Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

S-Allylcysteine (SAC) Exerts Renoprotective Effects via Regulation of TGF- β1/Smad3 Pathway Mediated Matrix Remodeling in Chronic Renal Failure

Author(s): Ramkumar Samynathan, Umadevi Subramanian, Baskar Venkidasamy, Mohammad Ali Shariati, Ill-Min Chung and Muthu Thiruvengadam*

Volume 28, Issue 8, 2022

Published on: 01 April, 2022

Page: [661 - 670] Pages: 10

DOI: 10.2174/1381612828666220401114301

Price: $65

Abstract

Background: S-Allylcysteine (SAC), an organosulfur phytochemical sourced from aged garlic extract, is well known for its varied biomedical applications, such as anti-oxidant, anti-inflammatory, and detoxification mechanisms. Despite this, the scientific findings on the defensive impact of SAC against kidney failure (KF) are still unclear. Therefore, in the current investigation, the animal model of KF was induced by adenine in Wistar rats, and the animals were divided into four groups as control, KF induction using adenine, SAC treated KF rats for an experimental duration of 8 weeks.

Methods: KF progression was assessed by various serum and tissue markers, and the results demonstrated that the renal functions’ markers, KIM-1 (kidney injury molecule-1), cystatin, NGAL (neutrophil gelatinase-associated lipocalin), were found increased in adenine-treated rats compared to control. In addition, the inflammatory markers, matrix proteins, and fibrosis signatures explicated by RT-PCR, ELISA demonstrated a profound increase. On the other hand, rats received SAC mitigated KF considerably (p < 0.001) with restored cellular functions. Besides, SAC pre-treatment abrogated the cytokines and pro-inflammatory signals (COX-2 and PGE2) in a dose-dependent manner.

Conclusion: Furthermore, the fibrosis signaling markers mediators, such as SMAD-2,-3 were increased with associated matrix proteins. Thus, the present study substantiated that SAC possesses a significant renoprotective effect that might have been demonstrated by the inhibition of the TGF-β1/Smad3 signaling pathway.

Keywords: Renoprotective, S-allylcysteine, inflammatory cytokines, TGF-β1/Smad3, KIM-1, cytokiness.

[1]
Garcia-Garcia G, Jha V. World Kidney Day Steering Committee*. Chronic kidney disease in disadvantaged populations. Braz J Med Biol Res 2015; 48(5): 377-81.
[http://dx.doi.org/10.1590/1414-431x20144519] [PMID: 25760025]
[2]
Kanjevac T, Bijelic B, Brajkovic D, et al. Impact of chronic Kidney disease mineral and bone disorder on jaw and alveolar bone metabolism: A aarrative review. Oral Health Prev Dent 2018; 16(1): 79-85.3.
[3]
Taal MW. Chronic kidney disease: towards a risk-based approach. Clin Med (Lond) 2016; 16(Suppl. 6): s117-20.
[http://dx.doi.org/10.7861/clinmedicine.16-6-s117] [PMID: 27956451]
[4]
Weiner ID, Mitch WE, Sands JM. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 2015; 10(8): 1444-1458.7.
[http://dx.doi.org/10.2215/CJN.10311013]
[5]
Yokozawa T, Zheng PD, Oura H, Koizumi F. Animal model of adenine-induced chronic renal failure in rats. Nephron 1986; 44(3): 230-4.
[http://dx.doi.org/10.1159/000183992] [PMID: 3785486]
[6]
Diwan V, Brown L, Gobe GC. Adenine-induced chronic kidney disease in rats. Nephrology 2018; 23(1): 5-11.
[http://dx.doi.org/10.1111/nep.13180] [PMID: 29030945]
[7]
López-Novoa JM, Rodríguez-Peña AB, Ortiz A, Martínez-Salgado C, López Hernández FJ. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: clinical implications. J Transl Med 2011; 9: 13.
[http://dx.doi.org/10.1186/1479-5876-9-13] [PMID: 21251296]
[8]
Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC. TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 2003; 284(2): F243-52.
[http://dx.doi.org/10.1152/ajprenal.00300.2002] [PMID: 12529270]
[9]
Thakur R, Sharma A, Lingaraju MC, et al. Ameliorative effect of ursolic acid on renal fibrosis in adenine-induced chronic kidney disease in rats. Biomed Pharmacother 2018; 101: 972-80.
[http://dx.doi.org/10.1016/j.biopha.2018.02.143] [PMID: 29635907]
[10]
Meng XM, Tang PM, Li J, Lan HY. TGF-β/Smad signaling in renal fibrosis. Front Physiol 2015; 6: 82.
[http://dx.doi.org/10.3389/fphys.2015.00082] [PMID: 25852569]
[11]
Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors 2011; 29(5): 196-202.
[http://dx.doi.org/10.3109/08977194.2011.595714] [PMID: 21740331]
[12]
Adesso S, Popolo A, Bianco G, et al. The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PLoS One 2013; 8(9): e76778.
[http://dx.doi.org/10.1371/journal.pone.0076778] [PMID: 24098806]
[13]
Kayanoki Y, Fujii J, Suzuki K, Kawata S, Matsuzawa Y, Taniguchi N. Suppression of antioxidative enzyme expression by transforming growth factor-beta 1 in rat hepatocytes. J Biol Chem 1994; 269(22): 15488-92.
[http://dx.doi.org/10.1016/S0021-9258(17)40705-8] [PMID: 7515058]
[14]
Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med 1994; 60(5): 417-20.
[http://dx.doi.org/10.1055/s-2006-959522] [PMID: 7997468]
[15]
Numagami Y, Ohnishi ST. S-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia. J Nutr 2001; 131(3s): 1100S-5S.
[http://dx.doi.org/10.1093/jn/131.3.1100S] [PMID: 11238825]
[16]
Kodera Y, Suzuki A, Imada O, et al. Physical, chemical, and biological properties of s-allylcysteine, an amino acid derived from garlic. J Agric Food Chem 2002; 50(3): 622-32.
[http://dx.doi.org/10.1021/jf0106648] [PMID: 11804540]
[17]
Nogueira A, Pires MJ, Oliveira PA. Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo 2017; 31(1): 1-22.
[http://dx.doi.org/10.21873/invivo.11019] [PMID: 28064215]
[18]
Kashioulis P, Lundgren J, Shubbar E, et al. Adenine-induced chronic renal failure in rats: A model of chronic renocardiac syndrome with left ventricular diastolic dysfunction but preserved ejection fraction. Kidney Blood Press Res 2018; 43(4): 1053-64.
[http://dx.doi.org/10.1159/000491056] [PMID: 29969785]
[19]
Subramanian U, Kumar P, Mani I, et al. Retinoic acid and sodium butyrate suppress the cardiac expression of hypertrophic markers and proinflammatory mediators in Npr1 gene-disrupted haplotype mice. Physiol Genomics 2016; 48(7): 477-90.
[http://dx.doi.org/10.1152/physiolgenomics.00073.2015] [PMID: 27199456]
[20]
Umadevi S, Gopi V, Elangovan V. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chem Biol Interact 2014; 208: 28-36.
[http://dx.doi.org/10.1016/j.cbi.2013.11.013] [PMID: 24309158]
[21]
Cruz C, Correa-Rotter R, Sánchez-González DJ, et al. Renoprotective and antihypertensive effects of S-allylcysteine in 5/6 nephrectomized rats. Am J Physiol Renal Physiol 2007; 293(5): F1691-8.
[http://dx.doi.org/10.1152/ajprenal.00235.2007] [PMID: 17686953]
[22]
Bellassoued K, Ghrab F, Hamed H, et al. Protective effect of essential oil of Cinnamomum verum bark on hepatic and renal toxicity induced by carbon tetrachloride in rats. Appl Physiol Nutr Metab 2019; 44(6): 606-18.
[http://dx.doi.org/10.1139/apnm-2018-0246] [PMID: 30994004]
[23]
Brulé D, Sarwar G, Savoie L, Campbell J, Van Zeggelaar M. Differences in uricogenic effects of dietary purine bases, nucleosides and nucleotides in rats. J Nutr 1988; 118(6): 780-6.
[http://dx.doi.org/10.1093/jn/118.6.780] [PMID: 3373342]
[24]
Ienaga K, Mikami H, Yokozawa T. First indications demonstrating the preventive effects of NZ-419, a novel intrinsic antioxidant, on the initiation and/or progression of chronic renal failure in rats. Biol Pharm Bull 2009; 32(7): 1204-8.
[http://dx.doi.org/10.1248/bpb.32.1204] [PMID: 19571386]
[25]
Shuvy M, Nyska A, Beeri R, et al. Histopathology and apoptosis in an animal model of reversible renal injury. Exp Toxicol Pathol 2011; 63(4): 303-6.
[http://dx.doi.org/10.1016/j.etp.2010.02.002] [PMID: 20181466]
[26]
Diwan V, Mistry A, Gobe G, Brown L. Adenine-induced chronic kidney and cardiovascular damage in rats. J Pharmacol Toxicol Methods 2013; 68(2): 197-207.
[http://dx.doi.org/10.1016/j.vascn.2013.05.006] [PMID: 23732959]
[27]
Ali BH, Adham SA, Al Za’abi M, et al. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS One 2015; 10(4): e0125285.
[http://dx.doi.org/10.1371/journal.pone.0125285] [PMID: 25909514]
[28]
Yue LJ, Zhu XY, Li RS, et al. S-allyl-cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int J Mol Med 2019; 44(5): 1943-51.
[http://dx.doi.org/10.3892/ijmm.2019.4351] [PMID: 31573046]
[29]
Orozco-Ibarra M, Muñoz-Sánchez J, Zavala-Medina ME, et al. Aged garlic extract and S-allylcysteine prevent apoptotic cell death in a chemical hypoxia model. Biol Res 2016; 49: 7.
[http://dx.doi.org/10.1186/s40659-016-0067-6] [PMID: 26830333]
[30]
Forni LG, Darmon M, Ostermann M, et al. Renal recovery after acute kidney injury. Intensive Care Med 2017; 43(6): 855-66.
[http://dx.doi.org/10.1007/s00134-017-4809-x] [PMID: 28466146]
[31]
Villa P, Jiménez M, Soriano MC, Manzanares J, Casasnovas P. Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit Care 2005; 9(2): R139-43.
[http://dx.doi.org/10.1186/cc3044] [PMID: 15774046]
[32]
Lv L, Wang J, Gao B, et al. Serum uromodulin and progression of kidney disease in patients with chronic kidney disease. J Transl Med 2018; 16(1): 316.
[http://dx.doi.org/10.1186/s12967-018-1693-2] [PMID: 30454063]
[33]
Gong Q, He LL, Wang ML, et al. Anemoside B4 protects rat kidney from adenine-induced injury by attenuating inflammation and fibrosis and enhancing podocin and nephrin expression. Evid Based Complement Alternat Med 2019; 2019: 8031039.
[http://dx.doi.org/10.1155/2019/8031039] [PMID: 31275420]
[34]
Cottone S, Lorito MC, Riccobene R, et al. Oxidative stress, inflammation and cardiovascular disease in chronic renal failure. J Nephrol 2008; 21(2): 175-9.
[PMID: 18446711]
[35]
Avci E, Cakir E, Cevher SC, Yaman H, Agilli M, Bilgi C. Determination of oxidative stress and cellular inflammation in patients with diabetic nephropathy and non-diabetic nephropathy being administered hemodialysis treatment due to chronic renal failure. Ren Fail 2014; 36(5): 767-73.
[http://dx.doi.org/10.3109/0886022X.2014.890841] [PMID: 24579657]
[36]
Rubinstein M, Dvash E. Leukotrienes and kidney diseases. Curr Opin Nephrol Hypertens 2018; 27(1): 42-8.
[http://dx.doi.org/10.1097/MNH.0000000000000381] [PMID: 29059080]
[37]
Agrawal S, Guess AJ, Chanley MA, Smoyer WE. Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney Int 2014; 86(6): 1150-60.
[http://dx.doi.org/10.1038/ki.2014.196] [PMID: 24918154]
[38]
Wang L, Sha Y, Bai J, et al. Podocyte-specific knockout of cyclooxygenase 2 exacerbates diabetic kidney disease. Am J Physiol Renal Physiol 2017; 313(2): F430-9.
[http://dx.doi.org/10.1152/ajprenal.00614.2016] [PMID: 28490532]
[39]
Wang JL, Cheng HF, Shappell S, Harris RC. A selective cyclooxygenase-2 inhibitor decreases proteinuria and retards progressive renal injury in rats. Kidney Int 2000; 57(6): 2334-42.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00093.x] [PMID: 10844603]
[40]
Miyajima A, Ito K, Asano T, Seta K, Ueda A, Hayakawa M. Does cyclooxygenase-2 inhibitor prevent renal tissue damage in unilateral ureteral obstruction? J Urol 2001; 166(3): 1124-9.
[http://dx.doi.org/10.1016/S0022-5347(05)65933-2] [PMID: 11490310]
[41]
Oztürk H, Ozdemir E, Otcu S, Büyükbayram H, Ihsan Dokucu A. Renal effects on a solitary kidney of specific inhibition of cyclooxygenease-2 after 24 h of complete ureteric obstruction in rats. Urol Res 2002; 30(4): 223-6.
[http://dx.doi.org/10.1007/s00240-002-0266-1] [PMID: 12202939]
[42]
Azadegan-Dehkordi F, Bagheri N, Shirzad H, Rafieian-Kopaei M. The role of Th1 and Th17 cells in glomerulonephritis. J Nephropathol 2015; 4(2): 32-7.
[PMID: 25964886]
[43]
Furusu A, Miyazaki M, Koji T, et al. Involvement of IL-4 in human glomerulonephritis: An in situ hybridization study of IL-4 mRNA and IL-4 receptor mRNA. J Am Soc Nephrol 1997; 8(5): 730-41.
[http://dx.doi.org/10.1681/ASN.V85730] [PMID: 9176842]
[44]
Kim SR, Jung YR, An HJ, et al. Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling. PLoS One 2013; 8(9): e73877.
[http://dx.doi.org/10.1371/journal.pone.0073877] [PMID: 24066081]
[45]
Cheng HF, Wang CJ, Moeckel GW, Zhang MZ, McKanna JA, Harris RC. Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int 2002; 62(3): 929-39.
[http://dx.doi.org/10.1046/j.1523-1755.2002.00520.x] [PMID: 12164875]
[46]
Musiał K, Bargenda A, Drożdż D, Zwolińska D. New markers of inflammation and tubular damage in children with chronic kidney disease. Dis Markers 2017; 2017: 9389432.
[http://dx.doi.org/10.1155/2017/9389432] [PMID: 28808355]
[47]
Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, Zatz R, Câmara NOS. Inflammation in renal diseases: New and old players. Front Pharmacol 2019; 10: 1192.
[http://dx.doi.org/10.3389/fphar.2019.01192] [PMID: 31649546]
[48]
Kodai S, Takemura S, Kubo S, Azuma H, Minamiyama Y. Therapeutic administration of an ingredient of aged-garlic extracts, S-allyl cysteine resolves liver fibrosis established by carbon tetrachloride in rats. J Clin Biochem Nutr 2015; 56(3): 179-85.
[http://dx.doi.org/10.3164/jcbn.14-108] [PMID: 26060347]
[49]
Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol 2018; 80: 309-26.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034227] [PMID: 29068765]
[50]
Zhang ZH, Li MH, Liu D, et al. Rhubarb protect against tubulointerstitial fibrosis by inhibiting TGF-beta/Smad pathway and improving abnormal metabolome in chronic kidney disease. Front Pharmacol 2018; 9: 1029.
[http://dx.doi.org/10.3389/fphar.2018.01029] [PMID: 30271345]
[51]
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 2011; 7(12): 684-96.
[http://dx.doi.org/10.1038/nrneph.2011.149] [PMID: 22009250]
[52]
Yang F, Chung AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 2009; 54(4): 877-84.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.136531] [PMID: 19667256]
[53]
Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018; 101: 670-81.
[http://dx.doi.org/10.1016/j.biopha.2018.02.090] [PMID: 29518614]
[54]
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018; 292: 76-83.
[http://dx.doi.org/10.1016/j.cbi.2018.07.008] [PMID: 30017632]
[55]
Lan HY. Smads as therapeutic targets for chronic kidney disease. Kidney Res Clin Pract 2012; 31(1): 4-11.
[http://dx.doi.org/10.1016/j.krcp.2011.12.001] [PMID: 26889404]
[56]
Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF- beta/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 2001; 276(20): 17058-62.
[http://dx.doi.org/10.1074/jbc.M100754200] [PMID: 11279127]
[57]
Eddy AA, Fogo AB. Plasminogen activator inhibitor-1 in chronic kidney disease: Evidence and mechanisms of action. J Am Soc Nephrol 2006; 17(11): 2999-3012.
[http://dx.doi.org/10.1681/ASN.2006050503] [PMID: 17035608]
[58]
Gong Z, Ye H, Huo Y, et al. S-allyl-cysteine attenuates carbon tetrachloride-induced liver fibrosis in rats by targeting STAT3/SMAD3 pathway. Am J Transl Res 2018; 10(5): 1337-46.
[PMID: 29887949]
[59]
Gomez IG, MacKenna DA, Johnson BG, et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 2015; 125(1): 141-56.
[http://dx.doi.org/10.1172/JCI75852] [PMID: 25415439]
[60]
Androsavich JR, Chau BN, Bhat B, Linsley PS, Walter NG. Disease-linked microRNA-21 exhibits drastically reduced mRNA binding and silencing activity in healthy mouse liver. RNA 2012; 18(8): 1510-26.
[http://dx.doi.org/10.1261/rna.033308.112] [PMID: 22740638]
[61]
Aguado-Fraile E, Ramos E, Conde E, Rodríguez M, Liaño F, García-Bermejo ML. MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrologia 2013; 33(6): 826-34.
[PMID: 24158125]
[62]
Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: Role of miR-21. Am J Physiol Renal Physiol 2011; 301(4): F793-801.
[http://dx.doi.org/10.1152/ajprenal.00273.2011] [PMID: 21775484]
[63]
Ichii O, Otsuka S, Sasaki N, Namiki Y, Hashimoto Y, Kon Y. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int 2012; 81(3): 280-92.
[http://dx.doi.org/10.1038/ki.2011.345] [PMID: 21975861]
[64]
Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 2008; 22(12): 4126-35.
[http://dx.doi.org/10.1096/fj.08-112326] [PMID: 18716028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy