Research Article

香芹酚对代谢相关肝脂肪变性和内皮功能障碍体外模型的有益作用:脂肪酸在干扰香芹酚与血清白蛋白结合中的作用

卷 29, 期 30, 2022

发表于: 06 June, 2022

页: [5113 - 5129] 页: 17

弟呕挨: 10.2174/0929867329666220401103643

价格: $65

摘要

背景:香芹酚是一种植物酚类单萜烯,主要用作食品添加剂和植物化学物质。 目的:利用肝脂肪变性和内皮功能障碍的细胞模型,评估香芹酚在体外的降脂和保护作用。我们还研究了香芹酚与白蛋白(血液中小化合物的生理转运蛋白)的结合是否以及如何因高水平脂肪酸(FAs)的存在而改变。 方法:用外源性FA处理的肝脏FaO细胞模拟肝细胞血脂病;暴露于过氧化氢的内皮HECV细胞是内皮功能障碍的模型。在这些模型中,我们分光光度法测量了卡瓦特罗处理前后的脂质积累和释放,脂过氧化,自由基产生和一氧化氮释放。通过吸收和发射光谱评估在存在或不存在高水平FA的情况下与白蛋白的香芹酚结合。 结果:香芹酚抵消了肝细胞中的脂质积累和氧化应激,并保护内皮细胞免受氧化应激和功能障碍的影响。此外,高水平的FA减少了香芹酚与白蛋白的结合。 结论:卡瓦特罗在体外改善肝内皮细胞功能障碍方面具有良好的潜力。高水平的循环FA可能与香芹酚竞争与白蛋白的结合,从而影响其运输和生物分布。

关键词: 香芹酚,非酒精性脂肪性肝病(NAFLD),内皮功能障碍,长链脂肪酸,血清白蛋白,HECV。

[1]
Sajed, H.; Sahebkar, A.; Iranshahi, M. Zataria multiflora Boiss. (Shirazi thyme)-an ancient condiment with modern pharmaceutical uses. J. Ethnopharmacol., 2013, 145(3), 686-698.
[http://dx.doi.org/10.1016/j.jep.2012.12.018] [PMID: 23266333]
[2]
Lorenzo, J.M.; Mousavi Khaneghah, A.; Gavahian, M.; Marszałek, K.; Eş, I.; Munekata, P.E.S.; Ferreira, I.C.F.R.; Barba, F.J. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: from extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit. Rev. Food Sci. Nutr., 2019, 59(18), 2879-2895.
[http://dx.doi.org/10.1080/10408398.2018.1477730]
[3]
Khalil, M.; Khalifeh, H.; Baldini, F.; Salis, A.; Damonte, G.; Daher, A.; Voci, A.; Vergani, L. Antisteatotic and antioxidant activities of Thymbra spicata L. extracts in hepatic and endothelial cells as in vitro models of non-alcoholic fatty liver disease. J. Ethnopharmacol., 2019, 239, 111919.
[http://dx.doi.org/10.1016/j.jep.2019.111919] [PMID: 31029756]
[4]
Khalil, M.; Khalifeh, H.; Baldini, F.; Serale, N.; Parodi, A.; Voci, A.; Vergani, L.; Daher, A. Antitumor activity of ethanolic extract from Thymbra spicata L. aerial parts: Effects on cell viability and proliferation, apoptosis induction, STAT3, and NF-KB signaling. Nutr. Cancer, 2021, 73(7), 1193-1206.
[http://dx.doi.org/10.1080/01635581.2020.1792517] [PMID: 32696667]
[5]
Al Hafi, M.; El Beyrouthy, M.; Ouaini, N.; Stien, D.; Rutledge, D.; Chaillou, S. Chemical composition and antimicrobial activity of satureja, thymus, and thymbra species grown in Lebanon. Chem. Biodivers., 2017, 14(5)
[http://dx.doi.org/10.1002/cbdv.201600236] [PMID: 27584022]
[6]
Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling, 2018, 34(6), 630-656.
[http://dx.doi.org/10.1080/08927014.2018.1480756] [PMID: 30067078]
[7]
Farrell, G.C.; Larter, C.Z. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology, 2006, 43(2)(Suppl. 1), S99-S112.
[http://dx.doi.org/10.1002/hep.20973] [PMID: 16447287]
[8]
Byrne, C.D.; Targher, G. NAFLD: a multisystem disease. J. Hepatol., 2015, 62(1 Suppl), S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012]
[9]
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med., 2018, 24(7), 908-922.
[http://dx.doi.org/10.1038/s41591-018-0104-9] [PMID: 29967350]
[10]
Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(11), 686-690.
[http://dx.doi.org/10.1038/nrgastro.2013.171] [PMID: 24042449]
[11]
Bhatia, L.; Scorletti, E.; Curzen, N.; Clough, G.F.; Calder, P.C.; Byrne, C.D. Improvement in non-alcoholic fatty liver disease severity is associated with a reduction in carotid intima-media thickness progression. Atherosclerosis, 2016, 246, 13-20.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.12.028] [PMID: 26748347]
[12]
Portincasa, P.; Grattagliano, I.; Palmieri, V.O.; Palasciano, G. Current pharmacological treatment of nonalcoholic fatty liver. Curr. Med. Chem., 2006, 13(24), 2889-2900.
[http://dx.doi.org/10.2174/092986706778521878] [PMID: 17073635]
[13]
Silva, J.C.P.; Jones, J.G. Improving metabolic control through functional foods. Curr. Med. Chem., 2019, 26(19), 3424-3438.
[http://dx.doi.org/10.2174/0929867324666170523130123] [PMID: 28545368]
[14]
Pisonero-Vaquero, S.; González-Gallego, J.; Sánchez-Campos, S.; García-Mediavilla, M.V. Flavonoids and related compounds in non-alcoholic fatty liver disease therapy. Curr. Med. Chem., 2015, 22(25), 2991-3012.
[http://dx.doi.org/10.2174/0929867322666150805094940] [PMID: 26242257]
[15]
Leboffe, L.; di Masi, A.; Polticelli, F.; Trezza, V.; Ascenzi, P. Structural basis of drug recognition by human serum albumin. Curr. Med. Chem., 2020, 27(30), 4907-4931.
[http://dx.doi.org/10.2174/0929867326666190320105316] [PMID: 30894098]
[16]
Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci., 2014, 15(3), 3580-3595.
[http://dx.doi.org/10.3390/ijms15033580]
[17]
Zhivkova, Z.D. Studies on drug-human serum albumin binding: The current state of the matter. Curr. Pharm. Des., 2015, 21(14), 1817-1830.
[http://dx.doi.org/10.2174/1381612821666150302113710] [PMID: 25732557]
[18]
Kaissi, R.; Abdallah, F.; Haidar, S.; Fourmentin, S.; Greige-Gerges, H. Binding of monoterpenes to human serum albumin: investigation of the effect of hydrophobicity and structure. J. Colloid Sci. Biotechnol., 2015, 4(1), 71-78.
[http://dx.doi.org/10.1166/jcsb.2015.1113]
[19]
Herrera-Calderon, O.; Yepes-Pérez, A.F.; Quintero-Saumeth, J.; Rojas-Armas, J.P.; Palomino-Pacheco, M.; Ortiz-Sánchez, J.M.; Cieza-Macedo, E.C.; Arroyo-Acevedo, J.L.; Figueroa-Salvador, L.; Peña-Rojas, G.; Andía-Ayme, V. Carvacrol: an in silico approach of a candidate drug on HER2, PI3Kα, mTOR, hER-α, PR, and EGFR receptors in the breast cancer. Evid. Based Complement. Alternat. Med., 2020, 2020, 8830665.
[http://dx.doi.org/10.1155/2020/8830665] [PMID: 33163084]
[20]
Yamasaki, K.; Hyodo, S.; Taguchi, K.; Nishi, K.; Yamaotsu, N.; Hirono, S.; Chuang, V.T.G.; Seo, H.; Maruyama, T.; Otagiri, M. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. PLoS One, 2017, 12(6), e0180404.
[http://dx.doi.org/10.1371/journal.pone.0180404] [PMID: 28662200]
[21]
Ni, Y.; Zhao, L.; Yu, H.; Ma, X.; Bao, Y.; Rajani, C.; Loo, L.W.M.; Shvetsov, Y.B.; Yu, H.; Chen, T.; Zhang, Y.; Wang, C.; Hu, C.; Su, M.; Xie, G.; Zhao, A.; Jia, W.; Jia, W. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine, 2015, 2(10), 1513-1522.
[http://dx.doi.org/10.1016/j.ebiom.2015.09.004] [PMID: 26629547]
[22]
Feng, R.; Luo, C.; Li, C.; Du, S.; Okekunle, A.P.; Li, Y.; Chen, Y.; Zi, T.; Niu, Y. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case - control study. Lipids Health Dis., 2017, 16(1), 165.
[http://dx.doi.org/10.1186/s12944-017-0551-1] [PMID: 28870233]
[23]
Richieri, G.V.; Kleinfeld, A.M. Unbound free fatty acid levels in human serum. J. Lipid Res., 1995, 36(2), 229-240. Available from: https://pubmed.ncbi.nlm.nih.gov/7751810/
[24]
Grasselli, E.; Voci, A.; Canesi, L.; Goglia, F.; Ravera, S.; Panfoli, I.; Gallo, G.; Vergani, L. Non-receptor-mediated actions are responsible for the lipid-lowering effects of iodothyronines in FaO rat hepatoma cells. J. Endocrinol., 2011, 210(1), 59-69.
[http://dx.doi.org/10.1530/JOE-11-0074] [PMID: 21508094]
[25]
Khalil, M.; Khalifeh, H.; Saad, F.; Serale, N.; Salis, A.; Damonte, G.; Lupidi, G.; Daher, A.; Vergani, L. Protective effects of extracts from Ephedra foeminea Forssk fruits against oxidative injury in human endothelial cells. J. Ethnopharmacol., 2020, 260, 112976.
[http://dx.doi.org/10.1016/j.jep.2020.112976] [PMID: 32428657]
[26]
Wang, Z.; Wang, Y.; Chen, Y.; Lv, J. The IL-24 gene protects human umbilical vein endothelial cells against H2O2-induced injury and may be useful as a treatment for cardiovascular disease. Int. J. Mol. Med., 2016, 37(3), 581-592.
[http://dx.doi.org/10.3892/ijmm.2016.2466] [PMID: 26820392]
[27]
Li, L.C.; Wang, Z.W.; Hu, X.P.; Wu, Z.Y.; Hu, Z.P.; Ruan, Y.L. MDG-1 inhibits H2O2-induced apoptosis and inflammation in human umbilical vein endothelial cells. Mol. Med. Rep., 2017, 16(3), 3673-3679.
[http://dx.doi.org/10.3892/mmr.2017.6957] [PMID: 28713956]
[28]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[29]
Grandl, M.; Schmitz, G. Fluorescent high-content imaging allows the discrimination and quantitation of E-LDL-induced lipid droplets and Ox-LDL-generated phospholipidosis in human macrophages. Cytometry A, 2010, 77(3), 231-242.
[http://dx.doi.org/10.1002/cyto.a.20828] [PMID: 20014301]
[30]
Halliwell, B.; Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol., 2004, 142(2), 231-255.
[http://dx.doi.org/10.1038/sj.bjp.0705776] [PMID: 15155533]
[31]
Iguchi, H.; Kojo, S.; Ikeda, M. Lipid peroxidation and disintegration of the cell membrane structure in cultures of rat lung fibroblasts treated with asbestos. J. Appl. Toxicol., 1993, 13(4), 269-275.
[http://dx.doi.org/10.1002/jat.2550130409] [PMID: 8376727]
[32]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[33]
Rodriguez, L.G.; Wu, X.; Guan, J.L. Wound-healing assay. Methods Mol. Biol., 2005, 294, 23-29.
[http://dx.doi.org/10.1385/1-59259-860-9:023] [PMID: 15576902]
[34]
Mohammadi, F.; Bordbar, A.K.; Divsalar, A.; Mohammadi, K.; Saboury, A.A. Analysis of binding interaction of curcumin and diacetylcurcumin with human and bovine serum albumin using fluorescence and circular dichroism spectroscopy. Protein J., 2009, 28(3-4), 189-196.
[http://dx.doi.org/10.1007/s10930-009-9184-1] [PMID: 19495944]
[35]
van der Vusse, G.J. Albumin as fatty acid transporter. In: Drug Metabolism and Pharmacokinetics; Japanese Society for the Study of Xenobiotics, 2009; Vol. 24, pp. 300-307.
[http://dx.doi.org/10.2133/dmpk.24.300]
[36]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[37]
Hegde, A.H.; Prashanth, S.N.; Seetharamappa, J. Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. J. Pharm. Biomed. Anal., 2012, 63, 40-46.
[http://dx.doi.org/10.1016/j.jpba.2012.01.034] [PMID: 22349882]
[38]
Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr., 2015, 55(3), 304-318.
[http://dx.doi.org/10.1080/10408398.2011.653458] [PMID: 24915411]
[39]
Kim, E.; Choi, Y.; Jang, J.; Park, T. Carvacrol protects against hepatic steatosis in mice fed a high-fat diet by enhancing SIRT1-AMPK signaling. Evid. Based Complement. Alternat. Med., 2013, 2013, 290104.
[http://dx.doi.org/10.1155/2013/290104] [PMID: 23533470]
[40]
Khan, I.; Bhardwaj, M.; Shukla, S.; Min, S.H.; Choi, D.K.; Bajpai, V.K.; Huh, Y.S.; Kang, S.C. Carvacrol inhibits cytochrome P450 and protects against binge alcohol-induced liver toxicity. Food Chem. Toxicol., 2019, 131, 110582.
[http://dx.doi.org/10.1016/j.fct.2019.110582] [PMID: 31220535]
[41]
Palabiyik, S.S.; Karakus, E.; Halici, Z.; Cadirci, E.; Bayir, Y.; Ayaz, G.; Cinar, I. The protective effects of carvacrol and thymol against paracetamol-induced toxicity on human hepatocellular carcinoma cell lines (HepG2). Hum. Exp. Toxicol., 2016, 35(12), 1252-1263.
[http://dx.doi.org/10.1177/0960327115627688] [PMID: 26801986]
[42]
Aristatile, B.; Al-Numair, K.S.; Veeramani, C.; Pugalendi, K.V. Antihyperlipidemic effect of carvacrol on D-galactosamine-induced hepatotoxic rats. J. Basic Clin. Physiol. Pharmacol., 2009, 20(1), 15-27.
[http://dx.doi.org/10.1515/JBCPP.2009.20.1.15] [PMID: 19601392]
[43]
Zhao, W.; Deng, C.; Han, Q.; Xu, H.; Chen, Y. Carvacrol may alleviate vascular inflammation in diabetic db/db mice. Int. J. Mol. Med., 2020, 46(3), 977-988.
[http://dx.doi.org/10.3892/ijmm.2020.4654] [PMID: 32583003]
[44]
Hakimi, Z.; Salmani, H.; Marefati, N.; Arab, Z.; Gholamnezhad, Z.; Beheshti, F.; Shafei, M.N.; Hosseini, M. Protective effects of carvacrol on brain tissue inflammation and oxidative stress as well as learning and memory in lipopolysaccharide-challenged rats. Neurotox. Res., 2020, 37(4), 965-976.
[http://dx.doi.org/10.1007/s12640-019-00144-5] [PMID: 31811590]
[45]
Wang, D.Q.H.; Portincasa, P.; Neuschwander-Tetri, B.A. Steatosis in the liver. Compr. Physiol., 2013, 3(4), 1493-1532.
[http://dx.doi.org/10.1002/cphy.c130001] [PMID: 24265237]
[46]
Vergani, L.; Baldini, F.; Khalil, M.; Voci, A.; Putignano, P.; Miraglia, N. New perspectives of S-Adenosylmethionine (SAMe) applications to attenuate fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Molecules, 2020, 25(18), 4237.
[http://dx.doi.org/10.3390/molecules25184237]
[47]
Vecchione, G.; Grasselli, E.; Cioffi, F.; Baldini, F.; Oliveira, P.J.; Sardão, V.A.; Cortese, K.; Lanni, A.; Voci, A.; Portincasa, P.; Vergani, L. The counteracts excess lipid accumulation and ongoing oxidative stress in an in vitro model of non-alcoholic fatty liver disease progression. Front. Nutr., 2017, 4, 42.
[http://dx.doi.org/10.3389/fnut.2017.00042] [PMID: 28971098]
[48]
Spahis, S.; Delvin, E.; Borys, J.M.; Levy, E. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxidants Redox Signal., 2017, 26(6), 519-541.
[http://dx.doi.org/10.1089/ars.2016.6776]
[49]
Pi, X.; Xie, L.; Patterson, C. Emerging roles of vascular endothelium in metabolic homeostasis. In: Circulation Research; Lippincott Williams and Wilkins, 2018; pp. 477-494.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313237]
[50]
Davignon, J.; Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation, 2004, 109(23), III27-III32.
[http://dx.doi.org/10.1161/01.CIR.0000131515.03336.f8] [PMID: 15198963]
[51]
Gao, S.; Li, S.; Li, Q.; Zhang, F.; Sun, M.; Wan, Z.; Wang, S. Protective effects of salvianolic acid B against hydrogen peroxide‑induced apoptosis of human umbilical vein endothelial cells and underlying mechanisms. Int. J. Mol. Med., 2019, 44(2), 457-468.
[http://dx.doi.org/10.3892/ijmm.2019.4227] [PMID: 31173197]
[52]
Zhou, K.; Ma, Y.; Brogan, M.S. Chronic and non-healing wounds: the story of vascular endothelial growth factor. Med. Hypotheses, 2015, 85(4), 399-404.
[http://dx.doi.org/10.1016/j.mehy.2015.06.017] [PMID: 26138626]
[53]
Rezaeinasab, M.; Benvidi, A.; Gharaghani, S.; Zare, H.R. Chemometrics approaches based on electrochemical methods for the investigation of interaction between bovine serum albumin and carvacrol with the aim of its application to protein sensing. J. Electroanal. Chem. (Lausanne), 2019, 845, 48-56.
[http://dx.doi.org/10.1016/j.jelechem.2019.05.040]
[54]
Simard, J.R.; Zunszain, P.A.; Hamilton, J.A.; Curry, S. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. J. Mol. Biol., 2006, 361(2), 336-351.
[http://dx.doi.org/10.1016/j.jmb.2006.06.028] [PMID: 16844140]
[55]
Simard, J.R.; Zunszain, P.A.; Ha, C.E.; Yang, J.S.; Bhagavan, N.V.; Petitpas, I.; Curry, S.; Hamilton, J.A. Locating high-affinity fatty acid-binding sites on albumin by X-ray crystallography and NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 17958-17963.
[http://dx.doi.org/10.1073/pnas.0506440102] [PMID: 16330771]
[56]
Zhu, L.; Yang, F.; Chen, L.; Meehan, E.J.; Huang, M. A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. J. Struct. Biol., 2008, 162(1), 40-49.
[http://dx.doi.org/10.1016/j.jsb.2007.12.004] [PMID: 18258455]
[57]
Novotná, P.; Urbanová, M. Bilirubin, model membranes and serum albumin interaction: the influence of fatty acids. Biochim. Biophys. Acta, 2015, 1848(6), 1331-1340.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.026] [PMID: 25748384]
[58]
Khalili, S.; Zakeri, A.; Hashemi, Z.S.; Masoumikarimi, M.; Manesh, M.R.R.; Shariatifar, N.; Sani, M.J. Kekik Aktif Maddeler Ile Insan Serum Albüminleri Arasındaki Etkileşimlerin Yapısal Analizleri. Turkish J. Biochem., 2017, 42(4), 459-467.
[http://dx.doi.org/10.1515/tjb-2017-0008]
[59]
Krisko, A.; Kveder, M.; Pecar, S. A study of caffeine binding to human serum albumin. Croatica Chem. Acta, 2017, 78(1), 71-77.
[60]
Guyton & Hall Textbook of Medical Physiology - 1st Ed. Elsevier India 2013. Available from: https://www.elsevier.com/books/guyton-and-hall-textbook-of-medical-physiology/ vaz/978-81-312-3019-0
[61]
Rizzuti, B.; Bartucci, R.; Sportelli, L.; Guzzi, R. Fatty acid binding into the highest affinity site of human serum albumin observed in molecular dynamics simulation. Arch. Biochem. Biophys., 2015, 579(1), 18-25.
[http://dx.doi.org/10.1016/j.abb.2015.05.018] [PMID: 26048999]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy