71 infection causes differential expression of microRNAs in colon carcinoma cells. Int J Clin Exp Pathol 2016; 9(10): 10363-72.
[65]
Shen Y, Ding Y, Ma Q, et al. Identification of novel circulating miRNA biomarkers for the diagnosis of esophageal squamous cell carcinoma and squamous dysplasia. Epidemiol Prev Biomarkers 2019.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-1199]
[66]
Liu N, Cui RX, Sun Y, et al. A four-miRNA signature identified from genome-wide serum miRNA profiling predicts survival in patients with nasopharyngeal carcinoma. Int J Cancer 2014; 134(6): 1359-68.
[http://dx.doi.org/10.1002/ijc.28468] [PMID: 23999999]
[67]
Tang K-L, Tang H-Y, Du Y, Tian T, Xiong SJ. MiR-638 suppresses the progression of oral squamous cell carcinoma through wnt/β-catenin pathway by targeting phospholipase D1. Artif Cells Nanomed Biotechnol 2019; 47(1): 3278-85.
[http://dx.doi.org/10.1080/21691401.2019.1647222] [PMID: 31379206]
[68]
Zhang X, Wei J, Zhou L, et al. A functional BRCA1 coding sequence genetic variant contributes to risk of esophageal squamous cell carcinoma. Carcinogenesis 2013; 34(10): 2309-13.
[http://dx.doi.org/10.1093/carcin/bgt213] [PMID: 23749772]
[69]
Tanaka M, Oikawa K, Takanashi M, et al. Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One 2009; 4(5): e5532.
[http://dx.doi.org/10.1371/journal.pone.0005532] [PMID: 19440243]
[70]
Liu X, Li P, Yun Y, et al. Prognostic value of plasma miR-638 in patients with acute myeloid leukemia. Int J Clin Exp Pathol 2017; 10(1): 550-5.
[71]
Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer 2010; 103(2): 275-84.
[http://dx.doi.org/10.1038/sj.bjc.6605751] [PMID: 20628397]
[72]
Lin Y, Li D, Liang Q, et al. miR-638 regulates differentiation and proliferation in leukemic cells by targeting cyclin-dependent kinase 2. J Biol Chem 2015; 290(3): 1818-28.
[http://dx.doi.org/10.1074/jbc.M114.599191] [PMID: 25451924]
[73]
He M, Lin Y, Tang Y, et al. miR-638 suppresses DNA damage repair by targeting SMC1A expression in terminally differentiated cells. Aging (Albany NY) 2016; 8(7): 1442-56.
[http://dx.doi.org/10.18632/aging.100998] [PMID: 27405111]
[74]
Zhu D-X, Zhu W, Fang C, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 2012; 33(7): 1294-301.
[http://dx.doi.org/10.1093/carcin/bgs179] [PMID: 22610076]
[75]
Zhang J, Zhao A, Sun L, et al. Selective surface marker and miRNA profiles of CD34+ blast-derived microvesicles in chronic myelogenous leukemia. Oncol Lett 2017; 14(2): 1866-74.
[http://dx.doi.org/10.3892/ol.2017.6336] [PMID: 28789422]
[76]
Shi Y, Liu T-Y, Song M-Y, Chen L, Liu J, Gao S. Reproducibility of quantitative real-time PCR analysis in microRNA expression profiling and comparisons with microarray assays in diffuse large B-cell lymphoma patients. Int J Clin Exp Med 2019; 12(5): 5776-84.
[77]
Wilting SM, Verlaat W, Jaspers A, et al. Methylation-mediated transcriptional repression of microRNAs during cervical carcinogenesis. Epigenetics 2013; 8(2): 220-8.
[http://dx.doi.org/10.4161/epi.23605] [PMID: 23324622]
[78]
Wei H, Zhang JJ, Tang QL. MiR-638 inhibits cervical cancer metastasis through Wnt/β-catenin signaling pathway and correlates with prognosis of cervical cancer patients. Eur Rev Med Pharmacol Sci 2017; 21(24): 5587-93.
[PMID: 29271990]
[79]
Kan CW, Hahn MA, Gard GB, et al. Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer 2012; 12(1): 627.
[http://dx.doi.org/10.1186/1471-2407-12-627] [PMID: 23272653]
[80]
Saral MA, Tuncer SB, Odemis DA, et al. New biomarkers in peripheral blood of patients with ovarian cancer: High expression levels of miR-16-5p miR-17-5p and miR-638. Arch Gynecol Obstet 2022; 305(1): 193-201.
[http://dx.doi.org/10.1007/s00404-021-06138-z] [PMID: 34370073]
[81]
Abdollahi A, Rahmati S, Ghaderi B, et al. A combined panel of circulating microRNA as a diagnostic tool for detection of the non-small cell lung cancer. QJM 2019; 112(10): 779-85.
[http://dx.doi.org/10.1093/qjmed/hcz158] [PMID: 31236600]
[82]
Xu P, Wang L, Xie X, et al. Hsa_circ_0001869 promotes NSCLC progression via sponging miR-638 and enhancing FOSL2 expression. Aging (Albany NY) 2020; 12(23): 23836-48.
[http://dx.doi.org/10.18632/aging.104037] [PMID: 33221767]
[83]
Fang K, Chen X, Qiu F, Xu J, Xiong H, Zhang Z. Serumderived exosomes-mediated circular RNA ARHGAP10 modulates the progression of non-small-cell lung cancer through the miR-638/FAM83F axis. Cancer Biother Radiopharm 2020; cbr.2019.3534.
[http://dx.doi.org/10.1089/cbr.2019.3534] [PMID: 32783691]
[84]
Zhang Y, Yao H, Li Y, et al. Circular RNA TADA2A promotes proliferation and migration via modulating of miR-638/KIAA0101 signal in non-small cell lung cancer. Oncol Rep 2021; 46(3): 1-12.
[http://dx.doi.org/10.3892/or.2021.8152]
[85]
Chen W-S, Hou J-N, Guo Y-B, et al. Bostrycin inhibits proliferation of human lung carcinoma A549 cells via downregulation of the PI3K/Akt pathway. J Exp Clin Cancer Res 2011; 30(1): 17.
[http://dx.doi.org/10.1186/1756-9966-30-17] [PMID: 21303527]
[86]
Zhang Y, Zhang G-B, Xu X-M, et al. Suppression of growth of A549 lung cancer cells by waltonitone and its mechanisms of action. Oncol Rep 2012; 28(3): 1029-35.
[http://dx.doi.org/10.3892/or.2012.1869] [PMID: 22710478]
[87]
Kim KB, Kim K, Bae S, et al. MicroRNA-1290 promotes asiatic acid induced apoptosis by decreasing BCL2 protein level in A549 non small cell lung carcinoma cells. Oncol Rep 2014; 32(3): 1029-36.
[http://dx.doi.org/10.3892/or.2014.3319] [PMID: 25016979]
[88]
Xia Y, Wu Y, Liu B, Wang P, Chen Y. Downregulation of miR-638 promotes invasion and proliferation by regulating SOX2 and induces EMT in NSCLC. FEBS Lett 2014; 588(14): 2238-45.
[http://dx.doi.org/10.1016/j.febslet.2014.05.002] [PMID: 24842609]
[89]
Li D, Wang Q, Liu C, et al. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 2012; 125(2): 382-91.
[http://dx.doi.org/10.1093/toxsci/kfr299] [PMID: 22048643]
[90]
Chang H, Kim N, Park JH, et al. Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut Liver 2015; 9(2): 188-96.
[http://dx.doi.org/10.5009/gnl13371] [PMID: 25167801]
[91]
Yoon SO, Kim EK, Lee M, et al. NOVA1 inhibition by miR-146b-5p in the remnant tissue microenvironment defines occult residual disease after gastric cancer removal. Oncotarget 2016; 7(3): 2475-95.
[http://dx.doi.org/10.18632/oncotarget.6542] [PMID: 26673617]
[92]
Shen Y, Chen H, Gao L, et al. MiR-638 acts as a tumor suppressor gene in gastric cancer. Oncotarget 2017; 8(64): 108170-80.
[http://dx.doi.org/10.18632/oncotarget.22567] [PMID: 29296232]
[93]
Zhang J, Bian Z, Zhou J, et al. MicroRNA-638 inhibits cell proliferation by targeting phospholipase D1 in human gastric carcinoma. Protein Cell 2015; 6(9): 680-8.
[http://dx.doi.org/10.1007/s13238-015-0187-8] [PMID: 26250158]
[94]
Zhao LY, Tong DD, Xue M, et al. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis 2017; 6(7): e368.
[http://dx.doi.org/10.1038/oncsis.2017.60] [PMID: 28759023]
[95]
Zhao LY, Yao Y, Han J, et al. miR-638 suppresses cell proliferation in gastric cancer by targeting Sp2. Dig Dis Sci 2014; 59(8): 1743-53.
[http://dx.doi.org/10.1007/s10620-014-3087-5] [PMID: 24623314]
[96]
Wang K, Xu L, Pan L, Xu K, Li G. The functional BRCA1 rs799917 genetic polymorphism is associated with gastric cancer risk in a Chinese Han population. Tumour Biol 2015; 36(1): 393-7.
[http://dx.doi.org/10.1007/s13277-014-2655-9] [PMID: 25266802]
[97]
Sand M, Skrygan M, Sand D, et al. Expression of microRNAs in basal cell carcinoma. Br J Dermatol 2012; 167(4): 847-55.
[http://dx.doi.org/10.1111/j.1365-2133.2012.11022.x] [PMID: 22540308]
[98]
Bhattacharya A, Schmitz U, Raatz Y, et al. miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget 2015; 6(5): 2966-80.
[http://dx.doi.org/10.18632/oncotarget.3070] [PMID: 25650662]
[99]
Ludwig N, Nourkami-Tutdibi N, Backes C, et al. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer 2015; 62(8): 1360-7.
[http://dx.doi.org/10.1002/pbc.25481] [PMID: 25787821]
[100]
Zuntini M, Salvatore M, Pedrini E, et al. MicroRNA profiling of multiple osteochondromas: Identification of disease-specific and normal cartilage signatures. Clin Genet 2010; 78(6): 507-16.
[http://dx.doi.org/10.1111/j.1399-0004.2010.01490.x] [PMID: 20662852]
[101]
Wang XX, Liu J, Tang YM, Hong L, Zeng Z, Tan GH. MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma. Tumour Biol 2017; 37(12): 16367-75.
[http://dx.doi.org/10.1007/s13277-016-5379-1] [PMID: 28050866]
[102]
Zhou X, Chen J, Xiao Q, et al. MicroRNA-638 inhibits cell growth and tubule formation by suppressing VEGFA expression in human Ewing sarcoma cells. Biosci Rep 2018; 38(1): BSR20171017.
[http://dx.doi.org/10.1042/BSR20171017] [PMID: 29263143]
[103]
Parasramka MA, Ali S, Banerjee S, Deryavoush T, Sarkar FH, Gupta S. Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures. Mol Nutr Food Res 2013; 57(2): 235-48.
[http://dx.doi.org/10.1002/mnfr.201200297] [PMID: 23293055]
[104]
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008; 319(5867): 1244-7.
[http://dx.doi.org/10.1126/science.1153124] [PMID: 18309083]
[105]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285(23): 17442-52.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[106]
Castro-Magdonel BE, Orjuela M, Camacho J, et al. miRNome landscape analysis reveals a 30 miRNA core in retinoblastoma. BMC Cancer 2017; 17(1): 458.
[http://dx.doi.org/10.1186/s12885-017-3421-3] [PMID: 28668075]
[107]
Song B-K, Kim KM, Choi K-D, Im WT. Production of the rare ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by enzymatic conversion combined with acid treatment and evaluation of its anti-cancer activity. J Microbiol Biotechnol 2017; 27(7): 1233-41.
[http://dx.doi.org/10.4014/jmb.1701.01077] [PMID: 28478658]
[108]
Li M, Zhang D, Cheng J, Liang J, Yu F. Ginsenoside Rh2 inhibits proliferation but promotes apoptosis and autophagy by down-regulating microRNA-638 in human retinoblastoma cells. Exp Mol Pathol 2019; 108: 17-23.
[http://dx.doi.org/10.1016/j.yexmp.2019.03.004] [PMID: 30853612]
[109]
Liu W, Ma W, Yuan Y, Zhang Y, Sun S. Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302. Biochem Biophys Res Commun 2018; 500(4): 846-51.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.172] [PMID: 29698681]
[110]
Chen Z, Duan X. hsa_circ_0000177-miR-638-FZD7-Wnt signaling Cascade contributes to the malignant behaviors in glioma. DNA Cell Biol 2018; 37(9): 791-7.
[http://dx.doi.org/10.1089/dna.2018.4294] [PMID: 30010402]
[111]
Zheng DH, Wang X, Lu LN, et al. MiR-638 serves as a tumor suppressor by targeting HOXA9 in glioma. Eur Rev Med Pharmacol Sci 2018; 22(22): 7798-806.
[PMID: 30536324]
[112]
Wei Z, Zhou C, Liu M, et al. MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary 2015; 18(5): 710-21.
[http://dx.doi.org/10.1007/s11102-015-0648-3] [PMID: 25862551]
[113]
Fabbri M. MicroRNAs and cancer: Towards a personalized medicine. Curr Mol Med 2013; 13(5): 751-6.
[http://dx.doi.org/10.2174/1566524011313050006] [PMID: 23642056]
[114]
Hu L, Huang M, Yuan Q, Kong F. Prognostic and clinicopathological significance of miR-638 in cancer patients: A meta-analysis. Medicine (Baltimore) 2021; 100(15): e25441.
[http://dx.doi.org/10.1097/MD.0000000000025441] [PMID: 33847647]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy