Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Strategies in Medicinal Chemistry to Discover New Hit Compounds against Ebola Virus: Challenges and Perspectives in Drug Discovery

Author(s): Igor José dos Santos Nascimento*, Paulo Fernando da Silva Santos-Júnior, João Xavier de Araújo-Júnior and Edeildo Ferreira da Silva-Júnior

Volume 22, Issue 22, 2022

Published on: 10 August, 2022

Page: [2896 - 2924] Pages: 29

DOI: 10.2174/1389557522666220404085858

Price: $65

conference banner
Abstract

Ebola Virus (EBOV) is an infectious disease that mainly affects the cardiovascular system. It belongs to the Filoviridae family, consisting of filamentous envelopes and non-segmented negative RNA genome. EBOV was initially identified in Sudan and Zaire (now named the Democratic Republic of Congo) around 1967. It is transmitted mainly by contact with secretions (blood, sweat, saliva, and tears) from infected wild animals, such as non-human primates and bats. It has gained more prominence in recent years due to the recent EBOV outbreaks that occurred from 2013 to 2016, resulting in approximately 28,000 infected individuals, with a mortality rate of 40- 70%, affecting mainly Liberia, Guinea, and Sierra Leone. Despite these alarming levels, there is still no FDA-approved drug for the effective treatment of these diseases. The most advanced drug to treat EBOV is remdesivir. However, it is a high-cost drug and is available only for intravenous use. In this sense, more investments are needed in the research focused on the development of new antiviral drugs. In this context, medicinal chemistry strategies have been improving and increasingly discovering new hits that can be used in the future as a treatment against these diseases. Thus, this review will address the main advances in medicinal chemistry, such as drug discovery through computational techniques (virtual screening and virtual high throughput screening), drug repurposing, phenotypic screening assays, and employing classical medicinal chemistry, such as bioisosterism, metabolism-based drug design, and the discovery of new inhibitors through natural products, thereby presenting several promising compounds that may contain the advance of these pathogens.

Keywords: Ebola virus, medicinal chemistry, drug discovery, molecular modeling, in silico, computational methods.

Graphical Abstract

[1]
Ebola virus disease Available form: https://www.who.int/healthtopics/ebola/#tab=tab_1 (Accessed May 23, 2021).
[2]
Ebola (Ebola virus disease) Available form: https://www.cdc.gov/vhf/ebola/index.html (Accessed May 23, 2021).
[3]
Beam, E.L.; Schwedhelm, M.M.; Boulter, K.C.; Vasa, A.M.; Larson, L.; Cieslak, T.J.; Lowe, J.J.; Herstein, J.J.; Kratochvil, C.J.; Hewlett, A.L. Ebola virus disease: Clinical challenges, recognition, and management. Nurs. Clin. North Am., 2019, 54(2), 169-180.
[http://dx.doi.org/10.1016/j.cnur.2019.02.001] [PMID: 31027659]
[4]
Tapia, M.D.; Sow, S.O.; Mbaye, K.D.; Thiongane, A.; Ndiaye, B.P.; Ndour, C.T.; Mboup, S.; Keshinro, B.; Kinge, T.N.; Vernet, G.; Bigna, J.J.; Oguche, S.; Koram, K.A.; Asante, K.P.; Gobert, P.; Hogrefe, W.R.; De Ryck, I.; Debois, M.; Bourguignon, P.; Jongert, E.; Ballou, W.R.; Koutsoukos, M.; Roman, F.; Amusu, S.; Ayuk, L.; Bilong, C.; Boahen, O.; Camara, M.; Cheick Haidara, F.; Coly, D.; Dièye, S.; Dosoo, D.; Ekedi, M.; Eneida Almeida Dos Santos, I.; Kaali, S.; Kokogho, A.; Levine, M.; Opoku, N.; Owusu-Agyei, S.; Pitmang, S.; Sall, F.; Seydi, M.; Sztein, M.; Tejiokem, M.; Traore, A.; Vernet, M-A.; Yawson, A.K. Zaire EBola Research Alliance group. Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in children in Africa: A randomised, observer-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis., 2020, 20(6), 719-730.
[http://dx.doi.org/10.1016/S1473-3099(20)30019-0] [PMID: 32199492]
[5]
Berry, D.E.; Bavinger, J.C.; Fernandes, A.; Mattia, J.G.; Mustapha, J.; Harrison-Williams, L.; Teshome, M.; Vandy, M.J.; Shantha, J.G.; Yeh, S.; Hayek, B.; Kraft, C.S.; Crozier, I.; O’Neill, K.; Kamara, S.; Wurie, A.; Goba, A.; Sandi, J.D.; Momoh, M.; Jalloh, S.; Grant, D.S.; Farmer, P.E.; Dierberg, K.; Chang, J.; Bausch, D.G.; Garry, R.F.; Hartnett, J.N.; Shaffer, J.G.; Schieffelin, J.S.; Acharya, N.R.; Uyeki, T.M.; Reiners, R.; Reiners, M.; Gess, L.A.; Mansaray, M.; Kabba, Y.; Kamara, D.; Mishra, S.; Chan, A.K.; Fowler, R.; O’Dempsey, T.; Liu, W.J.; Ebrahim, F.K.; Hendricks, T.; Kaluma, E.; Bavari, S.; Palacios, G. Posterior segment ophthalmic manifestations in Ebola survivors, sierra leone Ophthalmology, 2021.
[6]
Agnihotri, S.; Alpren, C.; Bangura, B.; Bennett, S.; Gorina, Y.; Harding, J.D.; Hersey, S.; Kamara, A.S.; Kamara, M.A.M.; Klena, J.D.; McLysaght, F.; Patel, N.; Presser, L.; Redd, J.T.; Samba, T.T.; Taylor, A.K.; Vandi, M.A.; Van Heest, S. Building the sierra leone Ebola database: Organization and characteristics of data systematically collected during 2014-2015 ebola epidemic. Ann. Epidemiol., 2021, 60, 35-44.
[http://dx.doi.org/10.1016/j.annepidem.2021.04.017] [PMID: 33965545]
[7]
Tapia, M.D.; Sow, S.O.; Ndiaye, B.P.; Mbaye, K.D.; Thiongane, A.; Ndour, C.T.; Mboup, S.; Ake, J.A.; Keshinro, B.; Akintunde, G.A.; Kinge, T.N.; Vernet, G.; Bigna, J.J.; Oguche, S.; Koram, K.A.; Asante, K.P.; Hogrefe, W.R.; Günther, S.; Naficy, A.; De Ryck, I.; Debois, M.; Bourguignon, P.; Jongert, E.; Ballou, W.R.; Koutsoukos, M.; Roman, F.; Amusu, S.; Ayuk, L.; Bilong, C.; Boahen, O.; Camara, M.; Cheick Haidara, F.; Coly, D.; Dièye, S.; Dosoo, D.; Ekedi, M.; Eneida Almeida Dos Santos, I.; Kaali, S.; Kokogho, A.; Levine, M.; Opoku, N.; Owusu-Agyei, S.; Pitmang, S.; Sall, F.; Seydi, M.; Sztein, M.; Tejiokem, M.; Traore, A.; Vernet, M-A.; Yawson, A.K. Zaire EBola Research Alliance group. Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in adults in Africa: A randomised, observer-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis., 2020, 20(6), 707-718.
[http://dx.doi.org/10.1016/S1473-3099(20)30016-5] [PMID: 32199491]
[8]
Iannetta, M.; Di Caro, A.; Nicastri, E.; Vairo, F.; Masanja, H.; Kobinger, G.; Mirazimi, A.; Ntoumi, F.; Zumla, A.; Ippolito, G. Viral hemorrhagic fevers other than Ebola and Lassa. Infect. Dis. Clin. North Am., 2019, 33(4), 977-1002.
[http://dx.doi.org/10.1016/j.idc.2019.08.003] [PMID: 31668201]
[9]
Kiiza, P.; Adhikari, N.K.J.; Mullin, S.; Teo, K.; Fowler, R.A. Principles and practices of establishing a hospital-based Ebola treatment unit. Crit. Care Clin., 2019, 35(4), 697-710.
[http://dx.doi.org/10.1016/j.ccc.2019.06.011] [PMID: 31445614]
[10]
Rewar, S.; Mirdha, D. Transmission of Ebola virus disease: An overview. Ann. Glob. Health, 2014, 80(6), 444-451.
[http://dx.doi.org/10.1016/j.aogh.2015.02.005] [PMID: 25960093]
[11]
Lachâtre, M.; Yazdanpanah, Y. Ebola virus disease: Therapeutic news. J. Anti-Infect., 2016, 18(3), 117-125.
[http://dx.doi.org/10.1016/j.antinf.2016.07.002]
[12]
Schuit, M.; Dunning, R.; Freeburger, D.; Miller, D.; Hooper, I.; Faisca, L.; Wahl, V.; Dabisch, P. The use of an Ebola virus reporter cell line in a semi-automated microtitration assay. J. Virol. Methods, 2021, 292, 114116.
[http://dx.doi.org/10.1016/j.jviromet.2021.114116] [PMID: 33689788]
[13]
Ebola virus disease. Available form: https://www.who.int/health-topics/ebola/#tab=tab_3 (Accessed May 23, 2021).
[14]
Lasala, F.; García-Rubia, A.; Requena, C.; Galindo, I.; Cuesta-Geijo, M.A.; García-Dorival, I.; Bueno, P.; Labiod, N.; Luczkowiak, J.; Martinez, A.; Campillo, N.E.; Alonso, C.; Delgado, R.; Gil, C. Identification of potential inhibitors of protein-protein interaction useful to fight against Ebola and other highly pathogenic viruses. Antiviral Res., 2021, 186, 105011.
[http://dx.doi.org/10.1016/j.antiviral.2021.105011] [PMID: 33428961]
[15]
Mutters, N.T.; Malek, V.; Agnandji, S.T.; Günther, F.; Tacconelli, E. Evaluation of the scientific impact of the Ebola epidemic: A systematic review. Clin. Microbiol. Infect., 2018, 24(6), 573-576.
[http://dx.doi.org/10.1016/j.cmi.2017.08.027] [PMID: 28882724]
[16]
Dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Cruzain and rhodesain inhibitors: Last decade of advances in seeking for new compounds against American and African Trypanosomiases. Curr. Top. Med. Chem., 2021, 21(21), 1871-1899.
[http://dx.doi.org/10.2174/1568026621666210331152702] [PMID: 33797369]
[17]
Rognan, D. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacol. Ther., 2017, 175, 47-66.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.034] [PMID: 28223231]
[18]
van Montfort, R.L.M.; Workman, P. Structure-based drug design: Aiming for a perfect fit. Essays Biochem., 2017, 61(5), 431-437.
[http://dx.doi.org/10.1042/EBC20170052] [PMID: 29118091]
[19]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2020, 27.
[PMID: 32787752]
[20]
Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213.
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[21]
José dos Santos Nascimento, I.; Mendonça de Aquino, T.; Fernando da Silva Santos-Júnior, P.; Xavier de Araújo-Júnior, J.; Ferreira da Silva-Júnior, E. Molecular modeling applied to design of cysteine protease inhibitors – A powerful tool for the identification of hit compounds against neglected tropical diseases. In: Frontiers in Computational Chemistry; Bentham Science Publishers, 2020; pp. 63-110.
[22]
Malvy, D.; McElroy, A.K.; de Clerck, H.; Günther, S.; van Griensven, J. Ebola virus disease. Lancet, 2019, 393(10174), 936-948.
[http://dx.doi.org/10.1016/S0140-6736(18)33132-5] [PMID: 30777297]
[23]
Nicastri, E.; Kobinger, G.; Vairo, F.; Montaldo, C.; Mboera, L.E.G.; Ansunama, R.; Zumla, A.; Ippolito, G. Ebola virus disease: Epidemiology, clinical features, management, and prevention. Infect. Dis. Clin. North Am., 2019, 33(4), 953-976.
[http://dx.doi.org/10.1016/j.idc.2019.08.005] [PMID: 31668200]
[24]
Jacob, S.T.; Crozier, I.; Fischer, W.A., II; Hewlett, A.; Kraft, C.S.; Vega, M.A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; Kuhn, J.H. Ebola virus disease. Nat. Rev. Dis. Primers, 2020, 6(1), 13.
[http://dx.doi.org/10.1038/s41572-020-0147-3] [PMID: 32080199]
[25]
Pourrut, X.; Kumulungui, B.; Wittmann, T.; Moussavou, G.; Délicat, A.; Yaba, P.; Nkoghe, D.; Gonzalez, J-P.; Leroy, E.M. The natural history of Ebola virus in Africa. Microbes Infect., 2005, 7(7-8), 1005-1014.
[http://dx.doi.org/10.1016/j.micinf.2005.04.006] [PMID: 16002313]
[26]
Walldorf, J.A.; Cloessner, E.A.; Hyde, T.B.; MacNeil, A.; Bennett, S.D.; Carter, R.J.; Redd, J.T.; Marston, B.J. CDC Emergency Ebola Vaccine Taskforce. Considerations for use of Ebola vaccine during an emergency response. Vaccine, 2019, 37(48), 7190-7200.
[http://dx.doi.org/10.1016/j.vaccine.2017.08.058] [PMID: 28890191]
[27]
Groseth, A.; Feldmann, H.; Strong, J.E. The ecology of Ebola virus. Trends Microbiol., 2007, 15(9), 408-416.
[http://dx.doi.org/10.1016/j.tim.2007.08.001] [PMID: 17698361]
[28]
Di Paola, N.; Sanchez-Lockhart, M.; Zeng, X.; Kuhn, J.H.; Palacios, G. Viral genomics in Ebola virus research. Nat. Rev. Microbiol., 2020, 18(7), 365-378.
[http://dx.doi.org/10.1038/s41579-020-0354-7] [PMID: 32367066]
[29]
Beeching, N.J.; Fenech, M.; Houlihan, C.F. Ebola virus disease. BMJ, 2014, 349(dec10 28), g7348-g7348.
[http://dx.doi.org/10.1136/bmj.g7348] [PMID: 25497512]
[30]
Tomori, O.; Kolawole, M.O. Ebola virus disease: Current vaccine solutions. Curr. Opin. Immunol., 2021, 71, 27-33.
[http://dx.doi.org/10.1016/j.coi.2021.03.008] [PMID: 33873076]
[31]
Rohan, H.; McKay, G. The Ebola outbreak in the Democratic Republic of the Congo: Why there is no ‘silver bullet’. Nat. Immunol., 2020, 21(6), 591-594.
[http://dx.doi.org/10.1038/s41590-020-0675-8] [PMID: 32317804]
[32]
Balmith, M.; Soliman, M.E.S. Potential Ebola drug targets - filling the gap: A critical step forward towards the design and discovery of potential drugs. Biologia (Bratisl.), 2017, 72(1), 1-13.
[http://dx.doi.org/10.1515/biolog-2017-0012]
[33]
Fung, I.C-H.; Tse, Z.T.H.; Cheung, C-N.; Miu, A.S.; Fu, K-W. Ebola and the social media. Lancet, 2014, 384(9961), 2207.
[http://dx.doi.org/10.1016/S0140-6736(14)62418-1] [PMID: 25625391]
[34]
Salata, C.; Calistri, A.; Alvisi, G.; Celestino, M.; Parolin, C.; Palù, G. Ebola virus entry: From molecular characterization to drug discovery. Viruses, 2019, 11(3), 274.
[http://dx.doi.org/10.3390/v11030274] [PMID: 30893774]
[35]
Bixler, S.L.; Duplantier, A.J.; Bavari, S. Discovering drugs for the treatment of Ebola virus. Curr. Treat. Options Infect. Dis., 2017, 9(3), 299-317.
[http://dx.doi.org/10.1007/s40506-017-0130-z] [PMID: 28890666]
[36]
Pettini, F.; Trezza, A.; Spiga, O. A focus on Ebola virus polymerase.Viral Polymerases: Structures, Functions and Roles as Antiviral Drug Targets; Gupta, S.P., Ed.; Elsevier: Amsteram, Netherlands, 2019, pp. 181-210.
[http://dx.doi.org/10.1016/B978-0-12-815422-9.00007-3]
[37]
Wu, W.; Liu, S. The drug targets and antiviral molecules for treatment of Ebola Virus infection. Curr. Top. Med. Chem., 2017, 17(3), 361-370.
[http://dx.doi.org/10.2174/1568026616666160829161318] [PMID: 27572081]
[38]
Ayub, G.; Waheed, Y. Sequence analysis of the L protein of the Ebola 2014 outbreak: Insight into conserved regions and mutations. Mol. Med. Rep., 2016, 13(6), 4821-4826.
[http://dx.doi.org/10.3892/mmr.2016.5145] [PMID: 27082438]
[39]
Mirza, M.U.; Vanmeert, M.; Ali, A.; Iman, K.; Froeyen, M.; Idrees, M. Perspectives towards antiviral drug discovery against Ebola virus. J. Med. Virol., 2019, 91(12), 2029-2048.
[http://dx.doi.org/10.1002/jmv.25357] [PMID: 30431654]
[40]
Abouelwafa, M.; Georrge, J.J. Ebola virus and its potential drug targets. In: Proceedings of International Science Symposium on Recent Trends in Science and Technology, New Delhi2017, pp. 387-398.
[41]
Morwitzer, M.J.; Tritsch, S.R.; Cazares, L.H.; Ward, M.D.; Nuss, J.E.; Bavari, S.; Reid, S.P. Identification of RUVBL1 and RUVBL2 as novel cellular interactors of the Ebola virus nucleoprotein. Viruses, 2019, 11(4), 372.
[http://dx.doi.org/10.3390/v11040372] [PMID: 31018511]
[42]
Nasution, M.A.F.; Toepak, E.P.; Alkaff, A.H.; Tambunan, U.S.F. Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus Nucleocapsid (EBOV NP): A computational approach to discover new drug for combating Ebola. BMC Bioinformatics, 2018, 19(S14)(Suppl. 14), 419.
[http://dx.doi.org/10.1186/s12859-018-2387-8] [PMID: 30453886]
[43]
O’Donnell, K.; Marzi, A. The Ebola virus glycoprotein and its immune responses across multiple vaccine platforms. Expert Rev. Vaccines, 2020, 19(3), 267-277.
[http://dx.doi.org/10.1080/14760584.2020.1738225] [PMID: 32129120]
[44]
Edwards, M.R.; Basler, C.F. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr. Opin. Virol., 2019, 35, 42-56.
[http://dx.doi.org/10.1016/j.coviro.2019.03.001] [PMID: 31003196]
[45]
Lee, J.E.; Saphire, E.O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol., 2009, 4(6), 621-635.
[http://dx.doi.org/10.2217/fvl.09.56] [PMID: 20198110]
[46]
Beniac, D.R.; Booth, T.F. Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution. Sci. Rep., 2017, 7(1), 46374.
[http://dx.doi.org/10.1038/srep46374] [PMID: 28397863]
[47]
Watanabe, S.; Noda, T.; Halfmann, P.; Jasenosky, L.; Kawaoka, Y. Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J. Infect. Dis., 2007, 196(s2)(Suppl. 2), S284-S290.
[http://dx.doi.org/10.1086/520582] [PMID: 17940962]
[48]
Zhang, A.P.P.; Abelson, D.M.; Bornholdt, Z.A.; Liu, T.; Woods, V.L., Jr; Saphire, E.O. The Ebola virus VP24 interferon antagonist: Know your enemy. Virulence, 2012, 3(5), 440-445.
[http://dx.doi.org/10.4161/viru.21302] [PMID: 23076242]
[49]
Banadyga, L.; Hoenen, T.; Ambroggio, X.; Dunham, E.; Groseth, A.; Ebihara, H. Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Sci. Rep., 2017, 7(1), 7698.
[http://dx.doi.org/10.1038/s41598-017-08167-8] [PMID: 28794491]
[50]
Hoenen, T.; Groseth, A.; Feldmann, H. Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol., 2019, 17(10), 593-606.
[http://dx.doi.org/10.1038/s41579-019-0233-2] [PMID: 31341272]
[51]
Wilson, J.A.; Bray, M.; Bakken, R.; Hart, M.K. Vaccine potential of Ebola virus VP24, VP30, VP35, and VP40 proteins. Virology, 2001, 286(2), 384-390.
[http://dx.doi.org/10.1006/viro.2001.1012] [PMID: 11485406]
[52]
Gene, O.G.; Julia, B.E.; Vanessa, M.R.; Victoria, W-J.; Thomas, G.W.; Lisa, H.E. Drug targets in infections with Ebola and Marburg viruses. Infect. Disord. Drug Targets, 2009, 9(2), 191-200.
[http://dx.doi.org/10.2174/187152609787847730] [PMID: 19275706]
[53]
Stahelin, R.V. Could the Ebola virus matrix protein VP40 be a drug target? Expert Opin. Ther. Targets, 2014, 18(2), 115-120.
[http://dx.doi.org/10.1517/14728222.2014.863877] [PMID: 24283270]
[54]
Groseth, A.; Charton, J.E.; Sauerborn, M.; Feldmann, F.; Jones, S.M.; Hoenen, T.; Feldmann, H. The Ebola virus ribonucleoprotein complex: A novel VP30-L interaction identified. Virus Res., 2009, 140(1-2), 8-14.
[http://dx.doi.org/10.1016/j.virusres.2008.10.017] [PMID: 19041915]
[55]
Modrof, J.; Mühlberger, E.; Klenk, H-D.; Becker, S. Phosphorylation of VP30 impairs Ebola virus transcription. J. Biol. Chem., 2002, 277(36), 33099-33104.
[http://dx.doi.org/10.1074/jbc.M203775200] [PMID: 12052831]
[56]
Ilinykh, P.A.; Tigabu, B.; Ivanov, A.; Ammosova, T.; Obukhov, Y.; Garron, T.; Kumari, N.; Kovalskyy, D.; Platonov, M.O.; Naumchik, V.S.; Freiberg, A.N.; Nekhai, S.; Bukreyev, A. Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription. J. Biol. Chem., 2014, 289(33), 22723-22738.
[http://dx.doi.org/10.1074/jbc.M114.575050] [PMID: 24936058]
[57]
Oany, A.R.; Sharmin, T.; Chowdhury, A.S.; Jyoti, T.P.; Hasan, M.A. Highly conserved regions in Ebola virus RNA dependent RNA polymerase may be act as a universal novel peptide vaccine target: A computational approach. In Silico Pharmacol., 2015, 3(1), 7.
[http://dx.doi.org/10.1186/s40203-015-0011-4] [PMID: 26820892]
[58]
Hartlieb, B.; Modrof, J.; Mühlberger, E.; Klenk, H-D.; Becker, S. Oligomerization of Ebola virus VP30 is essential for viral transcription and can be inhibited by a synthetic peptide. J. Biol. Chem., 2003, 278(43), 41830-41836.
[http://dx.doi.org/10.1074/jbc.M307036200] [PMID: 12912982]
[59]
Zhao, H.; Guo, Z. Medicinal chemistry strategies in follow-on drug discovery. Drug Discov. Today, 2009, 14(9-10), 516-522.
[http://dx.doi.org/10.1016/j.drudis.2009.02.008] [PMID: 19429512]
[60]
Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial intelligence in chemistry and drug design. J. Comput. Aided Mol. Des., 2020, 34(7), 709-715.
[http://dx.doi.org/10.1007/s10822-020-00317-x] [PMID: 32468207]
[61]
Gross, S.; Piwnica-Worms, D. Molecular imaging strategies for drug discovery and development. Curr. Opin. Chem. Biol., 2006, 10(4), 334-342.
[http://dx.doi.org/10.1016/j.cbpa.2006.06.028] [PMID: 16822702]
[62]
Kuntz, I.D. Structure-based strategies for drug design and discovery Science, 1992, 257, 1078-1082.
[63]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[64]
Surabhi, S.; Singh, B. Computer aided drug design: An overview. J. Drug Deliv. Ther., 2018, 8(5), 504-509.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[65]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 20.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[66]
Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des., 2019, 93(1), 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[67]
França, T.C.C. Homology modeling: An important tool for the drug discovery. J. Biomol. Struct. Dyn., 2015, 33(8), 1780-1793.
[http://dx.doi.org/10.1080/07391102.2014.971429] [PMID: 25266493]
[68]
Munsamy, G.; Soliman, M.E.S. Homology modeling in drug discovery-an update on the last decade. Lett. Drug Des. Discov., 2017, 14(9), 14.
[http://dx.doi.org/10.2174/1570180814666170110122027]
[69]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: Current trends and applications. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[70]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[71]
Fiser, A.; Šali, A. Modeller: Generation and refinement of homology-based protein structure models. Methods Enzymol., 2003, 374, 461-491.
[72]
Banerjee, A.; Mitra, P. Ebola virus VP35 protein: Modeling of the tetrameric structure and an analysis of its interaction with human PKR. J. Proteome Res., 2020, 19(11), 4533-4542.
[http://dx.doi.org/10.1021/acs.jproteome.0c00473] [PMID: 32871072]
[73]
Grifoni, A.; Lo Presti, A.; Giovanetti, M.; Montesano, C.; Amicosante, M.; Colizzi, V.; Lai, A.; Zehender, G.; Cella, E.; Angeletti, S.; Ciccozzi, M. Genetic diversity in Ebola virus: Phylogenetic and in silico structural studies of Ebola viral proteins. Asian Pac. J. Trop. Med., 2016, 9(4), 337-343.
[http://dx.doi.org/10.1016/j.apjtm.2016.03.016] [PMID: 27086151]
[74]
Ganugapati, J.; Akash, S. Multi-template homology based structure prediction and molecular docking studies of protein ‘L’ of Zaire Ebolavirus (EBOV). Informatics Med. Unlocked, 2017, 9, 68-75.
[http://dx.doi.org/10.1016/j.imu.2017.06.002]
[75]
Sousa, S.F.; Cerqueira, N.M.; Fernandes, P.A.; Ramos, M.J. Virtual screening in drug design and development. Comb. Chem. High Throughput Screen., 2010, 13(5), 442-453.
[http://dx.doi.org/10.2174/138620710791293001] [PMID: 20236061]
[76]
Subramaniam, S.; Mehrotra, M.; Gupta, D. Virtual high throughput screening (vHTS)--a perspective. Bioinformation, 2008, 3(1), 14-17.
[http://dx.doi.org/10.6026/97320630003014] [PMID: 19052660]
[77]
Good, A.C.; Krystek, S.R.; Mason, J.S. High-throughput and virtual screening: Core lead discovery technologies move towards integration. Drug Discov. Today, 2000, 5(12)(Suppl. 1), 61-69.
[http://dx.doi.org/10.1016/S1359-6446(00)00015-5] [PMID: 11564568]
[78]
Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov., 2002, 1(11), 882-894.
[http://dx.doi.org/10.1038/nrd941] [PMID: 12415248]
[79]
Kontoyianni, M. Docking and Virtual Screening in Drug Discovery.Proteomics for Drug Discovery. Methods in Molecular Biology; Lazar, I.; Kontoyianni, M.; Lazar, A., Eds.; Humana Press: New York, NY, 2017.
[http://dx.doi.org/10.1007/978-1-4939-7201-2_18]
[80]
Easton, V.; McPhillie, M.; Garcia-Dorival, I.; Barr, J.N.; Edwards, T.A.; Foster, R.; Fishwick, C.; Harris, M. Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening. Antiviral Res., 2018, 156, 46-54.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.003] [PMID: 29870771]
[81]
Onawole, A.T.; Kolapo, T.U.; Sulaiman, K.O.; Adegoke, R.O. Structure based virtual screening of the Ebola virus trimeric glycoprotein using consensus scoring. Comput. Biol. Chem., 2018, 72, 170-180.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.11.006] [PMID: 29361403]
[82]
Shaikh, F.; Zhao, Y.; Alvarez, L.; Iliopoulou, M.; Lohans, C.; Schofield, C.J.; Padilla-Parra, S.; Siu, S.W.I.; Fry, E.E.; Ren, J.; Stuart, D.I. Structure-based in silico screening identifies a potent ebolavirus inhibitor from a traditional Chinese Medicine Library. J. Med. Chem., 2019, 62(6), 2928-2937.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01328] [PMID: 30785281]
[83]
Sakurai, Y.; Kolokoltsov, A.A.; Chen, C.-C.; Tidwell, M.W.; Bauta, W.E.; Klugbauer, N.; Grimm, C.; Wahl-Schott, C.; Biel, M.; Davey, R.A. Two-pore channels control ebola virus host cell entry and are drug targets for disease treatment. Science (80-. ), 2015, 347, 995-998.
[84]
Penny, C.J.; Vassileva, K.; Jha, A.; Yuan, Y.; Chee, X.; Yates, E.; Mazzon, M.; Kilpatrick, B.S.; Muallem, S.; Marsh, M.; Rahman, T.; Patel, S. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(7), 1151-1161.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.022] [PMID: 30408544]
[85]
Kwofie, S.K.; Broni, E.; Teye, J.; Quansah, E.; Issah, I.; Wilson, M.D.; Miller, W.A., III; Tiburu, E.K.; Bonney, J.H.K. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput. Biol. Med., 2019, 113, 103414.
[http://dx.doi.org/10.1016/j.compbiomed.2019.103414] [PMID: 31536833]
[86]
Stefaniu, A. Introductory chapter: Molecular docking and molecular dynamics techniques to achieve rational drug design.Molecular Docking and Molecular Dynamics; Stefaniu, A., Ed.; IntechOpen: London, 2019.
[87]
Pak, Y.; Wang, S. Application of a molecular dynamics simulation method with a generalized effective potential to the flexible molecular docking problems. J. Phys. Chem. B, 2000, 104(2), 354-359.
[http://dx.doi.org/10.1021/jp993073h]
[88]
Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol., 2018, 9, 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[89]
Chen, J.; Wang, X.; Pang, L.; Zhang, J.Z.H.; Zhu, T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res., 2019, 47(13), 6618-6631.
[http://dx.doi.org/10.1093/nar/gkz499] [PMID: 31173143]
[90]
Chen, J.; Wang, X.; Zhu, T.; Zhang, Q.; Zhang, J.Z.H. A comparative insight into amprenavir resistance of mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 protease based on thermodynamic integration and MM-PBSA methods. J. Chem. Inf. Model., 2015, 55(9), 1903-1913.
[http://dx.doi.org/10.1021/acs.jcim.5b00173] [PMID: 26317593]
[91]
Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto, G.; Yanai, R.; Ohno, Y.; Narumi, T.; Taiji, M. High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLOS Comput. Biol., 2009, 5(10), e1000528.
[http://dx.doi.org/10.1371/journal.pcbi.1000528] [PMID: 19816553]
[92]
Kothandan, G.; Ganapathy, J. A short review on the application of combining molecular docking and molecular dynamics simulations in field of drug discovery. J. Chosun Nat. Sci., 2014, 7(2), 75-78.
[http://dx.doi.org/10.13160/ricns.2014.7.2.75]
[93]
Mirza, M.U.; Ikram, N. Integrated computational approach for virtual hit identification against Ebola viral proteins VP35 and VP40. Int. J. Mol. Sci., 2016, 17(11), 1748.
[http://dx.doi.org/10.3390/ijms17111748] [PMID: 27792169]
[94]
Sulaiman, K.O.; Kolapo, T.U.; Onawole, A.T.; Islam, M.A.; Adegoke, R.O.; Badmus, S.O. Molecular dynamics and combined docking studies for the identification of Zaire Ebola virus inhibitors. J. Biomol. Struct. Dyn., 2019, 37(12), 3029-3040.
[http://dx.doi.org/10.1080/07391102.2018.1506362] [PMID: 30058446]
[95]
Li, Q.; Ma, L.; Yi, D.; Wang, H.; Wang, J.; Zhang, Y.; Guo, Y.; Li, X.; Zhou, J.; Shi, Y.; Gao, G.F.; Cen, S. Novel cyclo-peptides inhibit Ebola pseudotyped virus entry by targeting primed GP protein. Antiviral Res., 2018, 155, 1-11.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.020] [PMID: 29709562]
[96]
Gaillard, T. Evaluation of autodock and autodock vina on the CASF-2013 benchmark. J. Chem. Inf. Model., 2018, 58(8), 1697-1706.
[http://dx.doi.org/10.1021/acs.jcim.8b00312] [PMID: 29989806]
[97]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading J. Comput. Chem., 2009, 31(2), 455-461.
[98]
Glanzer, J.G.; Byrne, B.M.; McCoy, A.M.; James, B.J.; Frank, J.D.; Oakley, G.G. in silico and in vitro methods to identify Ebola virus VP35-dsRNA inhibitors. Bioorg. Med. Chem., 2016, 24(21), 5388-5392.
[http://dx.doi.org/10.1016/j.bmc.2016.08.065] [PMID: 27642076]
[99]
Mohamad Yusoff, M.A.; Abdul Hamid, A.A.; Mohammad Bunori, N.; Abd Halim, K.B. Interaction of monomeric Ebola VP40 protein with a plasma membrane: A coarse-grained molecular dynamics (CGMD) simulation study. J. Mol. Graph. Model., 2018, 82, 137-144.
[http://dx.doi.org/10.1016/j.jmgm.2018.04.010] [PMID: 29730487]
[100]
Ahmad, N.; Farman, A.; Badshah, S.L.; Ur Rahman, A.; Ur Rashid, H.; Khan, K. Molecular modeling, simulation and docking study of Ebola virus glycoprotein. J. Mol. Graph. Model., 2017, 72, 266-271.
[http://dx.doi.org/10.1016/j.jmgm.2016.12.010] [PMID: 28160722]
[101]
Hou, Q.; Zhang, L. Biomimetic design of peptide neutralizer of ebola virus with molecular simulation. Langmuir, 2020, 36(7), 1813-1821.
[http://dx.doi.org/10.1021/acs.langmuir.9b03832] [PMID: 31986884]
[102]
Tambunan, U.S.F.; Alkaff, A.H.; Nasution, M.A.F.; Parikesit, A.A.; Kerami, D. Screening of commercial cyclic peptide conjugated to HIV-1 Tat peptide as inhibitor of N-terminal heptad repeat glycoprotein-2 ectodomain Ebola virus through in silico analysis. J. Mol. Graph. Model., 2017, 74, 366-378.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.001] [PMID: 28482272]
[103]
Sharifi, A.; Amanlou, A.; Moosavi-Movahedi, F.; Golestanian, S.; Amanlou, M. Tetracyclines as a potential antiviral therapy against Crimean Congo hemorrhagic fever virus: Docking and molecular dynamic studies. Comput. Biol. Chem., 2017, 70, 1-6.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.06.003] [PMID: 28709136]
[104]
Blundell, T.L.; Jhoti, H.; Abell, C. High-throughput crystallography for lead discovery in drug design. Nat. Rev. Drug Discov., 2002, 1(1), 45-54.
[http://dx.doi.org/10.1038/nrd706] [PMID: 12119609]
[105]
Zheng, H.; Hou, J.; Zimmerman, M.D.; Wlodawer, A.; Minor, W. The future of crystallography in drug discovery. Expert Opin. Drug Discov., 2014, 9(2), 125-137.
[http://dx.doi.org/10.1517/17460441.2014.872623] [PMID: 24372145]
[106]
Cachau, R.E.; Podjarny, A.D. High-resolution crystallography and drug design. J. Mol. Recognit., 2005, 18(3), 196-202.
[http://dx.doi.org/10.1002/jmr.738] [PMID: 15782396]
[107]
Zhao, Y.; Ren, J.; Fry, E.E.; Xiao, J.; Townsend, A.R.; Stuart, D.I. Structures of Ebola virus glycoprotein complexes with tricyclic antidepressant and antipsychotic drugs. J. Med. Chem., 2018, 61(11), 4938-4945.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00350] [PMID: 29741894]
[108]
Wilson, G.L.; Lill, M.A. Integrating structure-based and ligand-based approaches for computational drug design. Future Med. Chem., 2011, 3(6), 735-750.
[http://dx.doi.org/10.4155/fmc.11.18] [PMID: 21554079]
[109]
Moro, S.; Bacilieri, M.; Deflorian, F. Combining ligand-based and structure-based drug design in the virtual screening arena. Expert Opin. Drug Discov., 2007, 2(1), 37-49.
[http://dx.doi.org/10.1517/17460441.2.1.37] [PMID: 23496036]
[110]
Acharya, C.; Coop, A.; Polli, J.E.; Mackerell, A.D., Jr Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach. Curr. Comput. Aided Drug Des., 2011, 7(1), 10-22.
[http://dx.doi.org/10.2174/157340911793743547] [PMID: 20807187]
[111]
Lee, C-H.; Huang, H-C.; Juan, H-F. Reviewing ligand-based rational drug design: The search for an ATP synthase inhibitor. Int. J. Mol. Sci., 2011, 12(8), 5304-5318.
[http://dx.doi.org/10.3390/ijms12085304] [PMID: 21954360]
[112]
Baskin, I.I. The power of deep learning to ligand-based novel drug discovery. Expert Opin. Drug Discov., 2020, 15(7), 755-764.
[http://dx.doi.org/10.1080/17460441.2020.1745183] [PMID: 32228116]
[113]
Patel, H.M.; Noolvi, M.N.; Sharma, P.; Jaiswal, V.; Bansal, S.; Lohan, S.; Kumar, S.S.; Abbot, V.; Dhiman, S.; Bhardwaj, V. Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery. Med. Chem. Res., 2014, 23(12), 4991-5007.
[http://dx.doi.org/10.1007/s00044-014-1072-3]
[114]
Wang, T.; Wu, M-B.; Lin, J-P.; Yang, L-R. Quantitative structure-activity relationship: Promising advances in drug discovery platforms. Expert Opin. Drug Discov., 2015, 10(12), 1283-1300.
[http://dx.doi.org/10.1517/17460441.2015.1083006] [PMID: 26358617]
[115]
Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Naenna, T.; Prachayasittikul, V. A practical overview of quantitative structureactivity relationship EXCLI J., 2009, 8, 74-88.
[116]
Du, Q-S.; Huang, R-B.; Wei, Y-T.; Du, L-Q.; Chou, K-C. Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR). J. Comput. Chem., 2008, 29(2), 211-219.
[http://dx.doi.org/10.1002/jcc.20776] [PMID: 17559075]
[117]
Muhammad, U.; Uzairu, A.; Arthur, D.E. Quantitative structure activity relationship (QSAR) modeling Int. J. Adv. Acad. Res., 2018, 4, 1-9.
[118]
Perkins, R.; Fang, H.; Tong, W.; Welsh, W.J. Quantitative structure-activity relationship methods: Perspectives on drug discovery and toxicology. Environ. Toxicol. Chem., 2003, 22(8), 1666-1679.
[http://dx.doi.org/10.1897/01-171] [PMID: 12924569]
[119]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[120]
Dudek, A.Z.; Arodz, T.; Gálvez, J. Computational methods in developing Quantitative Structure-Activity Relationships (QSAR): A review. Comb. Chem. High Throughput Screen., 2006, 9(3), 213-228.
[http://dx.doi.org/10.2174/138620706776055539] [PMID: 16533155]
[121]
Roy, K. On some aspects of validation of predictive quantitative structure-activity relationship models. Expert Opin. Drug Discov., 2007, 2(12), 1567-1577.
[http://dx.doi.org/10.1517/17460441.2.12.1567] [PMID: 23488901]
[122]
Shahlaei, M. Descriptor selection methods in quantitative structure-activity relationship studies: A review study. Chem. Rev., 2013, 113(10), 8093-8103.
[http://dx.doi.org/10.1021/cr3004339] [PMID: 23822589]
[123]
Capuzzi, S.J.; Sun, W.; Muratov, E.N.; Martínez-Romero, C.; He, S.; Zhu, W.; Li, H.; Tawa, G.; Fisher, E.G.; Xu, M.; Shinn, P.; Qiu, X.; García-Sastre, A.; Zheng, W.; Tropsha, A. Computer-aided discovery and characterization of novel Ebola virus inhibitors. J. Med. Chem., 2018, 61(8), 3582-3594.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00035] [PMID: 29624387]
[124]
Qing, X.; Lee, X.Y.; De Raeymaeker, J.; Tame, J.R.; Zhang, K.Y.; De Maeyer, M.; Voet, A.R. Pharmacophore modeling: Advances, limitations, and current utility in drug discovery J. Receptor Ligand Channel Res., 2014, 7, 81-92.
[125]
Yang, S.Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013] [PMID: 20362693]
[126]
Khedkar, S.A.; Malde, A.K.; Coutinho, E.C.; Srivastava, S. Pharmacophore modeling in drug discovery and development: An overview. Med. Chem., 2007, 3(2), 187-197.
[http://dx.doi.org/10.2174/157340607780059521] [PMID: 17348856]
[127]
Sankar, M.K.L.; Jeyachandran, S.; Pandi, B. Screening of inhibitors as potential remedial against Ebolavirus infection: Pharmacophore-based approach. J. Biomol. Struct. Dyn., 2021, 39(2), 395-408.
[http://dx.doi.org/10.1080/07391102.2020.1715260] [PMID: 31928158]
[128]
Mali, S.N.; Chaudhari, H.K. Molecular modelling studies on adamantane-based Ebola virus GP-1 inhibitors using docking, pharmacophore and 3D-QSAR. SAR QSAR Environ. Res., 2019, 30(3), 161-180.
[http://dx.doi.org/10.1080/1062936X.2019.1573377] [PMID: 30786763]
[129]
Anantpadma, M.; Lane, T.; Zorn, K.M.; Lingerfelt, M.A.; Clark, A.M.; Freundlich, J.S.; Davey, R.A.; Madrid, P.B.; Ekins, S. Ebola Virus bayesian machine learning models enable new in vitro leads. ACS Omega, 2019, 4(1), 2353-2361.
[http://dx.doi.org/10.1021/acsomega.8b02948] [PMID: 30729228]
[130]
Yermolina, M.V.; Wang, J.; Caffrey, M.; Rong, L.L.; Wardrop, D.J. Discovery, synthesis, and biological evaluation of a novel group of selective inhibitors of filoviral entry. J. Med. Chem., 2011, 54(3), 765-781.
[http://dx.doi.org/10.1021/jm1008715] [PMID: 21204524]
[131]
Opsenica, I.; Burnett, J.C.; Gussio, R.; Opsenica, D.; Todorović, N.; Lanteri, C.A.; Sciotti, R.J.; Gettayacamin, M.; Basilico, N.; Taramelli, D.; Nuss, J.E.; Wanner, L.; Panchal, R.G.; Šolaja, B.A.; Bavari, S. A chemotype that inhibits three unrelated pathogenic targets: The botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. J. Med. Chem., 2011, 54(5), 1157-1169.
[http://dx.doi.org/10.1021/jm100938u] [PMID: 21265542]
[132]
Aman, M.J.; Kinch, M.S.; Warfield, K.; Warren, T.; Yunus, A.; Enterlein, S.; Stavale, E.; Wang, P.; Chang, S.; Tang, Q.; Porter, K.; Goldblatt, M.; Bavari, S. Development of a broad-spectrum antiviral with activity against Ebola virus. Antiviral Res., 2009, 83(3), 245-251.
[http://dx.doi.org/10.1016/j.antiviral.2009.06.001] [PMID: 19523489]
[133]
Selaković, Ž.; Soloveva, V.; Gharaibeh, D.N.; Wells, J.; Šegan, S.; Panchal, R.G.; Šolaja, B.A. Anti-Ebola activity of diazachrysene small molecules. ACS Infect. Dis., 2015, 1(6), 264-271.
[http://dx.doi.org/10.1021/acsinfecdis.5b00028] [PMID: 27622742]
[134]
van der Linden, W.A.; Schulze, C.J.; Herbert, A.S.; Krause, T.B.; Wirchnianski, A.A.; Dye, J.M.; Chandran, K.; Bogyo, M. Cysteine cathepsin inhibitors as anti-Ebola agents. ACS Infect. Dis., 2016, 2(3), 173-179.
[http://dx.doi.org/10.1021/acsinfecdis.5b00130] [PMID: 27347558]
[135]
Sadaghiani, A.M.; Verhelst, S.H.L.; Gocheva, V.; Hill, K.; Majerova, E.; Stinson, S.; Joyce, J.A.; Bogyo, M. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chem. Biol., 2007, 14(5), 499-511.
[http://dx.doi.org/10.1016/j.chembiol.2007.03.010] [PMID: 17524981]
[136]
Madrid, P.B.; Chopra, S.; Manger, I.D.; Gilfillan, L.; Keepers, T.R.; Shurtleff, A.C.; Green, C.E.; Iyer, L.V.; Dilks, H.H.; Davey, R.A.; Kolokoltsov, A.A.; Carrion, R., Jr; Patterson, J.L.; Bavari, S.; Panchal, R.G.; Warren, T.K.; Wells, J.B.; Moos, W.H.; Burke, R.L.; Tanga, M.J. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS One, 2013, 8(4), e60579.
[http://dx.doi.org/10.1371/journal.pone.0060579] [PMID: 23577127]
[137]
Madrid, P.B.; Panchal, R.G.; Warren, T.K.; Shurtleff, A.C.; Endsley, A.N.; Green, C.E.; Kolokoltsov, A.; Davey, R.; Manger, I.D.; Gilfillan, L.; Bavari, S.; Tanga, M.J. Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infect. Dis., 2015, 1(7), 317-326.
[http://dx.doi.org/10.1021/acsinfecdis.5b00030] [PMID: 27622822]
[138]
Ekins, S.; Freundlich, J.S.; Clark, A.M.; Anantpadma, M.; Davey, R.A.; Madrid, P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000 Res., 2015, 4, 1091.
[http://dx.doi.org/10.12688/f1000research.7217.1] [PMID: 26834994]
[139]
Gignoux, E.; Azman, A.S.; de Smet, M.; Azuma, P.; Massaquoi, M.; Job, D.; Tiffany, A.; Petrucci, R.; Sterk, E.; Potet, J.; Suzuki, M.; Kurth, A.; Cannas, A.; Bocquin, A.; Strecker, T.; Logue, C.; Pottage, T.; Yue, C.; Cabrol, J-C.; Serafini, M.; Ciglenecki, I. Effect of artesunate-amodiaquine on mortality related to Ebola Virus disease. N. Engl. J. Med., 2016, 374(1), 23-32.
[http://dx.doi.org/10.1056/NEJMoa1504605] [PMID: 26735991]
[140]
Sakurai, Y.; Sakakibara, N.; Toyama, M.; Baba, M.; Davey, R.A. Novel amodiaquine derivatives potently inhibit Ebola virus infection. Antiviral Res., 2018, 160, 175-182.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.025] [PMID: 30395872]
[141]
Zhang, X.; Liu, Q.; Li, Q.; Li, Y.; Liu, Z.; Deng, H.; Tang, S.; Wang, Y.; Wang, Y.; Song, D. Synthesis and biological evaluation of novel tricyclic matrinic derivatives as potential anti-filovirus agents. Acta Pharm. Sin. B, 2018, 8(4), 629-638.
[http://dx.doi.org/10.1016/j.apsb.2018.01.006] [PMID: 30109186]
[142]
Gaisina, I.N.; Peet, N.P.; Wong, L.; Schafer, A.M.; Cheng, H.; Anantpadma, M.; Davey, R.A.; Thatcher, G.R.J.; Rong, L. Discovery and structural optimization of 4-(Aminomethyl)benzamides as potent entry inhibitors of Ebola and marburg virus infections. J. Med. Chem., 2020, 63(13), 7211-7225.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00463] [PMID: 32490678]
[143]
Bessières, M.; Plebanek, E.; Chatterjee, P.; Shrivastava-Ranjan, P.; Flint, M.; Spiropoulou, C.F.; Warszycki, D.; Bojarski, A.J.; Roy, V.; Agrofoglio, L.A. Design, synthesis and biological evaluation of 2-substituted-6-[(4-substituted-1-piperidyl)methyl]-1H-benzimidazoles as inhibitors of Ebola virus infection. Eur. J. Med. Chem., 2021, 214, 113211.
[http://dx.doi.org/10.1016/j.ejmech.2021.113211] [PMID: 33548632]
[144]
Lee, K.; Ren, T.; Côté, M.; Gholamreza, B.; Misasi, J.; Bruchez, A.; Cunningham, J. Inhibition of Ebola Virus infection: Identification of niemann-pick C1 as the target by optimization of a chemical probe. ACS Med. Chem. Lett., 2013, 4(2), 239-243.
[http://dx.doi.org/10.1021/ml300370k] [PMID: 23526644]
[145]
Côté, M.; Misasi, J.; Ren, T.; Bruchez, A.; Lee, K.; Filone, C.M.; Hensley, L.; Li, Q.; Ory, D.; Chandran, K.; Cunningham, J. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature, 2011, 477(7364), 344-348.
[http://dx.doi.org/10.1038/nature10380] [PMID: 21866101]
[146]
Liu, H.; Tian, Y.; Lee, K.; Krishnan, P.; Wang, M.K-M.; Whelan, S.; Mevers, E.; Soloveva, V.; Dedic, B.; Liu, X.; Cunningham, J.M. Identification of potent Ebola virus entry inhibitors with suitable properties for in vivo studies. J. Med. Chem., 2018, 61(14), 6293-6307.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00704] [PMID: 29920098]
[147]
Luthra, P.; Liang, J.; Pietzsch, C.A.; Khadka, S.; Edwards, M.R.; Wei, S.; De, S.; Posner, B.; Bukreyev, A.; Ready, J.M.; Basler, C.F. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antiviral Res., 2018, 150, 193-201.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.019] [PMID: 29294299]
[148]
Selaković, Ž.; Tran, J.P.; Kota, K.P.; Lazić, M.; Retterer, C.; Besch, R.; Panchal, R.G.; Soloveva, V.; Sean, V.A.; Jay, W.B.; Pavić, A.; Verbić, T.; Vasiljević, B.; Kuehl, K.; Duplantier, A.J.; Bavari, S.; Mudhasani, R.; Šolaja, B.A. Second generation of diazachrysenes: Protection of Ebola virus infected mice and mechanism of action. Eur. J. Med. Chem., 2019, 162, 32-50.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.061] [PMID: 30408747]
[149]
Shoemaker, C.J.; Schornberg, K.L.; Delos, S.E.; Scully, C.; Pajouhesh, H.; Olinger, G.G.; Johansen, L.M.; White, J.M. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection. PLoS One, 2013, 8(2), e56265.
[http://dx.doi.org/10.1371/journal.pone.0056265] [PMID: 23441171]
[150]
Johansen, L.M.; DeWald, L.E.; Shoemaker, C.J.; Hoffstrom, B.G.; Lear-Rooney, C.M.; Stossel, A.; Nelson, E.; Delos, S.E.; Simmons, J.A.; Grenier, J.M.; Pierce, L.T.; Pajouhesh, H.; Lehár, J.; Hensley, L.E.; Glass, P.J.; White, J.M.; Olinger, G.G. A screen of approved drugs and molecular probes identifies therapeutics with anti-Ebola virus activity. Sci. Transl. Med., 2015, 7(290), 290ra89.
[http://dx.doi.org/10.1126/scitranslmed.aaa5597] [PMID: 26041706]
[151]
Cheng, H.; Schafer, A.; Soloveva, V.; Gharaibeh, D.; Kenny, T.; Retterer, C.; Zamani, R.; Bavari, S.; Peet, N.P.; Rong, L. Identification of a coumarin-based antihistamine-like small molecule as an anti-filoviral entry inhibitor. Antiviral Res., 2017, 145, 24-32.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.015] [PMID: 28645623]
[152]
Gao, Y.; Cheng, H.; Khan, S.; Xiao, G.; Rong, L.; Bai, C. Development of coumarine derivatives as potent anti-filovirus entry inhibitors targeting viral glycoprotein. Eur. J. Med. Chem., 2020, 204, 112595.
[http://dx.doi.org/10.1016/j.ejmech.2020.112595] [PMID: 32707357]
[153]
Sokolova, A.S.; Yarovaya, O.I.; Zybkina, A.V.; Mordvinova, E.D.; Shcherbakova, N.S.; Zaykovskaya, A.V.; Baev, D.S.; Tolstikova, T.G.; Shcherbakov, D.N.; Pyankov, O.V.; Maksyutov, R.A.; Salakhutdinov, N.F. Monoterpenoid-based inhibitors of filoviruses targeting the glycoprotein-mediated entry process. Eur. J. Med. Chem., 2020, 207, 112726.
[http://dx.doi.org/10.1016/j.ejmech.2020.112726] [PMID: 32905862]
[154]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[155]
Gil, C.; Martinez, A. Is drug repurposing really the future of drug discovery or is new innovation truly the way forward? Expert Opin. Drug Discov., 2021, 16(8), 829-831.
[http://dx.doi.org/10.1080/17460441.2021.1912733] [PMID: 33834929]
[156]
Ahmad, S.; Qazi, S.; Raza, K. Translational Bioinformatics Methods for Drug Discovery and Drug Repurposing.Translational Bioinformatics in Healthcare and Medicine; Elsevier, 2021, pp. 127-139.
[http://dx.doi.org/10.1016/B978-0-323-89824-9.00010-0]
[157]
Berdigaliyev, N.; Aljofan, M. An overview of drug discovery and development. Future Med. Chem., 2020, 12(10), 939-947.
[http://dx.doi.org/10.4155/fmc-2019-0307] [PMID: 32270704]
[158]
Wouters, O.J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA, 2020, 323(9), 844-853.
[http://dx.doi.org/10.1001/jama.2020.1166] [PMID: 32125404]
[159]
Schlander, M.; Hernandez-Villafuerte, K.; Cheng, C.Y.; Mestre-Ferrandiz, J.; Baumann, M. How much does it cost to research and develop a new drug? a systematic review and assessment. PharmacoEconomics, 2021, 39(11), 1243-1269.
[http://dx.doi.org/10.1007/s40273-021-01065-y] [PMID: 34368939]
[160]
Venkatesan, P. Repurposing drugs for treatment of COVID-19. Lancet Respir. Med., 2021, 9(7), e63.
[http://dx.doi.org/10.1016/S2213-2600(21)00270-8] [PMID: 34090608]
[161]
Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifirò, G. Challenges for drug repurposing in the COVID-19 pandemic era. Front. Pharmacol., 2020, 11, 588654.
[http://dx.doi.org/10.3389/fphar.2020.588654] [PMID: 33240091]
[162]
Zhu, W.; Zhang, Z.; He, S.; Wong, G.; Banadyga, L.; Qiu, X. Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model. Antiviral Res., 2018, 151, 39-49.
[http://dx.doi.org/10.1016/j.antiviral.2018.01.011] [PMID: 29369776]
[163]
Lane, T.R.; Massey, C.; Comer, J.E.; Freiberg, A.N.; Zhou, H.; Dyall, J.; Holbrook, M.R.; Anantpadma, M.; Davey, R.A.; Madrid, P.B.; Ekins, S. Pyronaridine tetraphosphate efficacy against Ebola virus infection in guinea pig. Antiviral Res., 2020, 181, 104863.
[http://dx.doi.org/10.1016/j.antiviral.2020.104863] [PMID: 32682926]
[164]
Lee, N.; Shum, D.; König, A.; Kim, H.; Heo, J.; Min, S.; Lee, J.; Ko, Y.; Choi, I.; Lee, H.; Radu, C.; Hoenen, T.; Min, J.Y.; Windisch, M.P. High-throughput drug screening using the Ebola virus transcription- and replication-competent virus-like particle system. Antiviral Res., 2018, 158, 226-237.
[http://dx.doi.org/10.1016/j.antiviral.2018.08.013] [PMID: 30149038]
[165]
Edwards, M.R.; Pietzsch, C.; Vausselin, T.; Shaw, M.L.; Bukreyev, A.; Basler, C.F. High-throughput minigenome system for identifying small-molecule inhibitors of Ebola virus replication. ACS Infect. Dis., 2015, 1(8), 380-387.
[http://dx.doi.org/10.1021/acsinfecdis.5b00053] [PMID: 26284260]
[166]
Sun, W.; He, S.; Martínez-Romero, C.; Kouznetsova, J.; Tawa, G.; Xu, M.; Shinn, P.; Fisher, E.; Long, Y.; Motabar, O.; Yang, S.; Sanderson, P.E.; Williamson, P.R.; García-Sastre, A.; Qiu, X.; Zheng, W. Synergistic drug combination effectively blocks Ebola virus infection. Antiviral Res., 2017, 137, 165-172.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.017] [PMID: 27890675]
[167]
Lane, T.R.; Dyall, J.; Mercer, L.; Goodin, C.; Foil, D.H.; Zhou, H.; Postnikova, E.; Liang, J.Y.; Holbrook, M.R.; Madrid, P.B.; Ekins, S. Repurposing Pyramax®, quinacrine and tilorone as treatments for Ebola virus disease. Antiviral Res., 2020, 182, 104908.
[http://dx.doi.org/10.1016/j.antiviral.2020.104908] [PMID: 32798602]
[168]
Schafer, A.; Cheng, H.; Xiong, R.; Soloveva, V.; Retterer, C.; Mo, F.; Bavari, S.; Thatcher, G.; Rong, L. Repurposing potential of 1st generation H1-specific antihistamines as anti-filovirus therapeutics. Antiviral Res., 2018, 157, 47-56.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.003] [PMID: 29981374]
[169]
Sykes, C.; Reisman, M. Ebola: Working toward treatments and vaccines P&T, 2015, 40(8), 521-525.
[PMID: 26236141]
[170]
Buseh, A.G.; Stevens, P.E.; Bromberg, M.; Kelber, S.T. The Ebola epidemic in West Africa: Challenges, opportunities, and policy priority areas. Nurs. Outlook, 2015, 63(1), 30-40.
[http://dx.doi.org/10.1016/j.outlook.2014.12.013] [PMID: 25645480]
[171]
Picazo, E.; Giordanetto, F. Small molecule inhibitors of Ebola virus infection. Drug Discov. Today, 2015, 20(2), 277-286.
[http://dx.doi.org/10.1016/j.drudis.2014.12.010] [PMID: 25532798]
[172]
Ekins, S.; Southan, C.; Coffee, M. Finding small molecules for the ‘next Ebola’. F1000 Res., 2015, 4, 58.
[http://dx.doi.org/10.12688/f1000research.6181.1] [PMID: 25949804]
[173]
De Rycker, M.; Baragaña, B.; Duce, S.L.; Gilbert, I.H. Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018, 559(7715), 498-506.
[http://dx.doi.org/10.1038/s41586-018-0327-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy