Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Research Article

Rubbery Polyhydroxyesters based on Polyethylene Glycol Diglycidyl Ether: Reaction and Vitrimer-like Behavior Catalyzed by Tin Octoate

Author(s): Rodrigo H. Cunha, Marcio Nele, Marcos L. Dias* and R. Cunha

Volume 5, Issue 1, 2022

Published on: 17 June, 2022

Page: [72 - 81] Pages: 10

DOI: 10.2174/2452271605666220404144604

Price: $65

conference banner
Abstract

Background: Polyhydroxyesters prepared from epoxy and organic acids are vitrimers that can rearrange their topology from exchange reactions enhanced by catalysts, forming crosslinked networks that can be deformed and remolded.

Objectives: In this work, the curing kinetics and thermal properties of polyhydroxyesters vitrimers based on polyethylene glycol diglycidyl ether (PEGDGE), citric acid (CA), and sebacic acid (SA) in the presence and absence of tin octoate (Sn(Oct)2) were investigated.

Methods: Differential scanning calorimetry (DSC) non-isothermal experiments and Ozawa models were used for the curing kinetic studies, and thermogravimetry analysis (TGA) and thermomechanical analyses (TMA) were employed to investigate the thermal behavior of the networks.

Results: The highest curing enthalpy of these exothermic reactions was observed in the binary system PEGDGE:CA without catalyst (326 J/g). The addition of Sn increases the reaction enthalpy for formulations with SA and decreases it for formulations rich in CA. The lowest activation energy was shown for the formulation PEGDGE:CA = 3:2 containing 1 mol% of Sn (56 kJ/mol). The polyhydroxyesters presented Tg ranging from -24 to -48 °C, and the Tg decreased when the proportion of SA was increased in the formulation. The thermal stability was increased when the SA content increased and decreased when the content of Sn increased from 1 to 5 mol%.

Conclusion: Esterification of PEGDGE and organic acids (SA and CA) occurs even in the absence of catalyst, producing rubbery polyesters, but the use of Sn(Oct)2 decreases the curing time. Ternary networks of polyhydroxyesters containing Sn showed a discontinuity in the thermal expansion around 180°C attributed to exchange reactions, similarly to what was theorized for this class of vitrimer material.

Keywords: vitrimers, polyethyleneglycol diglycidyl ether, organic acids, tin octoate, vitrimers, polyhydroxyesters.

« Previous
Graphical Abstract

[1]
Jin FL, Li X, Park SJ. Synthesis and application of epoxy resins: A review. J Ind Eng Chem 2015; 29: 1-11.
[http://dx.doi.org/10.1016/j.jiec.2015.03.026]
[2]
Fortman DJ, Brutman JP, Cramer CJ, Hillmyer MA, Dichtel WR. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J Am Chem Soc 2015; 137(44): 14019-22.
[http://dx.doi.org/10.1021/jacs.5b08084] [PMID: 26495769]
[3]
Denissen W, Winne JM, Du Prez FE. Vitrimers: Permanent organic networks with glass-like fluidity. Chem Sci (Camb) 2016; 7(1): 30-8.
[http://dx.doi.org/10.1039/C5SC02223A] [PMID: 28757995]
[4]
Montarnal D, Capelot M, Tournilhac F, Leibler L. Silica-like malleable materials from permanent organic networks. Science 2011; 334(6058): 965-8.
[http://dx.doi.org/10.1126/science.1212648] [PMID: 22096195]
[5]
Capelot M, Unterlass MM, Tournilhac F, Leibler L. Catalytic control of the vitrimer glass transition. ACS Macro Lett 2012; 1(7): 789-92.
[http://dx.doi.org/10.1021/mz300239f]
[6]
Capelot M, Montarnal D, Tournilhac F, Leibler L. Metal-catalyzed transesterification for healing and assembling of thermosets. J Am Chem Soc 2012; 134(18): 7664-7.
[http://dx.doi.org/10.1021/ja302894k] [PMID: 22537278]
[7]
Yu K, Taynton P, Zhang W, Dunn ML, Qi HJ. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers. RSC Advances 2014; 4(89): 48682-90.
[http://dx.doi.org/10.1039/C4RA06543C]
[8]
Altuna FI, Pettarin V, Williams RJJ. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. Green Chem 2013; 15(12): 3360-6.
[http://dx.doi.org/10.1039/c3gc41384e]
[9]
Krishnakumar B, Sanka RVSP, Binder WH, Parthasarthy V, Rana S, Karak N. Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers. Chem Eng J 2020; 385: 123820.
[http://dx.doi.org/10.1016/j.cej.2019.123820]
[10]
Cunha RH, Nele M, Dias ML. Reaction and thermal behavior of vitrimer‐like polyhydroxy esters based on polyethylene glycol diglycidyl ether. J Appl Polym Sci 2020; 137(43): 49329.
[http://dx.doi.org/10.1002/app.49329]
[11]
Demongeot A, Mougnier SJ, Okada S, Ziakovic CS, Tournilhac F. Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym Chem 2016; 7(27): 4486-93.
[http://dx.doi.org/10.1039/C6PY00752J]
[12]
Pei Z, Yang Y, Chen Q, Terentjev EM, Wei Y, Ji Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater 2014; 13(1): 36-41.
[http://dx.doi.org/10.1038/nmat3812] [PMID: 24292422]
[13]
Yang Y, Pei Z, Zhang X, Tao L, Wei Y, Ji Y. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chem Sci (Camb) 2014; 5(9): 3486-92.
[http://dx.doi.org/10.1039/C4SC00543K]
[14]
Duquene C, Melas M, Gentilhomme P, Disson JP. Composition for manufacturing epoxy/anhydride vitrimer resins including an organic catalyst. Patent US 0044305A1, 2017.
[15]
Yang Z, Wang Q, Wang T. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl Mater Interfaces 2016; 8(33): 21691-9.
[http://dx.doi.org/10.1021/acsami.6b07403] [PMID: 27463202]
[16]
Chabert E, Vial J, Cauchois JP, Mihaluta M, Tournilhac F. Multiple welding of long fiber epoxy vitrimer composites. Soft Matter 2016; 12(21): 4838-45.
[http://dx.doi.org/10.1039/C6SM00257A] [PMID: 27140663]
[17]
Duquene C, Mougnier S J, Tounilhac FG, Leibler L. Titaniumbased catalyst for vitrimer resins of epoxy/anhydride type. Patent US 10155842B2, 2018.
[18]
Menczel JD, Prime RB, Eds. Thermal analysis of polymers: Fundamentals and applications. Wiley 2009.
[http://dx.doi.org/10.1002/9780470423837]
[19]
Poutrel QA, Blaker JJ, Soutis C, Tournilhac F, Gresil M. Dicarboxylic acid-epoxy vitrimers: Influence of the off-stoichiometric acid content on cure reactions and thermo-mechanical properties. Polym Chem 2020; 11(33): 33.
[http://dx.doi.org/10.1039/D0PY00342E]
[20]
Altuna FI, Hoppe CE, Williams RJJ. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Advances 2016; 6(91): 88647-55.
[http://dx.doi.org/10.1039/C6RA18010H]
[21]
Hardis R, Jessop JLP, Peters FE, Kessler MR. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Compos, Part A Appl Sci Manuf 2013; 49: 100-8.
[http://dx.doi.org/10.1016/j.compositesa.2013.01.021]
[22]
Kumar S, Samal SK, Mohanty S, Nayak SK. Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole. Thermochim Acta 2017; 654: 112-20.
[http://dx.doi.org/10.1016/j.tca.2017.05.016]
[23]
Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal 1970; 2(3): 301-24.
[http://dx.doi.org/10.1007/BF01911411]
[24]
Snijkers F, Pasquino R, Maffezzoli A. Curing and viscoelasticity of vitrimers. Soft Matter 2016; 13(1): 258-68.
[http://dx.doi.org/10.1039/C6SM00707D] [PMID: 27396412]
[25]
Hermans JJ, Keune K, Van LA, Corkery RW, Iedema PD. Ionomer-like structure in mature oil paint binding media. RSC Advances 2016; 6(96): 93363-9.
[http://dx.doi.org/10.1039/C6RA18267D]
[26]
Flores M, Francos XF, Ramis X, Serra A. Novel epoxy-anhydride thermosets modified with a hyperbranched polyester as toughness enhancer. I. Kinetics study. Thermochim Acta 2012; 544: 17-26.
[http://dx.doi.org/10.1016/j.tca.2012.06.008]
[27]
Huang K, Liu Z, Zhang J, et al. Self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung oil fatty acids: Synthesis and properties. Eur Polym J 2015; 70: 45-54.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.06.027]
[28]
Couture G, Granado L, Fanget F, Boutevin B, Caillol S. Limonene-based epoxy: Anhydride thermoset reaction study. Molecules 2018; 23(11): 2739.
[http://dx.doi.org/10.3390/molecules23112739] [PMID: 30360571]
[29]
Tao Q, Pinter G, Antretter T, Krivec T, Fuchs P. Model free kinetics coupled with finite element method for curing simulation of thermosetting epoxy resins. J Appl Polym Sci 2018; 135(27): 46408.
[http://dx.doi.org/10.1002/app.46408]
[30]
Lu L, Xia L, Zengheng H, Xingyue S, Yi Z, Pan L. Investigation on cure kinetics of epoxy resin containing carbon nanotubes modified with hyper-branched polyester. RSC Advances 2018; 8(52): 29830-9.
[http://dx.doi.org/10.1039/C8RA04525A]
[31]
Vasconcelos GC, Mazura RL, Ribeiro B, Botelho EC, Costa ML. Evaluation of decomposition kinetics of poly (ether-ether-ketone) by thermogravimetric analysis. Mater Res 2014; 17(1): 227-35.
[http://dx.doi.org/10.1590/S1516-14392013005000202]
[32]
Sengupta R, Sabharwal S, Bhowmick AK, Chaki TK. Thermogravimetric studies on Polyamide-6, 6 modified by electron beam irradiation and by nanofillers. Polym Degrad Stabil 2006; 91(6): 1311-8.
[http://dx.doi.org/10.1016/j.polymdegradstab.2005.08.012]
[33]
Brutman JP, Delgado PA, Hillmyer MA. Polylactide vitrimers. ACS Macro Lett 2014; 3(7): 607-10.
[http://dx.doi.org/10.1021/mz500269w]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy