Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Gut Microbiota Might Act as a Potential Therapeutic Pathway in COVID-19

Author(s): Nahid Hosseinzadeh Gharajeh, Hadi Pourjafar, Hoda Derakhshanian, Hamed Mohammadi, Abolfazl Barzegari and Solat Eslami*

Volume 23, Issue 15, 2022

Published on: 23 May, 2022

Page: [1837 - 1850] Pages: 14

DOI: 10.2174/1389201023666220404183859

Price: $65

conference banner
Abstract

It has been very recently suggested that individuals with chronic gut inflammation are highly susceptible to COVID-19. They constitute the serious cases of COVID-19, in which inflammatory cytokine storm is observed. On the contrary, the healthy gut microbiota is linked with low chronic gut and systemic inflammation. This raises the idea that maintenance of the healthy gut microbiota and prevention of gut microbial dysbiosis in COVID-19 patients might avoid the increased cytokine storm, which in turn might reduce the mortality rate. It has been shown that the modulation of the gut microbiota is an effective strategy to strengthen immunity and might be a possible treatment for individuals with viral infections. Currently, there is no clinical data considering the impact of the modulation of the gut microbiota on the treatment of COVID-19. We hypothesize that targeting the gut microbiota might be a novel therapeutic approach or at least a supportive therapy. In the present review article, we described the interaction between SARS-CoV-2 and gut microbiota dysbiosis through two possible mechanisms, including aberrant immune activation and aberrant mammalian target of rapamycin (mTOR) activation. Further, the disruption of the gastrointestinal reninangiotensin system (GI RAS), dysregulation of the coagulation and fibrinolytic systems, and the activity of human serine proteases in COVID-19 pathogenesis were addressed. We also provided possible strategies to restore all the discussed aspects via gut microbiota modulation.

Keywords: Gut microbiota modulation, COVID-19, dysbiosis, renin-angiotensin system, gut inflammation, viral infection.

Graphical Abstract

[1]
Zhu, H.; Wei, L.; Niu, P. The novel coronavirus outbreak in Wuhan, China. Glob. Health Res. Policy, 2020, 5(1), 6.
[http://dx.doi.org/10.1186/s41256-020-00135-6] [PMID: 32226823]
[2]
Organization, W.H. World health organization (WHO) coronavirus disease (COVID-19) dashboard. 2020.
[3]
Organization, W.H. COVID-19 weekly epidemiological update, 9 March 2021. 2021.
[4]
Alamdari, N.M.; Afaghi, S.; Rahimi, F.S.; Tarki, F.E.; Tavana, S.; Zali, A.; Fathi, M.; Besharat, S.; Bagheri, L.; Pourmotahari, F.; Irvani, S.S.N.; Dabbagh, A.; Mousavi, S.A. Mortality risk factors among hospitalized COVID-19 patients in a major referral center in Iran. Tohoku J. Exp. Med., 2020, 252(1), 73-84.
[http://dx.doi.org/10.1620/tjem.252.73] [PMID: 32908083]
[5]
Zaki, N.; Alashwal, H.; Ibrahim, S. Association of hypertension, diabetes, stroke, cancer, kidney disease, and high-cholesterol with COVID-19 disease severity and fatality: A systematic review. Diabetes Metab. Syndr., 2020, 14(5), 1133-1142.
[http://dx.doi.org/10.1016/j.dsx.2020.07.005] [PMID: 32663789]
[6]
Gou, W. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.22.20076091]
[7]
Parekh, R.; Zhang, X.; Ungaro, R.C.; Brenner, E.J.; Agrawal, M.; Colombel, J.F.; Kappelman, M.D. Presence of comorbidities associated with severe coronavirus infection in patients with inflammatory bowel disease. Dig. Dis. Sci., 2021, 1-7.
[http://dx.doi.org/10.1007/s10620-021-07104-0] [PMID: 34181165]
[8]
Mohammadi, S.; Moosaie, F.; Aarabi, M.H. Understanding the immunologic characteristics of neurologic manifestations of SARS-CoV-2 and potential immunological mechanisms. Mol. Neurobiol., 2020, 57(12), 5263-5275.
[http://dx.doi.org/10.1007/s12035-020-02094-y] [PMID: 32869183]
[9]
Jose, R.J.; Manuel, A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir. Med., 2020, 8(6), e46-e47.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[10]
Brown, K.; DeCoffe, D.; Molcan, E.; Gibson, D.L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 2012, 4(8), 1095-1119.
[http://dx.doi.org/10.3390/nu4081095] [PMID: 23016134]
[11]
Hosseini Jazani, N.; Shahabi, S. Gut microbiota, dysbiosis and immune system; A brief review. International Journal of Research in Applied and Basic Medical Sciences, 2019, 5(2), 77-81.
[12]
Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Huang, L.; Zhang, Y.; Zhou, M.; Chen, M.; Mi, M. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio, 2017, 8(3), e00470-17.
[http://dx.doi.org/10.1128/mBio.00470-17] [PMID: 28536285]
[13]
Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 2019, 11(10), 2393.
[http://dx.doi.org/10.3390/nu11102393] [PMID: 31591348]
[14]
Lee, H.; Ko, G. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome. Sci. Rep., 2016, 6(1), 25835.
[http://dx.doi.org/10.1038/srep25835] [PMID: 27180604]
[15]
Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[16]
Esmaeil Amini, M.; Shomali, N.; Bakhshi, A.; Rezaei, S.; Hemmatzadeh, M.; Hosseinzadeh, R.; Eslami, S.; Babaie, F.; Aslani, S.; Torkamandi, S.; Mohammadi, H. Gut microbiome and multiple sclerosis: New insights and perspective. Int. Immunopharmacol., 2020, 88, 107024.
[http://dx.doi.org/10.1016/j.intimp.2020.107024] [PMID: 33182024]
[17]
Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis., 2020, 94, 91-95.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[18]
Ferreira, C.; Viana, S.D.; Reis, F. Is gut microbiota dysbiosis a predictor of increased susceptibility to poor outcome of COVID-19 patients? An update. Microorganisms, 2020, 9(1), 53.
[http://dx.doi.org/10.3390/microorganisms9010053] [PMID: 33379162]
[19]
Obukhov, A.G.; Stevens, B.R.; Prasad, R.; Li Calzi, S.; Boulton, M.E.; Raizada, M.K.; Oudit, G.Y.; Grant, M.B. SARS-CoV-2 infections and ACE2: Clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. Diabetes, 2020, 69(9), 1875-1886.
[http://dx.doi.org/10.2337/dbi20-0019] [PMID: 32669391]
[20]
Hess, D.C.; Eldahshan, W.; Rutkowski, E. COVID-19-related stroke. Transl. Stroke Res., 2020, 11(3), 322-325.
[http://dx.doi.org/10.1007/s12975-020-00818-9] [PMID: 32378030]
[21]
Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 2020, 126(10), 1456-1474.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[22]
Evangelista, F.S. Physical exercise and the renin angiotensin system: Prospects in the COVID-19. Front. Physiol., 2020, 11, 561403.
[http://dx.doi.org/10.3389/fphys.2020.561403] [PMID: 33178033]
[23]
South, A.M.; Diz, D.I.; Chappell, M.C. COVID-19, ACE2, and the cardiovascular consequences. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(5), H1084-H1090.
[http://dx.doi.org/10.1152/ajpheart.00217.2020] [PMID: 32228252]
[24]
Méry, G.; Epaulard, O.; Borel, A.L.; Toussaint, B.; Le Gouellec, A. COVID-19: Underlying adipokine storm and angiotensin 1-7 umbrella. Front. Immunol., 2020, 11, 1714.
[http://dx.doi.org/10.3389/fimmu.2020.01714] [PMID: 32793244]
[25]
Buford, T.W.; Sun, Y.; Roberts, L.M.; Banerjee, A.; Peramsetty, S.; Knighton, A.; Verma, A.; Morgan, D.; Torres, G.E.; Li, Q.; Carter, C.S. Angiotensin (1-7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. Geroscience, 2020, 42(5), 1307-1321.
[http://dx.doi.org/10.1007/s11357-020-00196-y] [PMID: 32451847]
[26]
Oliveira, L.P.; Guimarães, V.H.D.; Oliveira, J.R.; Guimarães, A.L.S.; de Paula, A.M.B.; Bader, M.; Santos, R.A.S.D.; Santos, S.H.S. Genetic deletion of the angiotensin-(1-7) receptor Mas leads to alterations in gut villi length modulating TLR4/PI3K/AKT and produces microbiome dysbiosis. Neuropeptides, 2020, 82, 102056.
[http://dx.doi.org/10.1016/j.npep.2020.102056] [PMID: 32505463]
[27]
Cole-Jeffrey, C.T.; Liu, M.; Katovich, M.J.; Raizada, M.K.; Shenoy, V. ACE2 and microbiota: Emerging targets for cardiopulmonary disease therapy. J. Cardiovasc. Pharmacol., 2015, 66(6), 540-550.
[http://dx.doi.org/10.1097/FJC.0000000000000307] [PMID: 26322922]
[28]
Hashimoto, T.; Perlot, T.; Rehman, A.; Trichereau, J.; Ishiguro, H.; Paolino, M.; Sigl, V.; Hanada, T.; Hanada, R.; Lipinski, S.; Wild, B.; Camargo, S.M.; Singer, D.; Richter, A.; Kuba, K.; Fukamizu, A.; Schreiber, S.; Clevers, H.; Verrey, F.; Rosenstiel, P.; Penninger, J.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, 487(7408), 477-481.
[http://dx.doi.org/10.1038/nature11228] [PMID: 22837003]
[29]
Perlot, T.; Penninger, J.M. ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect., 2013, 15(13), 866-873.
[http://dx.doi.org/10.1016/j.micinf.2013.08.003] [PMID: 23962453]
[30]
He, L.; Du, J.; Chen, Y.; Liu, C.; Zhou, M.; Adhikari, S.; Rubin, D.T.; Pekow, J.; Li, Y.C. Renin-angiotensin system promotes colonic inflammation by inducing TH17 activation via JAK2/STAT pathway. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 316(6), G774-G784.
[http://dx.doi.org/10.1152/ajpgi.00053.2019] [PMID: 30995068]
[31]
Mönkemüller, K.; Fry, L.; Rickes, S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev. Esp. Enferm. Dig., 2020, 112(5), 383-388.
[PMID: 32343593]
[32]
Cardinale, V.; Capurso, G.; Ianiro, G.; Gasbarrini, A.; Arcidiacono, P.G.; Alvaro, D. Intestinal permeability changes with bacterial translocation as key events modulating systemic host immune response to SARS-CoV-2: A working hypothesis. Dig. Liver Dis., 2020, 52(12), 1383-1389.
[http://dx.doi.org/10.1016/j.dld.2020.09.009] [PMID: 33023827]
[33]
Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell. Infect. Microbiol., 2018, 8, 13.
[http://dx.doi.org/10.3389/fcimb.2018.00013] [PMID: 29468141]
[34]
Xiao, L.; Sakagami, H.; Miwa, N. ACE2: The key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: Demon or angel? Viruses, 2020, 12(5), 491.
[http://dx.doi.org/10.3390/v12050491] [PMID: 32354022]
[35]
Li, N.; Ma, W.T.; Pang, M.; Fan, Q.L.; Hua, J.L. The commensal microbiota and viral infection: A comprehensive review. Front. Immunol., 2019, 10, 1551.
[http://dx.doi.org/10.3389/fimmu.2019.01551] [PMID: 31333675]
[36]
Deriu, E.; Boxx, G.M.; He, X.; Pan, C.; Benavidez, S.D.; Cen, L.; Rozengurt, N.; Shi, W.; Cheng, G. Influenza virus affects intestinal microbiota and secondary salmonella infection in the gut through type I interferons. PLoS Pathog., 2016, 12(5), e1005572.
[http://dx.doi.org/10.1371/journal.ppat.1005572] [PMID: 27149619]
[37]
Wang, J.; Li, F.; Wei, H.; Lian, Z.X.; Sun, R.; Tian, Z. Respiratory influenza virus infection induces intestinal immune injury via microbio-ta-mediated Th17 cell-dependent inflammation. J. Exp. Med., 2014, 211(12), 2397-2410.
[http://dx.doi.org/10.1084/jem.20140625] [PMID: 25366965]
[38]
Park, A.; Iwasaki, A. Type I and Type III interferons - Induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe, 2020, 27(6), 870-878.
[http://dx.doi.org/10.1016/j.chom.2020.05.008] [PMID: 32464097]
[39]
Saghazadeh, A.; Rezaei, N. Immune-epidemiological parameters of the novel coronavirus - a perspective. Expert Rev. Clin. Immunol., 2020, 16(5), 465-470.
[http://dx.doi.org/10.1080/1744666X.2020.1750954] [PMID: 32237901]
[40]
Carrillo-Salinas, F.J.; Mestre, L.; Mecha, M.; Feliú, A.; Del Campo, R.; Villarrubia, N.; Espejo, C.; Montalbán, X.; Álvarez-Cermeño, J.C.; Villar, L.M.; Guaza, C. Gut dysbiosis and neuroimmune responses to brain infection with Theiler’s murine encephalomyelitis virus. Sci. Rep., 2017, 7(1), 44377.
[http://dx.doi.org/10.1038/srep44377] [PMID: 28290524]
[41]
Howell, M.C.; Green, R.; McGill, A.R.; Dutta, R.; Mohapatra, S.; Mohapatra, S.S. SARS-CoV-2-induced gut microbiome dysbiosis: Implications for colorectal cancer. Cancers (Basel), 2021, 13(11), 2676.
[http://dx.doi.org/10.3390/cancers13112676] [PMID: 34071688]
[42]
Xu, K. Management of corona virus disease-19 (COVID-19): The Zhejiang experience. J. Zhejiang Univ., 2020, 49(2), 147-157.
[43]
Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; Lai, C.K.C.; Chen, Z.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Ling, L.; Joynt, G.; Hui, D.S.C.; Chan, F.K.L.; Chan, P.K.S.; Ng, S.C. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 2020, 159(3), 944-955.e8.
[http://dx.doi.org/10.1053/j.gastro.2020.05.048] [PMID: 32442562]
[44]
Hamming, I. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570]
[45]
Villapol, S. Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome. Transl. Res., 2020, 226, 57-69.
[http://dx.doi.org/10.1016/j.trsl.2020.08.004] [PMID: 32827705]
[46]
Krishnamurthy, S.; Lockey, R.F.; Kolliputi, N. Soluble ACE2 as a potential therapy for COVID-19. Am. J. Physiol. Cell Physiol., 2021, 320(3), C279-C281.
[http://dx.doi.org/10.1152/ajpcell.00478.2020] [PMID: 33502950]
[47]
Viana, S.D.; Nunes, S.; Reis, F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities - Role of gut microbiota dysbiosis. Ageing Res. Rev., 2020, 62, 101123.
[http://dx.doi.org/10.1016/j.arr.2020.101123] [PMID: 32683039]
[48]
Verma, A.; Zhu, P.; Xu, K.; Du, T.; Liao, S.; Liang, Z.; Raizada, M.K.; Li, Q. Angiotensin-(1–7) expressed from Lactobacillus bacteria protect diabetic retina in mice. Transl. Vis. Sci. Technol., 2020, 9(13), 20-20.
[http://dx.doi.org/10.1167/tvst.9.13.20] [PMID: 33344064]
[49]
Carter, C.S. Therapeutic delivery of Ang (1–7) via genetically modified probiotic: A dosing study. J. Gerontol., 2020, 75(7), 1299-1303.
[50]
Pasanen, L.; Launonen, H.; Siltari, A.; Korpela, R.; Vapaatalo, H.; Salmenkari, H.; Forsgard, R.A. Age-related changes in the local intestinal renin-angiotensin system in normotensive and spontaneously hypertensive rats. J. Physiol. Pharmacol., 2019, 70(2), 199-208.
[PMID: 31356181]
[51]
Garg, M.; Angus, P.W.; Burrell, L.M.; Herath, C.; Gibson, P.R.; Lubel, J.S. Review article: The pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment. Pharmacol. Ther., 2012, 35(4), 414-428.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04971.x] [PMID: 22221317]
[52]
Fändriks, L. The renin-angiotensin system and the gastrointestinal mucosa. Acta Physiol. (Oxf.), 2011, 201(1), 157-167.
[http://dx.doi.org/10.1111/j.1748-1716.2010.02165.x] [PMID: 20626369]
[53]
Shi, Y.; Liu, T.; He, L.; Dougherty, U.; Chen, L.; Adhikari, S.; Alpert, L.; Zhou, G.; Liu, W.; Wang, J.; Deb, D.K.; Hart, J.; Liu, S.Q.; Kwon, J.; Pekow, J.; Rubin, D.T.; Zhao, Q.; Bissonnette, M.; Li, Y.C. Activation of the renin-angiotensin system promotes colitis development. Sci. Rep., 2016, 6(1), 27552.
[http://dx.doi.org/10.1038/srep27552] [PMID: 27271344]
[54]
Salmenkari, H.; Pasanen, L.; Linden, J.; Korpela, R.; Vapaatalo, H. Beneficial anti-inflammatory effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker in the treatment of dextran sulfate sodium-induced colitis in mice. J. Physiol. Pharmacol., 2018, 69(4), 1-12.
[PMID: 30415241]
[55]
Erickson, R.H.; Suzuki, Y.; Sedlmayer, A.; Song, I.S.; Kim, Y.S. Rat intestinal angiotensin-converting enzyme: Purification, properties, expression, and function. Am. J. Physiol., 1992, 263(4 Pt 1), G466-G473.
[PMID: 1329552]
[56]
Ward, P.E.; Sheridan, M.A. Angiotensin I converting enzyme of rat intestinal and vascular surface membrane. Biochim. Biophys. Acta, 1982, 716(2), 208-216.
[http://dx.doi.org/10.1016/0304-4165(82)90270-7] [PMID: 6284250]
[57]
Spak, E.; Hallersund, P.; Edebo, A.; Casselbrant, A.; Fändriks, L. The human duodenal mucosa harbors all components for a local renin angiotensin system. Clin. Sci. (Lond.), 2019, 133(8), 971-982.
[http://dx.doi.org/10.1042/CS20180877] [PMID: 30988133]
[58]
Lu, C.C.; Ma, K.L.; Ruan, X.Z.; Liu, B.C. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. Int. J. Med. Sci., 2018, 15(8), 816-822.
[http://dx.doi.org/10.7150/ijms.25543] [PMID: 30008592]
[59]
Hallersund, P.; Elfvin, A.; Helander, H.F.; Fändriks, L. The expression of renin-angiotensin system components in the human gastric mucosa. J. Renin Angiotensin Aldosterone Syst., 2011, 12(1), 54-64.
[http://dx.doi.org/10.1177/1470320310379066] [PMID: 20739374]
[60]
Lu, C.C.; Hu, Z.B.; Wang, R.; Hong, Z.H.; Lu, J.; Chen, P.P.; Zhang, J.X.; Li, X.Q.; Yuan, B.Y.; Huang, S.J.; Ruan, X.Z.; Liu, B.C.; Ma, K.L. Gut microbiota dysbiosis-induced activation of the intrarenal renin-angiotensin system is involved in kidney injuries in rat diabetic nephropathy. Acta Pharmacol. Sin., 2020, 41(8), 1111-1118.
[http://dx.doi.org/10.1038/s41401-019-0326-5] [PMID: 32203081]
[61]
Chen, Y.; Zhu, Y.; Wu, C.; Lu, A.; Deng, M.; Yu, H.; Huang, C.; Wang, W.; Li, C.; Zhu, Q.; Wang, L. Gut dysbiosis contributes to high fructose-induced salt-sensitive hypertension in Sprague-Dawley rats. Nutrition, 2020, 75-76, 110766.
[http://dx.doi.org/10.1016/j.nut.2020.110766] [PMID: 32305658]
[62]
Zhang, Y. The diversity of gut microbiota in type 2 diabetes with or without cognitive impairment. Aging Clin. Exp. Res., 2020, 1-13.
[PMID: 32301029]
[63]
Garvin, M.R.; Alvarez, C.; Miller, J.I.; Prates, E.T.; Walker, A.M.; Amos, B.K.; Mast, A.E.; Justice, A.; Aronow, B.; Jacobson, D. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife, 2020, 9, e59177.
[http://dx.doi.org/10.7554/eLife.59177] [PMID: 32633718]
[64]
Whyte, C.S.; Morrow, G.B.; Mitchell, J.L.; Chowdary, P.; Mutch, N.J. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J. Thromb. Haemost., 2020, 18(7), 1548-1555.
[http://dx.doi.org/10.1111/jth.14872] [PMID: 32329246]
[65]
Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Dekker Nitert, M. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension, 2016, 68(4), 974-981.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07910] [PMID: 27528065]
[66]
Hiippala, K.; Barreto, G.; Burrello, C.; Diaz-Basabe, A.; Suutarinen, M.; Kainulainen, V.; Bowers, J.R.; Lemmer, D.; Engelthaler, D.M.; Eklund, K.K.; Facciotti, F.; Satokari, R. Novel Odoribacter splanchnicus strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front. Microbiol., 2020, 11, 575455.
[http://dx.doi.org/10.3389/fmicb.2020.575455] [PMID: 33281770]
[67]
Boesmans, L.; Valles-Colomer, M.; Wang, J.; Eeckhaut, V.; Falony, G.; Ducatelle, R.; Van Immerseel, F.; Raes, J.; Verbeke, K. Butyrate producers as potential next-generation probiotics: Safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers. mSystems, 2018, 3(6), e00094-18.
[http://dx.doi.org/10.1128/mSystems.00094-18] [PMID: 30417112]
[68]
Archer, D.L.; Kramer, D.C. The Use of Microbial Accessible and Fermentable Carbohydrates and/or Butyrate as Supportive Treatment for Patients With Coronavirus SARS-CoV-2 Infection. Front. Med. (Lausanne), 2020, 7, 292.
[http://dx.doi.org/10.3389/fmed.2020.00292] [PMID: 32582742]
[69]
Zang, R.; Gomez Castro, M.F.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; Diamond, M.S.; Ciorba, M.A.; Whelan, S.P.J.; Ding, S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol., 2020, 5(47), eabc3582.
[http://dx.doi.org/10.1126/sciimmunol.abc3582] [PMID: 32404436]
[70]
Mkaouar, H.; Akermi, N.; Mariaule, V.; Boudebbouze, S.; Gaci, N.; Szukala, F.; Pons, N.; Marquez, J.; Gargouri, A.; Maguin, E.; Rhimi, M. Siropins, novel serine protease inhibitors from gut microbiota acting on human proteases involved in inflammatory bowel diseases. Microb. Cell Fact., 2016, 15(1), 201.
[http://dx.doi.org/10.1186/s12934-016-0596-2] [PMID: 27894344]
[71]
Mohamed, M.M.; El-Shimy, I.A.; Hadi, M.A. Neutrophil Elastase Inhibitors: A potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications?; Springer, 2020.
[72]
Cannalire, R.; Stefanelli, I.; Cerchia, C.; Beccari, A.R.; Pelliccia, S.; Summa, V. SARS-CoV-2 entry inhibitors: Small molecules and peptides targeting virus or host cells. Int. J. Mol. Sci., 2020, 21(16), 5707.
[http://dx.doi.org/10.3390/ijms21165707] [PMID: 32784899]
[73]
Ivanov, D.; Emonet, C.; Foata, F.; Affolter, M.; Delley, M.; Fisseha, M.; Blum-Sperisen, S.; Kochhar, S.; Arigoni, F. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J. Biol. Chem., 2006, 281(25), 17246-17252.
[http://dx.doi.org/10.1074/jbc.M601678200] [PMID: 16627467]
[74]
Feng, Y.; Huang, Y.; Wang, Y.; Wang, P.; Song, H.; Wang, F. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS One, 2019, 14(6), e0218384.
[http://dx.doi.org/10.1371/journal.pone.0218384] [PMID: 31211803]
[75]
Domdom, M-A.; Brest, P.; Grosjean, I.; Roméo, B.; Landi, M.T.; Gal, J.; Klionsky, D.J.; Hofman, P.; Mograbi, B. A multifactorial score including autophagy for prognosis and care of COVID-19 patients. Autophagy, 2020, 16(12), 2276-2281.
[http://dx.doi.org/10.1080/15548627.2020.1844433] [PMID: 33249989]
[76]
Le Bastard, Q.; Al-Ghalith, G.A.; Grégoire, M.; Chapelet, G.; Javaudin, F.; Dailly, E.; Batard, E.; Knights, D.; Montassier, E. Systematic review: Human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther., 2018, 47(3), 332-345.
[http://dx.doi.org/10.1111/apt.14451] [PMID: 29205415]
[77]
Zhang, J.; Zhang, J.; Wang, R. Gut microbiota modulates drug pharmacokinetics. Drug Metab. Rev., 2018, 50(3), 357-368.
[http://dx.doi.org/10.1080/03602532.2018.1497647] [PMID: 30227749]
[78]
Eslami, S.; Barzgari, Z.; Saliani, N.; Saeedi, N.; Barzegari, A. Annual fasting; the early calories restriction for cancer prevention. Bioimpacts, 2012, 2(4), 213-215.
[PMID: 23678462]
[79]
Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474(7351), 327-336.
[http://dx.doi.org/10.1038/nature10213] [PMID: 21677749]
[80]
Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3066-3090.
[http://dx.doi.org/10.1080/10408398.2020.1792826] [PMID: 32691606]
[81]
Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032), 970-974.
[http://dx.doi.org/10.1126/science.1198719] [PMID: 21596990]
[82]
Yatsunenko, T. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402), 222-227.
[http://dx.doi.org/10.1038/nature11053]
[83]
Arumugam, M. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[http://dx.doi.org/10.1038/nature09944]
[84]
Hansen, L.B.S.; Roager, H.M.; Søndertoft, N.B.; Gøbel, R.J.; Kristensen, M.; Vallès-Colomer, M.; Vieira-Silva, S.; Ibrügger, S.; Lind, M.V.; Mærkedahl, R.B.; Bahl, M.I.; Madsen, M.L.; Havelund, J.; Falony, G.; Tetens, I.; Nielsen, T.; Allin, K.H.; Frandsen, H.L.; Hartmann, B.; Holst, J.J.; Sparholt, M.H.; Holck, J.; Blennow, A.; Moll, J.M.; Meyer, A.S.; Hoppe, C.; Poulsen, J.H.; Carvalho, V.; Sagnelli, D.; Dalgaard, M.D.; Christensen, A.F.; Lydolph, M.C.; Ross, A.B.; Villas-Bôas, S.; Brix, S.; Sicheritz-Pontén, T.; Buschard, K.; Linneberg, A.; Rumessen, J.J.; Ekstrøm, C.T.; Ritz, C.; Kristiansen, K.; Nielsen, H.B.; Vestergaard, H.; Færgeman, N.J.; Raes, J.; Frøkiær, H.; Hansen, T.; Lauritzen, L.; Gupta, R.; Licht, T.R.; Pedersen, O. A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat. Commun., 2018, 9(1), 4630.
[http://dx.doi.org/10.1038/s41467-018-07019-x] [PMID: 30425247]
[85]
Sloan, T.J.; Jalanka, J.; Major, G.A.D.; Krishnasamy, S.; Pritchard, S.; Abdelrazig, S.; Korpela, K.; Singh, G.; Mulvenna, C.; Hoad, C.L.; Marciani, L.; Barrett, D.A.; Lomer, M.C.E.; de Vos, W.M.; Gowland, P.A.; Spiller, R.C. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS One, 2018, 13(7), e0201410.
[http://dx.doi.org/10.1371/journal.pone.0201410] [PMID: 30048547]
[86]
Quigley, E.M.M. Nutraceuticals as modulators of gut microbiota: Role in therapy. Br. J. Pharmacol., 2020, 177(6), 1351-1362.
[http://dx.doi.org/10.1111/bph.14902] [PMID: 31659751]
[87]
Bailey, M.A.; Holscher, H.D. Microbiome-mediated effects of the Mediterranean diet on inflammation. Adv. Nutr., 2018, 9(3), 193-206.
[http://dx.doi.org/10.1093/advances/nmy013] [PMID: 29767701]
[88]
Danneskiold-Samsøe, N.B.; Dias de Freitas Queiroz Barros, H.; Santos, R.; Bicas, J.L.; Cazarin, C.B.B.; Madsen, L.; Kristiansen, K.; Pastore, G.M.; Brix, S.; Maróstica Júnior, M.R. Interplay between food and gut microbiota in health and disease. Food Res. Int., 2019, 115, 23-31.
[http://dx.doi.org/10.1016/j.foodres.2018.07.043] [PMID: 30599936]
[89]
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K.; Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(8), 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[90]
Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J.L. Health effects and sources of prebiotic dietary fiber. Curr. Dev. Nutr., 2018, 2(3), nzy005.
[http://dx.doi.org/10.1093/cdn/nzy005] [PMID: 30019028]
[91]
Nami, Y.; Haghshenas, B.; Vaseghi Bakhshayesh, R.; Mohammadzadeh Jalaly, H.; Lotfi, H.; Eslami, S.; Hejazi, M.A. Novel autochthonous lactobacilli with probiotic aptitudes as a main starter culture for probiotic fermented milk. Lebensm. Wiss. Technol., 2018, 98, 85-93.
[http://dx.doi.org/10.1016/j.lwt.2018.08.035]
[92]
Schrezenmeir, J.; de Vrese, M. Probiotics, prebiotics, and synbiotics--approaching a definition. Am. J. Clin. Nutr., 2001, 73(2)(Suppl.), 361S-364S.
[http://dx.doi.org/10.1093/ajcn/73.2.361s] [PMID: 11157342]
[93]
Kolmeder, C.A.; Salojärvi, J.; Ritari, J.; de Been, M.; Raes, J.; Falony, G.; Vieira-Silva, S.; Kekkonen, R.A.; Corthals, G.L.; Palva, A.; Salonen, A.; de Vos, W.M. Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS One, 2016, 11(4), e0153294.
[http://dx.doi.org/10.1371/journal.pone.0153294] [PMID: 27070903]
[94]
Eslami, S.; Hadjati, J.; Motevaseli, E.; Mirzaei, R.; Farashi Bonab, S.; Ansaripour, B.; Khoramizadeh, M.R. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs. APMIS, 2016, 124(8), 697-710.
[http://dx.doi.org/10.1111/apm.12556] [PMID: 27245496]
[95]
Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, 61(2), 160-174.
[http://dx.doi.org/10.1159/000342079] [PMID: 23037511]
[96]
Kanauchi, O.; Andoh, A.; AbuBakar, S.; Yamamoto, N. Probiotics and paraprobiotics in viral infection: Clinical application and effects on the innate and acquired immune systems. Curr. Pharm. Des., 2018, 24(6), 710-717.
[http://dx.doi.org/10.2174/1381612824666180116163411] [PMID: 29345577]
[97]
Boge, T.; Rémigy, M.; Vaudaine, S.; Tanguy, J.; Bourdet-Sicard, R.; van der Werf, S. A probiotic fermented dairy drink improves antibody response to influenza vaccination in the elderly in two randomised controlled trials. Vaccine, 2009, 27(41), 5677-5684.
[http://dx.doi.org/10.1016/j.vaccine.2009.06.094] [PMID: 19615959]
[98]
Conte, L.; Toraldo, D.M. Targeting the gut-lung microbiota axis by means of a high-fibre diet and probiotics may have anti-inflammatory effects in COVID-19 infection. Ther. Adv. Respir. Dis., 2020, 14, 1753466620937170.
[http://dx.doi.org/10.1177/1753466620937170] [PMID: 32600125]
[99]
Finlay, B.B.; Amato, K.R.; Azad, M.; Blaser, M.J.; Bosch, T.C.G.; Chu, H.; Dominguez-Bello, M.G.; Ehrlich, S.D.; Elinav, E.; Geva-Zatorsky, N.; Gros, P.; Guillemin, K.; Keck, F.; Korem, T.; McFall-Ngai, M.J.; Melby, M.K.; Nichter, M.; Pettersson, S.; Poinar, H.; Rees, T.; Tropini, C.; Zhao, L.; Giles-Vernick, T. The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proc. Natl. Acad. Sci. USA, 2021, 118(6), e2010217118.
[http://dx.doi.org/10.1073/pnas.2010217118] [PMID: 33472859]
[100]
Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 2003, 62(1), 67-72.
[http://dx.doi.org/10.1079/PNS2002207] [PMID: 12740060]
[101]
Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016, 7(3), 189-200.
[http://dx.doi.org/10.1080/19490976.2015.1134082] [PMID: 26963409]
[102]
Pascoal, L.B.; Rodrigues, P.B.; Genaro, L.M.; Gomes, A.B.D.S.P.; Toledo-Teixeira, D.A.; Parise, P.L.; Bispo-Dos-Santos, K.; Simeoni, C.L.; Guimarães, P.V.; Buscaratti, L.I.; Elston, J.G.A.; Marques-Souza, H.; Martins-de-Souza, D.; Ayrizono, M.L.S.; Velloso, L.A.; Proenca-Modena, J.L.; Moraes-Vieira, P.M.M.; Mori, M.A.S.; Farias, A.S.; Vinolo, M.A.R.; Leal, R.F. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes, 2021, 13(1), 1-9.
[http://dx.doi.org/10.1080/19490976.2021.1874740] [PMID: 33550892]
[103]
Lee, H.; Ko, G. New perspectives regarding the antiviral effect of vitamin A on norovirus using modulation of gut microbiota. Gut Microbes, 2017, 8(6), 616-620.
[http://dx.doi.org/10.1080/19490976.2017.1353842] [PMID: 28727498]
[104]
Tepasse, P-R.; Vollenberg, R.; Fobker, M.; Kabar, I.; Schmidt, H.; Meier, J.A.; Nowacki, T.; Hüsing-Kabar, A. Vitamin A plasma levels in COVID-19 patients: A prospective multicenter study and hypothesis. Nutrients, 2021, 13(7), 2173.
[http://dx.doi.org/10.3390/nu13072173] [PMID: 34202697]
[105]
Al-Sumiadai, M.M.; Ghazzay, H.; Al-Dulaimy, W.Z.S. Therapeutic effect of Vitamin A on severe COVID-19 patients. Eurasia J Biosci, 2020, 14, 7347-7350.
[106]
Yamamoto, E.A.; Jørgensen, T.N. Relationships between Vitamin D, gut microbiome, and systemic autoimmunity. Front. Immunol., 2020, 10, 3141.
[http://dx.doi.org/10.3389/fimmu.2019.03141] [PMID: 32038645]
[107]
Lombardi, V.C.; De Meirleir, K.L.; Subramanian, K.; Nourani, S.M.; Dagda, R.K.; Delaney, S.L.; Palotás, A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J. Nutr. Biochem., 2018, 61, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.04.004] [PMID: 29886183]
[108]
Derakhshanian, H. The predictive power of serum vitamin D for poor outcomes in COVID-19 patients., 2021, 9(4), 6307-6313.
[http://dx.doi.org/10.1002/fsn3.2591]
[109]
Annweiler, C.; Hanotte, B.; Grandin de l’Eprevier, C.; Sabatier, J.M.; Lafaie, L.; Célarier, T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol., 2020, 204, 105771.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105771] [PMID: 33065275]
[110]
Ao, M.; Tsuji, H.; Shide, K.; Kosaka, Y.; Noda, A.; Inagaki, N.; Nakase, H.; Tanaka, K. High prevalence of vitamin B-12 insufficiency in patients with Crohn’s disease. Asia Pac. J. Clin. Nutr., 2017, 26(6), 1076-1081.
[PMID: 28917233]
[111]
Li, A-N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[112]
Ankolekar, C.; Johnson, D.; Pinto, M.S.; Johnson, K.; Labbe, R.; Shetty, K. Inhibitory potential of tea polyphenolics and influence of extraction time against Helicobacter pylori and lack of inhibition of beneficial lactic acid bacteria. J. Med. Food, 2011, 14(11), 1321-1329.
[http://dx.doi.org/10.1089/jmf.2010.0237] [PMID: 21663484]
[113]
Vaquero, M.R.; Alberto, M.R.; de Nadra, M.M. Antibacterial effect of phenolic compounds from different wines. Food Control, 2007, 18(2), 93-101.
[http://dx.doi.org/10.1016/j.foodcont.2005.08.010]
[114]
Augusti, P.R.; Conterato, G.M.M.; Denardin, C.C.; Prazeres, I.D.; Serra, A.T.; Bronze, M.R.; Emanuelli, T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: Implications for COVID-19. J. Nutr. Biochem., 2021, 97, 108787.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108787] [PMID: 34089819]
[115]
Hamid, H.; Thakur, A.; Thakur, N. Role of functional food components in COVID-19 pandemic: A review. Ann. Phytomed. Int. J, 2021, 10(1), 5240-5250.
[116]
Dhar, D.; Mohanty, A. Gut microbiota and Covid-19- possible link and implications. Virus Res., 2020, 285, 198018.
[http://dx.doi.org/10.1016/j.virusres.2020.198018] [PMID: 32430279]
[117]
Dong, Y.; Chi, X.; Hai, H.; Sun, L.; Zhang, M.; Xie, W.F.; Chen, W. Antibodies in the breast milk of a maternal woman with COVID-19. Emerg. Microbes Infect., 2020, 9(1), 1467-1469.
[http://dx.doi.org/10.1080/22221751.2020.1780952] [PMID: 32552365]
[118]
Kimberlin, D.W.; Puopolo, K.M. Breast milk and COVID-19: What do We know?; Oxford University Press US, 2021, pp. 131-132.
[119]
Field, C.J. The immunological components of human milk and their effect on immune development in infants. J. Nutr., 2005, 135(1), 1-4.
[http://dx.doi.org/10.1093/jn/135.1.1] [PMID: 15623823]
[120]
Palmeira, P.; Carneiro-Sampaio, M. Immunology of breast milk. Rev. Assoc. Med. Bras., 2016, 62(6), 584-593.
[http://dx.doi.org/10.1590/1806-9282.62.06.584] [PMID: 27849237]
[121]
Gregory, K.E.; Samuel, B.S.; Houghteling, P.; Shan, G.; Ausubel, F.M.; Sadreyev, R.I.; Walker, W.A. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome, 2016, 4(1), 68.
[http://dx.doi.org/10.1186/s40168-016-0214-x] [PMID: 28034306]
[122]
Jakaitis, B.M.; Denning, P.W. Human breast milk and the gastrointestinal innate immune system. Clin. Perinatol., 2014, 41(2), 423-435.
[http://dx.doi.org/10.1016/j.clp.2014.02.011] [PMID: 24873841]
[123]
Madan, J.C.; Hoen, A.G.; Lundgren, S.N.; Farzan, S.F.; Cottingham, K.L.; Morrison, H.G.; Sogin, M.L.; Li, H.; Moore, J.H.; Karagas, M.R. Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. JAMA Pediatr., 2016, 170(3), 212-219.
[http://dx.doi.org/10.1001/jamapediatrics.2015.3732] [PMID: 26752321]
[124]
Walker, W.A.; Iyengar, R.S. Breast milk, microbiota, and intestinal immune homeostasis. Pediatr. Res., 2015, 77(1-2), 220-228.
[http://dx.doi.org/10.1038/pr.2014.160] [PMID: 25310762]
[125]
Magna, M.; Pisetsky, D.S. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin. Ther., 2016, 38(5), 1029-1041.
[http://dx.doi.org/10.1016/j.clinthera.2016.02.029] [PMID: 27021604]
[126]
Andersson, U.; Yang, H.; Harris, H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. In: Seminars in Immunology; Elsevier, 2018.
[127]
Yang, D. The alarmin functions of high-mobility group proteins. Biochimica et Biophysica Acta (BBA)-. Gene Regulatory Mechanisms, 2010, 1799(1-2), 157-163.
[128]
Romero, R.; Chaiworapongsa, T.; Alpay Savasan, Z.; Xu, Y.; Hussein, Y.; Dong, Z.; Kusanovic, J.P.; Kim, C.J.; Hassan, S.S. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: A study of the alarmin HMGB1. J. Matern. Fetal Neonatal Med., 2011, 24(12), 1444-1455.
[http://dx.doi.org/10.3109/14767058.2011.591460] [PMID: 21958433]
[129]
Parthasarathy, U.; Martinelli, R.; Vollmann, E.H.; Best, K.; Therien, A.G. The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochem. Pharmacol., 2022, 195, 114847.
[http://dx.doi.org/10.1016/j.bcp.2021.114847] [PMID: 34801526]
[130]
van’t Land, B.; Boehm, G.; Garssen, J. Breast milk: Components with immune modulating potential and their possible role in immune mediated disease resistance. Dietary components and immune function; Springer, 2010, pp. 25-41.
[http://dx.doi.org/10.1007/978-1-60761-061-8_2]
[131]
Guo, Q. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell host & microbe, 2021, 29(2), 222-235.
[132]
Quitadamo, P.A.; Comegna, L.; Cristalli, P. Anti-infective, anti-inflammatory, and immunomodulatory properties of breast milk factors for the protection of infants in the pandemic from COVID-19. Front. Public Health, 2021, 8, 589736.
[http://dx.doi.org/10.3389/fpubh.2020.589736] [PMID: 33738273]
[133]
Li, J. The immunomodulatory effects of Qushi Jianpi Hewei Decoction (QJHD) for patients with COVID-19 by metagenomics and transcriptomic sequencing; Pharmacological Research-Modern Chinese Medicine, 2022, p. 100049.
[134]
Xiao, M.; Tian, J.; Zhou, Y.; Xu, X.; Min, X.; Lv, Y.; Peng, M.; Zhang, Y.; Yan, D.; Lang, S.; Zhang, Q.; Fan, A.; Ke, J.; Li, X.; Liu, B.; Jiang, M.; Liu, Q.; Zhu, J.; Yang, L.; Zhu, Z.; Zeng, K.; Li, C.; Zheng, Y.; Wu, H.; Lin, J.; Lian, F.; Li, X.; Tong, X. Efficacy of Huoxiang Zhengqi dropping pills and Lianhua Qingwen granules in treatment of COVID-19: A randomized controlled trial. Pharmacol. Res., 2020, 161, 105126.
[http://dx.doi.org/10.1016/j.phrs.2020.105126] [PMID: 32781283]
[135]
Jiang, F.; Xu, N.; Zhou, Y.; Song, J.; Liu, J.; Zhu, H.; Jiang, J.; Xu, Y.; Li, R. Contribution of traditional Chinese medicine combined with conventional western medicine treatment for the novel coronavirus disease (COVID-19), current evidence with systematic review and meta-analysis. Phytother. Res., 2021, 35(11), 5992-6009.
[http://dx.doi.org/10.1002/ptr.7209] [PMID: 34256418]
[136]
Hu, K.; Guan, W.J.; Bi, Y.; Zhang, W.; Li, L.; Zhang, B.; Liu, Q.; Song, Y.; Li, X.; Duan, Z.; Zheng, Q.; Yang, Z.; Liang, J.; Han, M.; Ruan, L.; Wu, C.; Zhang, Y.; Jia, Z.H.; Zhong, N.S. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial. Phytomedicine, 2021, 85, 153242.
[http://dx.doi.org/10.1016/j.phymed.2020.153242] [PMID: 33867046]
[137]
Shi, N.; Liu, B.; Liang, N.; Ma, Y.; Ge, Y.; Yi, H.; Wo, H.; Gu, H.; Kuang, Y.; Tang, S.; Zhao, Y.; Tong, L.; Liu, S.; Zhao, C.; Chen, R.; Bai, W.; Fan, Y.; Shi, Z.; Li, L.; Liu, J.; Gu, H.; Zhi, Y.; Wang, Z.; Li, Y.; Li, H.; Wang, J.; Jiao, L.; Tian, Y.; Xiong, Y.; Huo, R.; Zhang, X.; Bai, J.; Chen, H.; Chen, L.; Feng, Q.; Guo, T.; Hou, Y.; Hu, G.; Hu, X.; Hu, Y.; Huang, J.; Huang, Q.; Huang, S.; Ji, L.; Jin, H.; Lei, X.; Li, C.; Wu, G.; Li, J.; Li, M.; Li, Q.; Li, X.; Liu, H.; Liu, J.; Liu, Z.; Ma, Y.; Mao, Y.; Mo, L.; Na, H.; Wang, J.; Song, F.; Sun, S.; Wang, D.; Wang, M.; Wang, X.; Wang, Y.; Wang, Y.; Wu, W.; Wu, L.; Xiao, Y.; Xie, H.; Xu, H.; Xu, S.; Xue, R.; Yang, C.; Yang, K.; Yang, P.; Yuan, S.; Zhang, G.; Zhang, J.; Zhang, L.; Zhao, S.; Zhao, W.; Zheng, K.; Zhou, Y.; Zhu, J.; Zhu, T.; Li, G.; Wang, W.; Zhang, H.; Wang, Y.; Wang, Y. Association between early treatment with Qingfei Paidu decoction and favorable clinical outcomes in patients with COVID-19: A retrospective multicenter cohort study. Pharmacol. Res., 2020, 161, 105290.
[http://dx.doi.org/10.1016/j.phrs.2020.105290] [PMID: 33181320]
[138]
Yu, X.; Zhang, X.; Jin, H.; Wu, Z.; Yan, C.; Liu, Z.; Xu, X.; Liu, S.; Zhu, F. Zhengganxifeng decoction affects gut microbiota and reduces blood pressure via renin-angiotensin system. Biol. Pharm. Bull., 2019, 42(9), 1482-1490.
[http://dx.doi.org/10.1248/bpb.b19-00057] [PMID: 31474709]
[139]
Ren, J.L.; Zhang, A-H.; Wang, X-J. Traditional Chinese medicine for COVID-19 treatment. Pharmacol. Res., 2020, 155, 104743.
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[140]
Lei, H-Y.; Ding, Y.H.; Nie, K.; Dong, Y.M.; Xu, J.H.; Yang, M.L.; Liu, M.Q.; Wei, L.; Nasser, M.I.; Xu, L.Y.; Zhu, P.; Zhao, M.Y. Potential effects of SARS-CoV-2 on the gastrointestinal tract and liver. Biomed. Pharmacother., 2021, 133, 111064.
[http://dx.doi.org/10.1016/j.biopha.2020.111064] [PMID: 33378966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy