Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Comprehensive Characterization of RNA-Binding Proteins in Colon Adenocarcinoma Identifies a Novel Prognostic Signature for Predicting Clinical Outcomes and Immunotherapy Responses Based on Machine Learning

Author(s): Ye Miao, Qihang Yuan, Chao Wang, Xiaoshi Feng, Jie Ren* and Changmiao Wang*

Volume 26, Issue 1, 2023

Published on: 17 May, 2022

Page: [163 - 182] Pages: 20

DOI: 10.2174/1386207325666220404125228

Price: $65

Abstract

Background: RNA-binding proteins (RBPs) are crucial factors that function in the posttranscriptional modification process and are significant in cancer.

Objective: This research aimed for a multigene signature to predict the prognosis and immunotherapy response of patients with colon adenocarcinoma (COAD) based on the expression profile of RNA-binding proteins (RBPs).

Methods: COAD samples retrieved from the TCGA and GEO datasets were utilized for a training dataset and a validation dataset. Totally, 14 shared RBP genes with prognostic significance were identified. Non-negative matrix factorization clusters defined by these RBPs could stratify COAD patients into two molecular subtypes. Cox regression analysis and identification of 8-gene signature categorized COAD patients into high- and low-risk populations with significantly different prognosis and immunotherapy responses.

Results: Our prediction signature was superior to another five well-established prediction models. A nomogram was generated to quantificationally predict the overall survival (OS) rate, validated by calibration curves. Our findings also indicated that high-risk populations possessed an enhanced immune evasion capacity and low-risk populations might benefit immunotherapy, especially for the joint combination of PD-1 and CTLA4 immunosuppressants. DHX15 and LARS2 were detected with significantly different expressions in both datasets, which were further confirmed by qRTPCR and immunohistochemical staining.

Conclusion: Our observations supported an eight-RBP-related signature that could be applied for survival prediction and immunotherapy response of patients with COAD.

Keywords: RNA binding proteins, colon adenocarcinoma, prognosis, immunotherapy response, DHX15, LARS2.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 can-cers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Sta-tistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[3]
Ni, X.; Ding, Y.; Yuan, H.; Shao, J.; Yan, Y.; Guo, R.; Luan, W.; Xu, M. Long non-coding RNA ZEB1-AS1 promotes co-lon adenocarcinoma malignant progression via miR-455-3p/PAK2 axis. Cell Prolif., 2020, 53(1), e12723.
[http://dx.doi.org/10.1111/cpr.12723] [PMID: 31828845]
[4]
Angenete, E. The importance of surgery in colorectal cancer treatment. Lancet Oncol., 2019, 20(1), 6-7.
[http://dx.doi.org/10.1016/S1470-2045(18)30679-X] [PMID: 30545751]
[5]
Cunningham, D.; Atkin, W.; Lenz, H.J.; Lynch, H.T.; Minsky, B.; Nordlinger, B.; Starling, N. Colorectal cancer. Lancet, 2010, 375(9719), 1030-1047.
[http://dx.doi.org/10.1016/S0140-6736(10)60353-4] [PMID: 20304247]
[6]
Xu, X.; Yu, Y.; Zong, K.; Lv, P.; Gu, Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer pro-motes cancer proliferation by activating the PI3K/Akt signal-ing pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 497.
[http://dx.doi.org/10.1186/s13046-019-1470-y] [PMID: 31852504]
[7]
Masuda, K.; Kuwano, Y. Diverse roles of RNA-binding pro-teins in cancer traits and their implications in gastrointestinal cancers. Wiley Interdiscip. Rev. RNA, 2019, 10(3), e1520.
[http://dx.doi.org/10.1002/wrna.1520] [PMID: 30479000]
[8]
Tsuda, M.; Noguchi, M.; Kurai, T.; Ichihashi, Y.; Ise, K.; Wang, L.; Ishida, Y.; Tanino, M.; Hirano, S.; Asaka, M.; Tanaka, S. Aberrant expression of MYD88 via RNA-controlling CNOT4 and EXOSC3 in colonic mucosa impacts generation of colonic cancer. Cancer Sci., 2021, 112(12), 5100-5113.
[http://dx.doi.org/10.1111/cas.15157] [PMID: 34626022]
[9]
Luan, L.; Lu, F.; Wang, X.; Wang, Y.; Wang, W.; Yang, Y.; Chen, G.; Yao, H.; Shi, X.; Yuan, Z.; Zhou, G.; Zhang, H.; He, S. The predictive value of RNA binding proteins in colon adenocarcinoma. J. Gastrointest. Oncol., 2021, 12(4), 1543-1557.
[http://dx.doi.org/10.21037/jgo-21-318] [PMID: 34532109]
[10]
Zhu, D.; Chen, J.; Hou, T. Development and validation of a prognostic model of RNA-Binding proteins in colon adeno-carcinoma: A study based on TCGA and GEO databases. Cancer Manag. Res., 2021, 13, 7709-7722.
[http://dx.doi.org/10.2147/CMAR.S330434] [PMID: 34675667]
[11]
Sun, D.; Yang, K.S.; Chen, J.L.; Wang, Z. bing Identification and validation of an immune-associated RNA-binding pro-teins signature to predict clinical outcomes and therapeutic re-sponses in colon cancer patients. World J. Surg. Oncol., 2021, 19, 1-13.
[http://dx.doi.org/10.1186/s12957-021-02411-2]
[12]
Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; Kirzin, S.; Chazal, M.; Fléjou, J.F.; Benchimol, D.; Berger, A.; Lagarde, A.; Pencreach, E.; Piard, F.; Elias, D.; Parc, Y.; Olschwang, S.; Milano, G.; Laurent-Puig, P.; Boige, V. Gene expression classification of colon cancer into molec-ular subtypes: Characterization, validation, and prognostic value. PLoS Med., 2013, 10(5), e1001453.
[http://dx.doi.org/10.1371/journal.pmed.1001453] [PMID: 23700391]
[13]
Gerstberger, S.; Hafner, M.; Tuschl, T. A census of human RNA-binding proteins. Nat. Rev. Genet., 2014, 15(12), 829-845.
[http://dx.doi.org/10.1038/nrg3813] [PMID: 25365966]
[14]
Jiang, C.; Liu, Y.; Wen, S.; Xu, C.; Gu, L. In silico develop-ment and clinical validation of novel 8 gene signature based on lipid metabolism related genes in colon adenocarcinoma. Pharmacol. Res., 2021, 169, 105644.
[http://dx.doi.org/10.1016/j.phrs.2021.105644] [PMID: 33940186]
[15]
Yuan, Y.; Chen, J.; Wang, J.; Xu, M.; Zhang, Y.; Sun, P.; Liang, L. Development and clinical validation of a novel 4-gene prognostic signature predicting survival in colorectal cancer. Front. Oncol., 2020, 10, 595.
[http://dx.doi.org/10.3389/fonc.2020.00595] [PMID: 32509568]
[16]
Zhao, T.; Zhang, Y.; Ma, X.; Wei, L.; Hou, Y.; Sun, R.; Jiang, J. Elevated expression of LPCAT1 predicts a poor prognosis and is correlated with the tumour microenvironment in en-dometrial cancer. Cancer Cell Int., 2021, 21(1), 269.
[http://dx.doi.org/10.1186/s12935-021-01965-1] [PMID: 34016103]
[17]
Wang, J.; Zhang, X.; Li, J.; Ma, X.; Feng, F.; Liu, L.; Wu, J.; Sun, C. ADRB1 was identified as a potential biomarker for breast cancer by the co-analysis of tumor mutational burden and immune infiltration. Aging (Albany NY), 2020, 13(1), 351-363.
[http://dx.doi.org/10.18632/aging.104204] [PMID: 33234738]
[18]
Xiang, R.; Rong, Y.; Ge, Y.; Song, W.; Ren, J.; Fu, T. Cell differentiation trajectory predicts patient potential immuno-therapy response and prognosis in gastric cancer. Aging (Albany NY), 2021, 13(4), 5928-5945.
[http://dx.doi.org/10.18632/aging.202515] [PMID: 33612483]
[19]
Liang, Y.; Wu, X.; Su, Q.; Liu, Y.; Xiao, H. Identification and validation of a novel inflammatory response-related gene sig-nature for the prognosis of colon cancer. J. Inflamm. Res., 2021, 14, 3809-3821.
[http://dx.doi.org/10.2147/JIR.S321852] [PMID: 34408464]
[20]
Liang, Y.; Su, Q.; Wu, X. Identification and validation of a novel six-gene prognostic signature of stem cell characteristic in colon cancer. Front. Oncol., 2021, 10, 571655.
[http://dx.doi.org/10.3389/fonc.2020.571655] [PMID: 33680915]
[21]
Liu, J.; Jiang, C.; Xu, C.; Wang, D.; Shen, Y.; Liu, Y.; Gu, L. Identification and development of a novel invasion-related gene signature for prognosis prediction in colon adenocarci-noma. Cancer Cell Int., 2021, 21(1), 101.
[http://dx.doi.org/10.1186/s12935-021-01795-1] [PMID: 33579281]
[22]
Zhu, L.; Sun, H.; Tian, G.; Wang, J.; Zhou, Q.; Liu, P.; Tang, X.; Shi, X.; Yang, L.; Liu, G. Aging-13-203179 2021, 13, 16600- 16619.
[23]
Zhang, Y.; Yang, F.; Peng, X.; Li, X.; Luo, N.; Zhu, W.; Fu, M.; Li, Q.; Hu, G. Hypoxia constructing the prognostic model of colorectal adenocarcinoma and related to the immune mi-croenvironment. Front. Cell Dev. Biol., 2021, 9, 665364.
[http://dx.doi.org/10.3389/fcell.2021.665364] [PMID: 33959617]
[24]
Ren, J.; Wang, A.; Liu, J.; Yuan, Q. Identification and valida-tion of a novel redox-related lncRNA prognostic signature in lung adenocarcinoma. Bioengineered, 2021, 12(1), 4331-4348.
[http://dx.doi.org/10.1080/21655979.2021.1951522] [PMID: 34338158]
[25]
Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; Seja, E.; Lomeli, S.; Kong, X.; Kelley, M.C.; Sosman, J.A.; Johnson, D.B.; Ribas, A.; Lo, R.S. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell, 2016, 165(1), 35-44.
[http://dx.doi.org/10.1016/j.cell.2016.02.065] [PMID: 26997480]
[26]
Van Allen, E.M.; Miao, D.; Schilling, B.; Shukla, S.A.; Blank, C.; Zimmer, L.; Sucker, A.; Hillen, U.; Foppen, M.H.G.; Goldinger, S.M.; Utikal, J.; Hassel, J.C.; Weide, B.; Kaehler, K.C.; Loquai, C.; Mohr, P.; Gutzmer, R.; Dummer, R.; Gabri-el, S.; Wu, C.J.; Schadendorf, D.; Garraway, L.A. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science (80-. ) 2015, 350, 207-211.
[27]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[28]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[29]
Neelamraju, Y.; Hashemikhabir, S.; Janga, S.C. The human RBPome: From genes and proteins to human disease. J. Proteomics, 2015, 127(Pt A), 61-70.
[http://dx.doi.org/10.1016/j.jprot.2015.04.031] [PMID: 25982388]
[30]
Dreyfuss, G.; Kim, V.N.; Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol., 2002, 3(3), 195-205.
[http://dx.doi.org/10.1038/nrm760] [PMID: 11994740]
[31]
Duan, Y.; Du, A.; Gu, J.; Duan, G.; Wang, C.; Gui, X.; Ma, Z.; Qian, B.; Deng, X.; Zhang, K.; Sun, L.; Tian, K.; Zhang, Y.; Jiang, H.; Liu, C.; Fang, Y. PARylation regulates stress gran-ule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res., 2019, 29(3), 233-247.
[http://dx.doi.org/10.1038/s41422-019-0141-z] [PMID: 30728452]
[32]
Johnson, E.C.B.; Dammer, E.B.; Duong, D.M.; Yin, L.; Thambisetty, M.; Troncoso, J.C.; Lah, J.J.; Levey, A.I.; Sey-fried, N.T. Deep proteomic network analysis of alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol. Neurodegener., 2018, 13, 22.
[http://dx.doi.org/10.1186/s13024-018-0282-4]
[33]
Ortiz-Sánchez, P.; Villalba-Orero, M.; López-Olañeta, M.M.; Larrasa-Alonso, J.; Sánchez-Cabo, F.; Martí-Gómez, C.; Camafeita, E.; Gómez-Salinero, J.M.; Ramos-Hernández, L.; Nielsen, P.J.; Vázquez, J.; Müller-McNicoll, M.; García-Pavía, P.; Lara-Pezzi, E. Loss of SRSF3 in cardiomyocytes leads to decapping of contraction-related mRNAs and severe systolic dysfunction. Circ. Res., 2019, 125(2), 170-183.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314515] [PMID: 31145021]
[34]
de Bruin, R.G.; Rabelink, T.J.; van Zonneveld, A.J.; van der Veer, E.P. Emerging roles for RNA-binding proteins as effec-tors and regulators of cardiovascular disease. Eur. Heart J., 2017, 38(18), 1380-1388.
[http://dx.doi.org/10.1093/eurheartj/ehw567] [PMID: 28064149]
[35]
Jiang, S.; Baltimore, D. RNA-binding protein Lin28 in cancer and immunity. Cancer Lett., 2016, 375(1), 108-113.
[http://dx.doi.org/10.1016/j.canlet.2016.02.050] [PMID: 26945970]
[36]
Han, L.; Huang, C.; Zhang, S. The RNA-binding protein SORBS2 suppresses hepatocellular carcinoma tumourigenesis and metastasis by stabilizing RORA mRNA. Liver Int., 2019, 39(11), 2190-2203.
[http://dx.doi.org/10.1111/liv.14202] [PMID: 31365778]
[37]
Zong, F.Y.; Fu, X.; Wei, W.J.; Luo, Y.G.; Heiner, M.; Cao, L.J.; Fang, Z.; Fang, R.; Lu, D.; Ji, H.; Hui, J. The RNA-binding protein QKI suppresses cancer-associated aberrant splicing. PLoS Genet., 2014, 10(4), e1004289.
[http://dx.doi.org/10.1371/journal.pgen.1004289] [PMID: 24722255]
[38]
Nakamura, M.; Okano, H.; Blendy, J.A.; Montell, C. A neural RNA-binding protein required for drosophila adult external sensory organ development., 1994, 13, 67-81.
[http://dx.doi.org/10.1016/0896-6273(94)90460-X]
[39]
Kudinov, A.E.; Karanicolas, J.; Golemis, E.A.; Boumber, Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin. Cancer Res., 2017, 23(9), 2143-2153.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2728] [PMID: 28143872]
[40]
Chatterji, P.; Rustgi, A.K. RNA binding proteins in intestinal epithelial biology and colorectal cancer. Trends Mol. Med., 2018, 24(5), 490-506.
[http://dx.doi.org/10.1016/j.molmed.2018.03.008] [PMID: 29627433]
[41]
Hinman, M.N.; Lou, H. Diverse molecular functions of Hu proteins. Cell. Mol. Life Sci., 2008, 65(20), 3168-3181.
[http://dx.doi.org/10.1007/s00018-008-8252-6] [PMID: 18581050]
[42]
Denkert, C.; Koch, I.; von Keyserlingk, N.; Noske, A.; Niesporek, S.; Dietel, M.; Weichert, W. Expression of the ELAV-like protein HuR in human colon cancer: Association with tumor stage and cyclooxygenase-2. Mod. Pathol., 2006, 19(9), 1261-1269.
[http://dx.doi.org/10.1038/modpathol.3800645] [PMID: 16799479]
[43]
Ross, J.; Lemm, I.; Berberet, B. Overexpression of an mRNA-binding protein in human colorectal cancer. Oncogene, 2001, 20(45), 6544-6550.
[http://dx.doi.org/10.1038/sj.onc.1204838] [PMID: 11641779]
[44]
Dimitriadis, E.; Trangas, T.; Milatos, S.; Foukas, P.G.; Gioulbasanis, I.; Courtis, N.; Nielsen, F.C.; Pandis, N.; Dafni, U.; Bardi, G.; Ioannidis, P. Expression of oncofetal RNA-binding protein CRD-BP/IMP1 predicts clinical outcome in colon cancer. Int. J. Cancer, 2007, 121(3), 486-494.
[http://dx.doi.org/10.1002/ijc.22716] [PMID: 17415713]
[45]
Pereira, B.; Billaud, M.; Almeida, R. RNA-binding proteins in cancer: Old players and new actors. Trends Cancer, 2017, 3(7), 506-528.
[http://dx.doi.org/10.1016/j.trecan.2017.05.003] [PMID: 28718405]
[46]
Chen, H.; Liu, J.; Wang, H.; Cheng, Q.; Zhou, C.; Chen, X.; Ye, F. Inhibition of RNA-binding protein Musashi-1 sup-presses malignant properties and reverses paclitaxel re-sistance in ovarian carcinoma. J. Cancer, 2019, 10(6), 1580-1592.
[http://dx.doi.org/10.7150/jca.27352] [PMID: 31031868]
[47]
Tang, B.; Zhu, J.; Li, J.; Fan, K.; Gao, Y.; Cheng, S.; Kong, C.; Zheng, L.; Wu, F.; Weng, Q.; Lu, C.; Ji, J. The ferroptosis and iron-metabolism signature robustly predicts clinical diagno-sis, prognosis and immune microenvironment for hepatocel-lular carcinoma. Cell Commun. Signal., 2020, 18(1), 174.
[http://dx.doi.org/10.1186/s12964-020-00663-1] [PMID: 33115468]
[48]
Okazaki, T.; Chikuma, S.; Iwai, Y.; Fagarasan, S.; Honjo, T. A rheostat for immune responses: The unique properties of PD-1 and their advantages for clinical application. Nat. Immunol., 2013, 14(12), 1212-1218.
[http://dx.doi.org/10.1038/ni.2762] [PMID: 24240160]
[49]
Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr Immunotherapy in colo-rectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(6), 361-375.
[http://dx.doi.org/10.1038/s41575-019-0126-x] [PMID: 30886395]
[50]
Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive bi-omarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 2016, 17(12), e542-e551.
[http://dx.doi.org/10.1016/S1470-2045(16)30406-5] [PMID: 27924752]
[51]
Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; Kaley, T.J.; Kendall, S.M.; Motzer, R.J.; Ha-kimi, A.A.; Voss, M.H.; Russo, P.; Rosenberg, J.; Iyer, G.; Bochner, B.H.; Bajorin, D.F.; Al-Ahmadie, H.A.; Chaft, J.E.; Rudin, C.M.; Riely, G.J.; Baxi, S.; Ho, A.L.; Wong, R.J.; Pfist-er, D.G.; Wolchok, J.D.; Barker, C.A.; Gutin, P.H.; Brennan, C.W.; Tabar, V.; Mellinghoff, I.K.; DeAngelis, L.M.; Ariyan, C.E.; Lee, N.; Tap, W.D.; Gounder, M.M.; D’Angelo, S.P.; Saltz, L.; Stadler, Z.K.; Scher, H.I.; Baselga, J.; Razavi, P.; Klebanoff, C.A.; Yaeger, R.; Segal, N.H.; Ku, G.Y.; DeMatteo, R.P.; Ladanyi, M.; Rizvi, N.A.; Berger, M.F.; Riaz, N.; Solit, D.B.; Chan, T.A.; Morris, L.G.T. Tumor mutational load pre-dicts survival after immunotherapy across multiple cancer types. Nat. Genet., 2019, 51(2), 202-206.
[http://dx.doi.org/10.1038/s41588-018-0312-8] [PMID: 30643254]
[52]
Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med., 2017, 377(25), 2500-2501.
[http://dx.doi.org/10.1056/NEJMc1713444] [PMID: 29262275]
[53]
O’Mara, T.A.; Spurdle, A.B.; Glubb, D.M. Analysis of pro-moter-associated chromatin interactions reveals biologically relevant candidate target genes at endometrial cancer risk loci. Cancers (Basel), 2019, 11(10), 1440.
[http://dx.doi.org/10.1101/751081]
[54]
Ito, S.; Koso, H.; Sakamoto, K.; Watanabe, S. RNA helicase DHX15 acts as a tumour suppressor in glioma. Br. J. Cancer, 2017, 117(9), 1349-1359.
[http://dx.doi.org/10.1038/bjc.2017.273] [PMID: 28829764]
[55]
Jing, Y.; Nguyen, M.M.; Wang, D.; Pascal, L.E.; Guo, W.; Xu, Y.; Ai, J.; Deng, F.; Masoodi, K.Z.; Yu, X.; Zhang, J.; Nelson, J.B.; Xia, S.; Wang, Z. DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. 2018, 37, 638-650.
[56]
Babu, N.; Pinto, S.M.; Biswas, M.; Subbannayya, T.; Rajappa, M.; Mohan, S.V.; Advani, J.; Rajagopalan, P.; Sathe, G.; Syed, N.; Radhakrishna, V.D.; Muthusamy, O.; Navani, S.; Kumar, R.V.; Gopisetty, G.; Rajkumar, T.; Radhakrishnan, P.; Thiyagarajan, S.; Pandey, A.; Gowda, H.; Majumder, P.; Chat-terjee, A. Phosphoproteomic analysis identifies CLK1 as a novel therapeutic target in gastric cancer. Gastric Cancer, 2020, 23(5), 796-810.
[http://dx.doi.org/10.1007/s10120-020-01062-8] [PMID: 32333232]
[57]
Zhang, L.; Yang, H.; Zhang, W.; Liang, Z.; Huang, Q.; Xu, G.; Zhen, X.; Zheng, L.T. Clk1-regulated aerobic glycolysis is in-volved in glioma chemoresistance. J. Neurochem., 2017, 142(4), 574-588.
[http://dx.doi.org/10.1111/jnc.14096] [PMID: 28581641]
[58]
Zhou, W.; Feng, X.; Li, H.; Wang, L.; Zhu, B.; Liu, W.; Zhao, M.; Yao, K.; Ren, C. Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and ge-netic mechanisms in nasopharyngeal carcinoma. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41(1), 54-62.
[http://dx.doi.org/10.1093/abbs/gmn006] [PMID: 19129950]
[59]
Cheishvili, D.; Stefanska, B.; Yi, C.; Li, C.C.; Yu, P.; Ara-kelian, A.; Tanvir, I.; Khan, H.A.; Rabbani, S.; Szyf, M. A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel tar-gets involved in cancer invasiveness. Oncotarget, 2015, 6(32), 33253-33268.
[http://dx.doi.org/10.18632/oncotarget.5291] [PMID: 26427334]
[60]
Gorissen, D. Microenvironmental regulation of tumor pro-gression and metastasis. Comput. Sci, 2010, Doctor, 1423-1437.
[61]
Taddei, M.L.; Giannoni, E.; Comito, G.; Chiarugi, P. Micro-environment and tumor cell plasticity: An easy way out. Cancer Lett., 2013, 341(1), 80-96.
[http://dx.doi.org/10.1016/j.canlet.2013.01.042] [PMID: 23376253]
[62]
Russell, J.H.; Ley, T.J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol., 2002, 20, 323-370.
[http://dx.doi.org/10.1146/annurev.immunol.20.100201.131730] [PMID: 11861606]
[63]
Kristi, L. Stringer; Bulent, Turan; Lisa, McCormick; Modupe-oluwa, Durojaiye; Laura, Nyblade; Mirjam-Colette, Kempf; Bronwen, Lichtenstein; J.M.T., Transcriptional reprogram-ming of mature CD4+ T helper cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Physiol. Behav., 2017, 176, 139-148.
[64]
Narayanan, S.; Kawaguchi, T.; Yan, L.; Peng, X.; Qi, Q.; Takabe, K. Cytolytic activity score to assess anticancer im-munity in colorectal cancer. Ann. Surg. Oncol., 2018, 25(8), 2323-2331.
[http://dx.doi.org/10.1245/s10434-018-6506-6] [PMID: 29770915]
[65]
Dijkstra, K.K.; Cattaneo, C.M.; Weeber, F.; Chalabi, M.; van de Haar, J.; Fanchi, L.F.; Slagter, M.; van der Velden, D.L.; Kaing, S.; Kelderman, S.; van Rooij, N.; van Leerdam, M.E.; Depla, A.; Smit, E.F.; Hartemink, K.J.; de Groot, R.; Wolkers, M.C.; Sachs, N.; Snaebjornsson, P.; Monkhorst, K.; Haanen, J.; Clevers, H.; Schumacher, T.N.; Voest, E.E. Generation of tumor-reactive T Cells by co-culture of peripheral blood lym-phocytes and tumor organoids. Cell, 2018, 174(6), 1586-1598.e12.
[http://dx.doi.org/10.1016/j.cell.2018.07.009] [PMID: 30100188]
[66]
Pagès, F.; Galon, J.; Dieu-Nosjean, M.C.; Tartour, E.; Sautès-Fridman, C.; Fridman, W.H. Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene, 2010, 29(8), 1093-1102.
[http://dx.doi.org/10.1038/onc.2009.416] [PMID: 19946335]
[67]
Hansen, M.; Andersen, M.H. The role of dendritic cells in cancer. Semin. Immunopathol., 2017, 39(3), 307-316.
[http://dx.doi.org/10.1007/s00281-016-0592-y] [PMID: 27638181]
[68]
Sánchez-Paulete, A.R.; Teijeira, A.; Cueto, F.J.; Garasa, S.; Pérez-Gracia, J.L.; Sánchez-Arráez, A.; Sancho, D.; Melero, I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol., 2017, 28(Suppl. 12), xii44-xii55.
[http://dx.doi.org/10.1093/annonc/mdx237] [PMID: 28945841]
[69]
Sionov, R.V.; Fainsod-Levi, T.; Zelter, T.; Polyansky, L.; Pham, C.T.; Granot, Z. Neutrophil cathepsin G and tumor cell rage facilitate neutrophil anti-tumor cytotoxicity. OncoImmunology, 2019, 8(9), e1624129.
[http://dx.doi.org/10.1080/2162402X.2019.1624129] [PMID: 31428521]
[70]
Giese, M.A.; Hind, L.E.; Huttenlocher, A. Neutrophil plastici-ty in the tumor microenvironment. Blood, 2019, 133(20), 2159-2167.
[http://dx.doi.org/10.1182/blood-2018-11-844548] [PMID: 30898857]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy