Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

Insights into Interactions of Human Cytochrome P450 17A1: A Review

Author(s): Himanshu Singh*, Rajnish Kumar, Avijit Mazumder, Salahuddin, Rupa Mazumder and Mohd. Mustaqeem Abdullah

Volume 23, Issue 3, 2022

Published on: 23 May, 2022

Page: [172 - 187] Pages: 16

DOI: 10.2174/1389200223666220401093833

Price: $65

conference banner
Abstract

Cytochrome P450s are a widespread and vast superfamily of hemeprotein monooxygenases that metabolize physiologically essential chemicals necessary for most species' survival, ranging from protists to plants to humans. They catalyze the synthesis of steroid hormones, cholesterol, bile acids, and arachidonate metabolites and the degradation of endogenous compounds, such as steroids, fatty acids, and other catabolizing compounds as an energy source and detoxifying xenobiotics, such as drugs, procarcinogens, and carcinogens. The human CYP17A1 is one of the cytochrome P450 genes located at the 10q chromosome. The gene expression occurs in the adrenals and gonads, with minor amounts in the brain, placenta, and heart. This P450c17 cytochrome gene is a critical steroidogenesis regulator which performs two distinct activities: 17 alpha-hydroxylase activity (converting pregnenolone to 17- hydroxypregnenolone and progesterone to 17-hydroxyprogesterone; these precursors are further processed to provide glucocorticoids and sex hormones) and 17, 20-lyase activity (which converts 17-hydroxypregnenolone to DHEA). Dozens of mutations within CYP17A1 are found to cause 17-alpha-hydroxylase and 17, 20-lyase deficiency. This condition affects the function of certain hormone-producing glands, resulting in high blood pressure levels (hypertension), abnormal sexual development, and other deficiency diseases. This review highlights the changes in CYP17A1 associated with gene-gene interaction, drug-gene interaction, chemical-gene interaction, and its biochemical reactions; they have some insights to correlate with the fascinating functional characteristics of this human steroidogenic gene. The findings of our theoretical results will be helpful to further the design of specific inhibitors of CYP17A1.

Keywords: Cytochrome P450, CYP17A1, CYP17A1 gene-gene interactions, drug-CYP17A1 interactions, CYP17A1-chemical interactions, biochemical reactions.

Graphical Abstract

[1]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[2]
Burkina, V.; Zlabek, V.; Zamaratskaia, G. Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish. Environ. Toxicol. Pharmacol., 2015, 40(2), 430-444.
[http://dx.doi.org/10.1016/j.etap.2015.07.016] [PMID: 26278678]
[3]
Guengerich, F.P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol., 2001, 14(6), 611-650.
[http://dx.doi.org/10.1021/tx0002583] [PMID: 11409933]
[4]
Zhou, S. Cytochrome P450206: Structure, function, regulation and polymorphism. Drug Metab. Rev., 2016, 42(2), 268-354.
[5]
Gonzalez, F.J. Role of cytochromes P450 in chemical toxicity and oxidative stress: Studies with CYP2E1. Mutat. Res., 2005, 569(1-2), 101-110.
[http://dx.doi.org/10.1016/j.mrfmmm.2004.04.021] [PMID: 15603755]
[6]
Kirkland, D.J.; Aardema, M.; Banduhn, N.; Carmichael, P.; Fautz, R.; Meunier, J.R.; Pfuhler, S. In vitro approaches to develop weight of evidence (WoE) and mode of action (MoA) discussions with positive in vitro genotoxicity results. Mutagenesis, 2007, 22(3), 161-175.
[http://dx.doi.org/10.1093/mutage/gem006] [PMID: 17369606]
[7]
Hlavica, P. Mechanistic basis of electron transfer to cytochromes P450 by natural redox partners and artificial donor constructs. Adv. Exp. Med. Biol., 2015, 851, 247-297.
[http://dx.doi.org/10.1007/978-3-319-16009-2_10]
[8]
Bolduc, K. L. Synthetic and biocatalytic methods for the chemoenzymatic production of novel cryptophycin anticancer agents. 2013. Available from: https://deepblue.lib.umich.edu/handle/2027.42/102427
[9]
Jawallapersand, P. Cytochrome P450 monooxygenase CYP53 family in fungi: Structural analysis of CYP53A and its redox partner from the thermophilic fungus Thielavia terrestris. PLoS One, 2014, 9(9), e107209.
[10]
Jounaidi, Y.; Waxman, D.J. Frequent, moderate-dose cyclophosphamide administration improves the efficacy of cytochrome P-450/cytochrome P-450 reductase-based cancer gene therapy. Cancer Res., 2001, 61(11), 4437-4444.
[PMID: 11389073]
[11]
Poulos, T.L. Structural biology of heme monooxygenases. Biochem. Biophys. Res. Commun., 2005, 338(1), 337-345.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.204] [PMID: 16185651]
[12]
Sevrioukova, I.F.; Poulos, T.L. Structural biology of redox partner interactions in P450cam monooxygenase: A fresh look at an old sys-tem. Arch. Biochem. Biophys., 2011, 507(1), 66-74.
[http://dx.doi.org/10.1016/j.abb.2010.08.022] [PMID: 20816746]
[13]
Tosha, T.; Yoshioka, S.; Ishimori, K.; Morishima, I. L358P mutation on cytochrome P450cam simulates structural changes upon putidaredoxin binding: The structural changes trigger electron transfer to oxy-P450cam from electron donors. J. Biol. Chem., 2004, 279(41), 42836-42843.
[http://dx.doi.org/10.1074/jbc.M404216200] [PMID: 15269211]
[14]
Warman, A.J.; Roitel, O.; Neeli, R.; Girvan, H.M.; Seward, H.E.; Murray, S.A.; McLean, K.J.; Joyce, M.G.; Toogood, H.; Holt, R.A.; Leys, D.; Scrutton, N.S.; Munro, A.W. Flavocytochrome P450 BM3: An update on structure and mechanism of a biotechnologically important enzyme. Biochem. Soc. Trans., 2005, 33(Pt 4), 747-753.
[http://dx.doi.org/10.1042/BST0330747] [PMID: 16042591]
[15]
Bhatt, M.R.; Khatri, Y.; Rodgers, R.J.; Martin, L.L. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J. Steroid Biochem. Mol. Biol., 2017, 170, 2-18.
[http://dx.doi.org/10.1016/j.jsbmb.2016.02.033] [PMID: 26976652]
[16]
Hanukoglu, I. Steroidogenic enzymes: Structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol., 1992, 43(8), 779-804.
[http://dx.doi.org/10.1016/0960-0760(92)90307-5] [PMID: 22217824]
[17]
Rosa, S.; Steigert, M.; Lang-Muritano, M.; l’Allemand, D.; Schoenle, E.J.; Biason-Lauber, A. Clinical, genetic and functional characteristics of three novel CYP17A1 mutations causing combined 17α-hydroxylase/17,20-lyase deficiency. Horm. Res. Paediatr., 2010, 73(3), 198-204.
[http://dx.doi.org/10.1159/000284362] [PMID: 20197673]
[18]
DeVore, N.M.; Scott, E.E. Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature, 2012, 482(7383), 116-119.
[http://dx.doi.org/10.1038/nature10743] [PMID: 22266943]
[19]
Cork, M.J.; Robinson, D.A.; Vasilopoulos, Y.; Ferguson, A.; Moustafa, M.; MacGowan, A.; Duff, G.W.; Ward, S.J.; Tazi-Ahnini, R. New perspectives on epidermal barrier dysfunction in atopic dermatitis: Gene-environment interactions. J. Allergy Clin. Immunol., 2006, 118(1), 3-21.
[http://dx.doi.org/10.1016/j.jaci.2006.04.042] [PMID: 16815133]
[20]
Schuster, I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim. Biophys. Acta, 2011, 1814(1), 186-199.
[http://dx.doi.org/10.1016/j.bbapap.2010.06.022] [PMID: 20619365]
[21]
Xia, Y.; Shi, P.; Xia, J.; Zhang, H.; Xu, L.; Kong, X. Novel mutations of the CYP17A1 gene in four Chinese 46,XX cases with partial 17a-hydroxylase/17,20-lyase deficiency. Steroids, 2021, 173, 108873.
[http://dx.doi.org/10.1016/j.steroids.2021.108873] [PMID: 34097983]
[22]
Bashamboo, A.; McElreavey, K. Gene mutations associated with anomalies of human gonad formation. Sex Dev., 2013, 7(1-3), 126-146.
[http://dx.doi.org/10.1159/000342188] [PMID: 23037587]
[23]
Van Den Akker, E.L.; Koper, J.W.; Boehmer, A.L.; Themmen, A.P.; Verhoef-Post, M.; Timmerman, M.A.; Otten, B.J.; Drop, S.L.; De Jong, F.H. Differential inhibition of 17α-hydroxylase and 17,20-lyase activities by three novel missense CYP17 mutations identified in patients with P450c17 deficiency. J. Clin. Endocrinol. Metab., 2002, 87(12), 5714-5721.
[http://dx.doi.org/10.1210/jc.2001-011880] [PMID: 12466376]
[24]
Ding, L.; Murphy, M.B.; He, Y.; Xu, Y.; Yeung, L.W.; Wang, J.; Zhou, B.; Lam, P.K.; Wu, R.S.; Giesy, J.P. Effects of brominated flame retardants and brominated dioxins on steroidogenesis in H295R human adrenocortical carcinoma cell line. Environ. Toxicol. Chem., 2007, 26(4), 764-772.
[http://dx.doi.org/10.1897/06-388R1.1] [PMID: 17447562]
[25]
Miller, W.L.; Auchus, R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev., 2011, 32(1), 81-151.
[http://dx.doi.org/10.1210/er.2010-0013] [PMID: 21051590]
[26]
Morán, F.M.; VandeVoort, C.A.; Overstreet, J.W.; Lasley, B.L.; Conley, A.J. Molecular target of endocrine disruption in human luteinizing granulosa cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin: Inhibition of estradiol secretion due to decreased 17α-hydroxylase/17,20-lyase cytochrome P450 expression. Endocrinology, 2003, 144(2), 467-473.
[http://dx.doi.org/10.1210/en.2002-220813] [PMID: 12538606]
[27]
Yoshimoto, F.K.; Auchus, R.J. The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J. Steroid Biochem. Mol. Biol., 2015, 151, 52-65.
[http://dx.doi.org/10.1016/j.jsbmb.2014.11.026] [PMID: 25482340]
[28]
Flück, C.E.; Miller, W.L. P450 oxidoreductase deficiency: A new form of congenital adrenal hyperplasia. Curr. Opin. Pediatr., 2006, 18(4), 435-441.
[http://dx.doi.org/10.1097/01.mop.0000236395.71956.5c] [PMID: 16915000]
[29]
Kim, Y.M.; Kang, M.; Choi, J.H.; Lee, B.H.; Kim, G.H.; Ohn, J.H.; Kim, S.Y.; Park, M.S.; Yoo, H.W. A review of the literature on common CYP17A1 mutations in adults with 17-hydroxylase/17,20-lyase deficiency, a case series of such mutations among Koreans and functional characteristics of a novel mutation. Metabolism, 2014, 63(1), 42-49.
[http://dx.doi.org/10.1016/j.metabol.2013.08.015] [PMID: 24140098]
[30]
Zhang, M.; Sun, S.; Liu, Y.; Zhang, H.; Jiao, Y.; Wang, W.; Li, X. New, recurrent, and prevalent mutations: Clinical and molecular charac-terization of 26 Chinese patients with 17alpha-hydroxylase/17,20-lyase deficiency. J. Steroid Biochem. Mol. Biol., 2015, 150, 11-16.
[http://dx.doi.org/10.1016/j.jsbmb.2015.02.007] [PMID: 25697092]
[31]
Lee, M.H.; Won Park, S.; Yoon, T.K.; Shim, S.H. Homozygous CYP17A1 mutation (H373L) identified in a 46,XX female with combined 17α-hydroxylase/17,20-lyase deficiency. Gynecol. Endocrinol., 2012, 28(7), 573-576.
[http://dx.doi.org/10.3109/09513590.2011.650743] [PMID: 22452398]
[32]
Nájera, N.; Garibay, N.; Pastrana, Y.; Palma, I.; Peña, Y.R.; Pérez, J.; Coyote, N.; Hidalgo, A.; Kofman-Alfaro, S.; Queipo, G. Loss of cy-tochrome P450 17A1 protein expression in a 17α-hydroxylase/17,20-lyase-deficient 46,XY female caused by two novel mutations in the CYP17A1 gene. Endocr. Pathol., 2009, 20(4), 249-255.
[http://dx.doi.org/10.1007/s12022-009-9088-9] [PMID: 19728179]
[33]
Vasaitis, T.S.; Bruno, R.D.; Njar, V.C. CYP17 inhibitors for prostate cancer therapy. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 23-31.
[http://dx.doi.org/10.1016/j.jsbmb.2010.11.005] [PMID: 21092758]
[34]
Chatterjee, B. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. Mol. Cell. Biochem., 2003, 253(1-2), 89-101.
[http://dx.doi.org/10.1023/A:1026057402945] [PMID: 14619959]
[35]
Zobniw, C.M.; Causebrook, A.; Fong, M.K. Clinical use of abiraterone in the treatment of metastatic castration-resistant prostate cancer. Res. Rep. Urol., 2014, 6, 97-105.
[PMID: 25157341]
[36]
Akhtar, M.; Wright, J.N.; Lee-Robichaud, P. A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 2-12.
[http://dx.doi.org/10.1016/j.jsbmb.2010.11.003] [PMID: 21094255]
[37]
Yoshimoto, F.K.; Gonzalez, E.; Auchus, R.J.; Guengerich, F.P. Mechanism of 17α 20-lyase and new hydroxylation reactions of human cytochrome P450 17A1: 18O labeling and oxygen surrogate evidence for a role of a perferryl oxygen. J. Biol. Chem., 2016, 291(33), 17143-17164.
[http://dx.doi.org/10.1074/jbc.M116.732966] [PMID: 27339894]
[38]
Yoshimoto, F.K.; Zhou, Y.; Peng, H.M.; Stidd, D.; Yoshimoto, J.A.; Sharma, K.K.; Matthew, S.; Auchus, R.J. Minor activities and transi-tion state properties of the human steroid hydroxylases cytochromes P450c17 and P450c21, from reactions observed with deuterium-labeled substrates. Biochemistry, 2012, 51(36), 7064-7077.
[http://dx.doi.org/10.1021/bi300895w] [PMID: 22873692]
[39]
Huggins, C.; Hodges, C.V. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phos-phatases in metastatic carcinoma of the prostate. 1941. J. Urol., 2002, 167(2 Pt 2), 948-951.
[http://dx.doi.org/10.1016/S0022-5347(02)80307-X] [PMID: 11905923]
[40]
Gomez, L.; Kovac, J.R.; Lamb, D.J. CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 2015, 95, 80-87.
[http://dx.doi.org/10.1016/j.steroids.2014.12.021] [PMID: 25560485]
[41]
Mak, P.J.; Gregory, M.C.; Denisov, I.G.; Sligar, S.G.; Kincaid, J.R. Unveiling the crucial intermediates in androgen production. Proc. Natl. Acad. Sci. USA, 2015, 112(52), 15856-15861.
[http://dx.doi.org/10.1073/pnas.1519376113] [PMID: 26668369]
[42]
Manolio, T.A.; Bailey-Wilson, J.E.; Collins, F.S. Genes, environment and the value of prospective cohort studies. Nat. Rev. Genet., 2006, 7(10), 812-820.
[http://dx.doi.org/10.1038/nrg1919] [PMID: 16983377]
[43]
Guan, L.; Wang, Q.; Wang, L.; Wu, B.; Chen, Y.; Liu, F.; Ye, F.; Zhang, T.; Li, K.; Yan, B.; Lu, C.; Su, L.; Jin, G.; Wang, H.; Tian, H.; Wang, L.; Chen, Z.; Wang, Y.; Chen, J.; Yuan, Y.; Cong, W.; Zheng, J.; Wang, J.; Xu, X.; Liu, H.; Xiao, W.; Han, C.; Zhang, Y.; Jia, F.; Qi-ao, X.; Zhang, D.; Zhang, M.; Ma, H. Common variants on 17q25 and gene-gene interactions conferring risk of schizophrenia in Han Chi-nese population and regulating gene expressions in human brain. Mol. Psychiatry, 2016, 21(9), 1244-1250.
[http://dx.doi.org/10.1038/mp.2015.204] [PMID: 26728569]
[44]
Chabris, C.F.; Lee, J.J.; Cesarini, D.; Benjamin, D.J.; Laibson, D.I. The fourth law of behavior genetics. Curr. Dir. Psychol. Sci., 2015, 24(4), 304-312.
[http://dx.doi.org/10.1177/0963721415580430] [PMID: 26556960]
[45]
Hakki, T.; Bernhardt, R. CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol. Ther., 2006, 111(1), 27-52.
[http://dx.doi.org/10.1016/j.pharmthera.2005.07.006] [PMID: 16426683]
[46]
Melcescu, E.; Phillips, J.; Moll, G.; Subauste, J.S.; Koch, C.A. 11Beta-hydroxylase deficiency and other syndromes of mineralocorticoid excess as a rare cause of endocrine hypertension. Horm. Metab. Res., 2012, 44(12), 867-878.
[http://dx.doi.org/10.1055/s-0032-1321851] [PMID: 22932914]
[47]
Pandey, A.V.; Mellon, S.H.; Miller, W.L. Protein phosphatase 2A and phosphoprotein SET regulate androgen production by P450c17. J. Biol. Chem., 2003, 278(5), 2837-2844.
[http://dx.doi.org/10.1074/jbc.M209527200] [PMID: 12444089]
[48]
Kim, D.; Kim, V.; McCarty, K.D.; Guengerich, F.P. Tight binding of cytochrome b5 to cytochrome P450 17A1 is a critical feature of stimu-lation of C21 steroid lyase activity and androgen synthesis. J. Biol. Chem., 2021, 296, 100571.
[http://dx.doi.org/10.1016/j.jbc.2021.100571] [PMID: 33753170]
[49]
Peng, H. Enzymology: Catalytically relevant electrostatic interactions of cytochrome P450c17 (CYP17A1) and cytochrome b 5. 2014, 289(49): 33838-33849.
[50]
Duggal, R.; Liu, Y.; Gregory, M.C.; Denisov, I.G.; Kincaid, J.R.; Sligar, S.G. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis. Biochem. Biophys. Res. Commun., 2016, 477(2), 202-208.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.043] [PMID: 27297105]
[51]
Corbin, J.; Zheng, J.; Kuznetsov, V. L.; Auchus, R. J.; Conley, A. J.; Bond, M.; Parker, M. W.; Rodgers, R. J.; Martin, L. L. Mechanistic scrutiny identifies a kinetic role for cytochrome B5 regulation of human., 2015, 17, 1-19.
[52]
Zhou, L.Y.; Wang, D.S.; Kobayashi, T.; Yano, A.; Paul-Prasanth, B.; Suzuki, A.; Sakai, F.; Nagahama, Y. A novel type of P450c17 lacking the lyase activity is responsible for C21-steroid biosynthesis in the fish ovary and head kidney. Endocrinology, 2007, 148(9), 4282-4291.
[http://dx.doi.org/10.1210/en.2007-0487] [PMID: 17569754]
[53]
Kmeťová Sivoňová, M.; Jurečeková, J.; Tatarková, Z.; Kaplán, P.; Lichardusová, L.; Hatok, J. The role of CYP17A1 in prostate cancer development: Structure, function, mechanism of action, genetic variations and its inhibition. Gen. Physiol. Biophys., 2017, 36(5), 487-499.
[http://dx.doi.org/10.4149/gpb_2017024] [PMID: 29372682]
[54]
Auchus, R.J.; Lee, T.C.; Miller, W.L. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J. Biol. Chem., 1998, 273(6), 3158-3165.
[http://dx.doi.org/10.1074/jbc.273.6.3158] [PMID: 9452426]
[55]
Shet, M.S.; Fisher, C.W.; Tremblay, Y.; Belanger, A.; Conley, A.J.; Mason, J.I.; Estabrook, R.W. Comparison of the 17 α-hydroxylase/C17,20-lyase activities of porcine, guinea pig and bovine P450c17 using purified recombinant fusion proteins containing P450c17 linked to NADPH-P450 reductase. Drug Metab. Rev., 2007, 39(2-3), 289-307.
[http://dx.doi.org/10.1080/03602530701468391] [PMID: 17786622]
[56]
Naffin-Olivos, J.L.; Auchus, R.J. Human cytochrome b5 requires residues E48 and E49 to stimulate the 17,20-lyase activity of cyto-chrome P450c17. Biochemistry, 2006, 45(3), 755-762.
[http://dx.doi.org/10.1021/bi051623y] [PMID: 16411751]
[57]
Kok, R.C.; Timmerman, M.A.; Wolffenbuttel, K.P.; Drop, S.L.S.; de Jong, F.H. Isolated 17,20-lyase deficiency due to the cytochrome b5 mutation W27X. J. Clin. Endocrinol. Metab., 2010, 95(3), 994-999.
[http://dx.doi.org/10.1210/jc.2008-1745] [PMID: 20080843]
[58]
Marsh, C.A.; Auchus, R.J. Fertility in patients with genetic deficiencies of cytochrome P450c17 (CYP17A1): Combined 17-hydroxylase/17,20-lyase deficiency and isolated 17,20-lyase deficiency. Fertil. Steril., 2014, 101(2), 317-322.
[http://dx.doi.org/10.1016/j.fertnstert.2013.11.011] [PMID: 24485502]
[59]
Westervelt, P.; Cho, K.; Bright, D.R.; Kisor, D.F. Drug-gene interactions: Inherent variability in drug maintenance dose requirements. P&T, 2014, 39(9), 630-637.
[PMID: 25210416]
[60]
Malki, M.A.; Pearson, E.R. Drug-drug-gene interactions and adverse drug reactions. Pharmacogenomics J., 2020, 20(3), 355-366.
[http://dx.doi.org/10.1038/s41397-019-0122-0] [PMID: 31792369]
[61]
Sharifi, N.; McPhaul, M.J.; Auchus, R.J. “Getting from here to there”--mechanisms and limitations to the activation of the androgen recep-tor in castration-resistant prostate cancer. J. Investig. Med., 2010, 58(8), 938-944.
[http://dx.doi.org/10.2310/JIM.0b013e3181ff6bb8] [PMID: 21030877]
[62]
Pont, A.; Williams, P.L.; Loose, D.S.; Feldman, D.; Reitz, R.E.; Bochra, C.; Stevens, D.A. Ketoconazole blocks adrenal steroid synthesis. Ann. Intern. Med., 1982, 97(3), 370-372.
[http://dx.doi.org/10.7326/0003-4819-97-3-370] [PMID: 6287893]
[63]
Jackevicius, C.A.; Ton, M.N. Enhanced interaction between warfarin and high-dose ketoconazole: A case report. Case Rep. Med., 2009, 2009, 315687.
[http://dx.doi.org/10.1155/2009/315687] [PMID: 20029646]
[64]
Varlamov, E.V.; Han, A.J.; Fleseriu, M. Updates in adrenal steroidogenesis inhibitors for Cushing’s syndrome - A practical guide. Best Pract. Res. Clin. Endocrinol. Metab., 2021, 35(1), 101490.
[http://dx.doi.org/10.1016/j.beem.2021.101490] [PMID: 33707082]
[65]
Kowal, J. The effect of ketoconazole on steroidogenesis in cultured mouse adrenal cortex tumor cells. Endocrinology, 1983, 112(4), 1541-1543.
[http://dx.doi.org/10.1210/endo-112-4-1541] [PMID: 6299699]
[66]
Raff, H.; Sharma, S.T.; Nieman, L.K. Physiological basis for the etiology, diagnosis, and treatment of adrenal disorders: Cushing’s syn-drome, adrenal insufficiency, and congenital adrenal hyperplasia. Compr. Physiol., 2014, 4(2), 739-769.
[http://dx.doi.org/10.1002/cphy.c130035] [PMID: 24715566]
[67]
Usanov, S.A.; Kliuchenovich, A.V.; Strushkevich, N.V. Drug design strategies for Cushing’s syndrome. Expert Opin. Drug Discov., 2019, 14(2), 143-151.
[http://dx.doi.org/10.1080/17460441.2019.1559146] [PMID: 30572739]
[68]
Vogiatzi, P.; Cassone, M.; Claudio, L.; Claudio, P.P. Targeted therapy for advanced prostate cancer: Looking through new lenses. Drug News Perspect., 2009, 22(10), 593-601.
[http://dx.doi.org/10.1358/dnp.2009.22.10.1443392] [PMID: 20140279]
[69]
Schrijvers, D. Abiraterone acetate in the treatment of metastatic castration-resistant prostate cancer: Review of clinical data. Clin. Investig. (Lond.), 2012, 2(7), 707-713.
[http://dx.doi.org/10.4155/cli.12.55]
[70]
Logothetis, C.; De Bono, J.S.; Molina, A. Effect of abiraterone acetate (AA) on pain control and skeletal-related events (SRE) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) post docetaxel (D), results from the COUAA- 301 Phase III study. J. Clin. Oncol., 2011, 29, 4520-4520.
[71]
Ryan, C.J.; Smith, M.R.; Fong, L.; Rosenberg, J.E.; Kantoff, P.; Raynaud, F.; Martins, V.; Lee, G.; Kheoh, T.; Kim, J.; Molina, A.; Small, E.J. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant pros-tate cancer who received prior ketoconazole therapy. J. Clin. Oncol., 2010, 28(9), 1481-1488.
[http://dx.doi.org/10.1200/JCO.2009.24.1281] [PMID: 20159824]
[72]
Vogiatzi, P.; Claudio, P.P. Efficacy of abiraterone acetate in post-docetaxel castration-resistant prostate cancer. Expert Rev. Anticancer Ther., 2010, 10(7), 1027-1030.
[http://dx.doi.org/10.1586/era.10.84] [PMID: 20645691]
[73]
Attard, G.; Cooper, C.S.; de Bono, J.S. Steroid hormone receptors in prostate cancer: A hard habit to break? Cancer Cell, 2009, 16(6), 458-462.
[http://dx.doi.org/10.1016/j.ccr.2009.11.006] [PMID: 19962664]
[74]
Bruno, R.D.; Vasaitis, T.S.; Gediya, L.K.; Purushottamachar, P.; Godbole, A.M.; Ates-Alagoz, Z.; Brodie, A.M.; Njar, V.C. Synthesis and biological evaluations of putative metabolically stable analogs of VN/124-1 (TOK-001): Head to head anti-tumor efficacy evaluation of VN/124-1 (TOK-001) and abiraterone in LAPC-4 human prostate cancer xenograft model. Steroids, 2011, 76(12), 1268-1279.
[http://dx.doi.org/10.1016/j.steroids.2011.06.002] [PMID: 21729712]
[75]
Purushottamachar, P.; Godbole, A.M.; Gediya, L.K.; Martin, M.S.; Vasaitis, T.S.; Kwegyir-Afful, A.K.; Ramalingam, S.; Ates-Alagoz, Z.; Njar, V.C. Systematic structure modifications of multitarget prostate cancer drug candidate galeterone to produce novel androgen receptor down-regulating agents as an approach to treatment of advanced prostate cancer. J. Med. Chem., 2013, 56(12), 4880-4898.
[http://dx.doi.org/10.1021/jm400048v] [PMID: 23713567]
[76]
Nejabati, H.R.; Mihanfar, A.; Pezeshkian, M.; Fattahi, A.; Latifi, Z.; Safaie, N.; Valiloo, M.; Jodati, A.R.; Nouri, M. N1-methylnicotinamide (MNAM) as a guardian of cardiovascular system. J. Cell. Physiol., 2018, 233(10), 6386-6394.
[http://dx.doi.org/10.1002/jcp.26636] [PMID: 29741779]
[77]
Speroff, L.; Fritz, M.A. Clinical gynecologic endocrinology and infertility; Lippincott Williams & wilkins, 2005.
[78]
Adashi, E.Y.; Adashi, E.Y. Clomiphene citrate: Mechanism(s) and site(s) of action--a hypothesis revisited. Fertil. Steril., 1984, 42(3), 331-344.
[http://dx.doi.org/10.1016/S0015-0282(16)48069-6] [PMID: 6432584]
[79]
Laufer, N.; Reich, R.; Braw, R.; Shenker, J.G.; Tsafriri, A. Effect of clomiphene citrate on preovulatory rat follicles in culture. Biol. Reprod., 1982, 27(2), 463-471.
[http://dx.doi.org/10.1095/biolreprod27.2.463] [PMID: 7126743]
[80]
Hayfaa, A. Al-Shammary, Effects of clomiphene citrate on the histological structure of the iraqi domestic chicken’s ovaries. Univ. THI-QAR J., 2018, 13(3), 57-69.
[81]
Allahbadia, G.N.; Merchant, R. Polycystic ovary syndrome and impact on health. Middle East Fertil. Soc. J., 2011, 16(1), 19-37.
[http://dx.doi.org/10.1016/j.mefs.2010.10.002]
[82]
Dellis, A.; Papatsoris, A.G. Phase I and II therapies targeting the androgen receptor for the treatment of castration resistant prostate cancer. Expert Opin. Investig. Drugs, 2016, 25(6), 697-707.
[http://dx.doi.org/10.1517/13543784.2016.1162784] [PMID: 26954621]
[83]
Njar, V.C.O.; Brodie, A.M.H. Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem., 2015, 58(5), 2077-2087.
[http://dx.doi.org/10.1021/jm501239f] [PMID: 25591066]
[84]
Xu, Y.; Liao, S.; Wang, L.; Wang, Y.; Wei, W.; Su, K.; Tu, Y.; Zhu, S. Galeterone sensitizes breast cancer to chemotherapy via targeting MNK/eIF4E and β-catenin. Cancer Chemother. Pharmacol., 2021, 87(1), 85-93.
[http://dx.doi.org/10.1007/s00280-020-04195-w] [PMID: 33159561]
[85]
Kaku, T.; Hitaka, T.; Ojida, A.; Matsunaga, N.; Adachi, M.; Tanaka, T.; Hara, T.; Yamaoka, M.; Kusaka, M.; Okuda, T.; Asahi, S.; Furuya, S.; Tasaka, A. Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorg. Med. Chem., 2011, 19(21), 6383-6399.
[http://dx.doi.org/10.1016/j.bmc.2011.08.066] [PMID: 21978946]
[86]
Petrylak, D.P.; Gandhi, J.G.; Clark, W.R.; Heath, E.; Lin, J.; Oh, W.K.; Agus, D.B.; Carthon, B.; Moran, S.; Kong, N.; Suri, A.; Bargfrede, M.; Liu, G. Phase 1/2 study of orteronel (TAK-700), an investigational 17,20-lyase inhibitor, with docetaxel-prednisone in metastatic cas-tration-resistant prostate cancer. Invest. New Drugs, 2015, 33(2), 397-408.
[http://dx.doi.org/10.1007/s10637-014-0199-x] [PMID: 25556680]
[87]
Massard, C.; Fizazi, K. Targeting continued androgen receptor signaling in prostate cancer. Clin. Cancer Res., 2011, 17(12), 3876-3883.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2815] [PMID: 21680543]
[88]
Hara, T.; Kouno, J.; Kaku, T.; Takeuchi, T.; Kusaka, M.; Tasaka, A.; Yamaoka, M. Effect of a novel 17,20-lyase inhibitor, orteronel (TAK-700), on androgen synthesis in male rats. J. Steroid Biochem. Mol. Biol., 2013, 134, 80-91.
[http://dx.doi.org/10.1016/j.jsbmb.2012.10.020] [PMID: 23146910]
[89]
Goto, A.; Moriya, Y.; Takeuchi, T.; Mandai, T.; Tagawa, Y.; Kondo, T.; Asahi, S. Pharmacokinetics and urinary excretion mechanism of orteronel (TAK-700), a novel 17,20-Lyase inhibitor, in animals. Drug Res. (Stuttg.), 2016, 66(4), 217-222.
[PMID: 26418412]
[90]
Cadegiani, F.A.; Wambier, C.G.; Goren, A. Spironolactone: An anti-androgenic and anti-hypertensive drug that may provide protection against the novel coronavirus (SARS-CoV-2) induced acute respiratory distress syndrome (ARDS) in COVID-19. Front. Med. (Lausanne), 2020, 7(July), 453.
[http://dx.doi.org/10.3389/fmed.2020.00453] [PMID: 32850920]
[91]
Prior, J.C. Progesterone is important for transgender women’s therapy-applying evidence for the benefits of progesterone in ciswomen. J. Clin. Endocrinol. Metab., 2019, 104(4), 1181-1186.
[http://dx.doi.org/10.1210/jc.2018-01777] [PMID: 30608551]
[92]
Stevenson, M.O.; Wixon, N.; Safer, J.D. Scalp hair regrowth in hormone-treated transgender woman. Transgend. Health, 2016, 1(1), 202-204.
[http://dx.doi.org/10.1089/trgh.2016.0022] [PMID: 28861534]
[93]
Leinung, M.C.; Feustel, P.J.; Joseph, J. Hormonal treatment of transgender women with oral estradiol. Transgend. Health, 2018, 3(1), 74-81.
[http://dx.doi.org/10.1089/trgh.2017.0035] [PMID: 29756046]
[94]
Tangpricha, V.; den Heijer, M. Oestrogen and anti-androgen therapy for transgender women. Lancet Diabetes Endocrinol., 2017, 5(4), 291-300.
[http://dx.doi.org/10.1016/S2213-8587(16)30319-9] [PMID: 27916515]
[95]
Yemisci, A.; Gorgulu, A.; Piskin, S. Effects and side-effects of spironolactone therapy in women with acne. J. Eur. Acad. Dermatol. Venereol., 2005, 19(2), 163-166.
[http://dx.doi.org/10.1111/j.1468-3083.2005.01072.x] [PMID: 15752283]
[96]
Millington, K.; Liu, E.; Chan, Y.M. The utility of potassium monitoring in gender-diverse adolescents taking spironolactone. J. Endocr. Soc., 2019, 3(5), 1031-1038.
[http://dx.doi.org/10.1210/js.2019-00030] [PMID: 31065620]
[97]
Wang, X.; Yin, L.; Rao, P.; Stein, R.; Harsch, K.M.; Lee, Z.; Heston, W.D. Targeted treatment of prostate cancer. J. Cell. Biochem., 2007, 102(3), 571-579.
[http://dx.doi.org/10.1002/jcb.21491] [PMID: 17685433]
[98]
Haidar, S.; Hartmann, R.W. C16 and C17 substituted derivatives of pregnenolone and progesterone as inhibitors of 17α-hydroxylase-C17, 20-lyase: Synthesis and biological evaluation. Arch. Pharm. (Weinheim), 2002, 335(11-12), 526-534.
[http://dx.doi.org/10.1002/ardp.200290006] [PMID: 12596217]
[99]
Auchus, R.J.; Sampath Kumar, A.; Andrew Boswell, C.; Gupta, M.K.; Bruce, K.; Rath, N.P.; Covey, D.F. The enantiomer of progesterone (ent-progesterone) is a competitive inhibitor of human cytochromes P450c17 and P450c21. Arch. Biochem. Biophys., 2003, 409(1), 134-144.
[http://dx.doi.org/10.1016/S0003-9861(02)00491-5] [PMID: 12464252]
[100]
Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.; Legro, R.S.; Lizneva, D.; Natterson-Horowtiz, B.; Teede, H.J.; Yildiz, B.O. Poly-cystic ovary syndrome. Nat. Rev. Dis. Primers, 2016, 2(1), 16057.
[http://dx.doi.org/10.1038/nrdp.2016.57] [PMID: 27510637]
[101]
Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol., 2018, 14(5), 270-284.
[http://dx.doi.org/10.1038/nrendo.2018.24] [PMID: 29569621]
[102]
Solorzano, C.M.; McCartney, C.R.; Blank, S.K.; Knudsen, K.L.; Marshall, J.C. Hyperandrogenemia in adolescent girls: Origins of abnor-mal GnRH secretion. BJOG. Int. J. Gynaecol. Obstet., 2010, 117(2), 143.
[http://dx.doi.org/10.1111/j.1471-0528.2009.02383.x]
[103]
Nejabati, H.R.; Samadi, N.; Shahnazi, V.; Mihanfar, A.; Fattahi, A.; Latifi, Z.; Bahrami-Asl, Z.; Roshangar, L.; Nouri, M. Nicotinamide and its metabolite N1-Methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of Poly-cystic Ovary Syndrome. Chem. Biol. Interact., 2020, 324, 109093.
[http://dx.doi.org/10.1016/j.cbi.2020.109093] [PMID: 32298659]
[104]
Ramesh, A.; Walker, S.A.; Hood, D.B.; Guillén, M.D.; Schneider, K.; Weyand, E.H. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int. J. Toxicol., 2004, 23(5), 301-333.
[http://dx.doi.org/10.1080/10915810490517063] [PMID: 15513831]
[105]
Yauk, C.L.; Berndt, M.L.; Williams, A.; Rowan-Carroll, A.; Douglas, G.R.; Stämpfli, M.R. Mainstream tobacco smoke causes paternal germ-line DNA mutation. Cancer Res., 2007, 67(11), 5103-5106.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0279] [PMID: 17545587]
[106]
Ramesh, A.; Inyang, F.; Lunstra, D.D.; Niaz, M.S.; Kopsombut, P.; Jones, K.M.; Hood, D.B.; Hills, E.R.; Archibong, A.E. Alteration of fertility endpoints in adult male F-344 rats by subchronic exposure to inhaled benzo(a)pyrene. Exp. Toxicol. Pathol., 2008, 60(4-5), 269-280.
[http://dx.doi.org/10.1016/j.etp.2008.02.010] [PMID: 18499416]
[107]
Liang, J.; Zhu, H.; Li, C.; Ding, Y.; Zhou, Z.; Wu, Q. Neonatal exposure to benzo[a]pyrene decreases the levels of serum testosterone and histone H3K14 acetylation of the StAR promoter in the testes of SD rats. Toxicol, 2012, 302(2-3), 285-291.
[http://dx.doi.org/10.1016/j.tox.2012.08.010] [PMID: 22960446]
[108]
Nakajin, S.; Hall, P.F. Microsomal cytochrome P-450 from neonatal pig testis. Purification and properties of A C21 steroid side-chain cleavage system (17 alpha-hydroxylase-C17,20 lyase). J. Biol. Chem., 1981, 256(8), 3871-3876.
[http://dx.doi.org/10.1016/S0021-9258(19)69538-4] [PMID: 6971291]
[109]
Wu, R.S. Hypoxia: From molecular responses to ecosystem responses. Mar. Poll. Bull., 2002, 45(1-12), 35-45.
[http://dx.doi.org/10.1016/S0025-326X(02)00061-9]
[110]
Diaz, R.J.; Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321(5891), 926-929.
[http://dx.doi.org/10.1126/science.1156401] [PMID: 18703733]
[111]
Tena-Sempere, M.; Manna, P.R.; Zhang, F.P.; Pinilla, L.; González, L.C.; Diéguez, C.; Huhtaniemi, I.; Aguilar, E. Molecular mechanisms of leptin action in adult rat testis: Potential targets for leptin-induced inhibition of steroidogenesis and pattern of leptin receptor messenger ri-bonucleic acid expression. J. Endocrinol., 2001, 170(2), 413-423.
[http://dx.doi.org/10.1677/joe.0.1700413] [PMID: 11479137]
[112]
Srivastava, R.K.; Krishna, A. Adiposity associated rise in leptin impairs ovarian activity during winter dormancy in Vespertilionid bat, Scotophilus heathi. Reproduction, 2007, 133(1), 165-176.
[http://dx.doi.org/10.1530/rep.1.01019] [PMID: 17244743]
[113]
To, T.T.; Hahner, S.; Nica, G.; Rohr, K.B.; Hammerschmidt, M.; Winkler, C.; Allolio, B. Pituitary-interrenal interaction in zebrafish inter-renal organ development. Mol. Endocrinol., 2007, 21(2), 472-485.
[http://dx.doi.org/10.1210/me.2006-0216] [PMID: 17082325]
[114]
Dodson, R.E.; Nishioka, M.; Standley, L.J.; Perovich, L.J.; Brody, J.G.; Rudel, R.A. Endocrine disruptors and asthma-associated chemi-cals in consumer products. Environ. Health Perspect., 2012, 120(7), 935-943.
[http://dx.doi.org/10.1289/ehp.1104052] [PMID: 22398195]
[115]
Xi, C.H.; Liu, Y.N.; Zhou, Q.H.; Ling, L.E.; Chang, Y.; Tang, N.J. Effects of low concentrations of di-(2-Ethyluteinizing hormoneexyl) and mono-(2-Ethyluteinizing hormoneexyl) phthalate on steroidogenesis pathways and apoptosis in the murine Leydig tumor cell line MLTC-1. Biomed. Environ. Sci., 2013, 26(12), 986-989.
[PMID: 24393508]
[116]
Ariyoshi, N.; Kim, Y.C.; Artemenko, I.; Bhattacharyya, K.K.; Jefcoate, C.R. Characterization of the rat Star gene that encodes the predomi-nant 3.5-kilobase pair mRNA. ACTH stimulation of adrenal steroids in vivo precedes elevation of Star mRNA and protein. J. Biol. Chem., 1998, 273(13), 7610-7619.
[http://dx.doi.org/10.1074/jbc.273.13.7610] [PMID: 9516465]
[117]
Buñay, J.; Larriba, E.; Patiño-Garcia, D.; Cruz-Fernandes, L.; Castañeda-Zegarra, S.; Rodriguez-Fernandez, M.; Del Mazo, J.; Moreno, R.D. Editor’s highlight: Differential effects of exposure to single versus a mixture of endocrine-disrupting chemicals on steroidogenesis path-way in mouse testes. Toxicol. Sci., 2018, 161(1), 76-86.
[http://dx.doi.org/10.1093/toxsci/kfx200] [PMID: 29029336]
[118]
de Wit, C.A. An overview of brominated flame retardants in the environment. Chemosphere, 2002, 46(5), 583-624.
[http://dx.doi.org/10.1016/S0045-6535(01)00225-9] [PMID: 11999784]
[119]
Weil, E.D.; Levchik, S. A review of current flame retardant systems for epoxy resins. J. Fire Sci., 2004, 22(1), 25-40.
[http://dx.doi.org/10.1177/0734904104038107]
[120]
Ankley, G.T.; Kahl, M.D.; Jensen, K.M.; Hornung, M.W.; Korte, J.J.; Makynen, E.A.; Leino, R.L. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicol. Sci., 2002, 67(1), 121-130.
[http://dx.doi.org/10.1093/toxsci/67.1.121] [PMID: 11961225]
[121]
Deng, J.; Liu, C.; Yu, L.; Zhou, B. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicol. Appl. Pharmacol., 2010, 243(1), 87-95.
[http://dx.doi.org/10.1016/j.taap.2009.11.016] [PMID: 19931292]
[122]
Schaeper, U.; Boyd, J.M.; Verma, S.; Uhlmann, E.; Subramanian, T.; Chinnadurai, G. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic trans-formation. Proc. Natl. Acad. Sci. USA, 1995, 92(23), 10467-10471.
[http://dx.doi.org/10.1073/pnas.92.23.10467] [PMID: 7479821]
[123]
Achouri, Y.; Noël, G.; Van Schaftingen, E. 2-Keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1. Biochem. Biophys. Res. Commun., 2007, 352(4), 903-906.
[http://dx.doi.org/10.1016/j.bbrc.2006.11.111] [PMID: 17157814]
[124]
Kumar, V.; Carlson, J.E.; Ohgi, K.A.; Edwards, T.A.; Rose, D.W.; Escalante, C.R.; Rosenfeld, M.G.; Aggarwal, A.K. Transcription core-pressor CtBP is an NAD(+)-regulated dehydrogenase. Mol. Cell, 2002, 10(4), 857-869.
[http://dx.doi.org/10.1016/S1097-2765(02)00650-0] [PMID: 12419229]
[125]
Zhang, Q.; Wang, S.Y.; Fleuriel, C.; Leprince, D.; Rocheleau, J.V.; Piston, D.W.; Goodman, R.H. Metabolic regulation of SIRT1 transcrip-tion via a HIC1:CtBP corepressor complex. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 829-833.
[http://dx.doi.org/10.1073/pnas.0610590104] [PMID: 17213307]
[126]
Dammer, E.B.; Sewer, M.B. Phosphorylation of CtBP1 by cAMP-dependent protein kinase modulates induction of CYP17 by stimulating partnering of CtBP1 and 2. J. Biol. Chem., 2008, 283(11), 6925-6934.
[http://dx.doi.org/10.1074/jbc.M708432200] [PMID: 18184656]
[127]
Boughton, C.; Taylor, D.; Ghataore, L.; Taylor, N.; Whitelaw, B.C. Mineralocorticoid hypertension and hypokalaemia induced by posaconazole. Endocrinol. Diabetes Metab. Case Rep., 2018, 2018, 1-5.
[http://dx.doi.org/10.1530/EDM-17-0157] [PMID: 29472988]
[128]
Thompson, G.R., III; Chang, D.; Wittenberg, R.R.; McHardy, I.; Semrad, A. In vivo 11β-hydroxysteroid dehydrogenase inhibition in posaconazole-induced hypertension and hypokalemia. Antimicrob. Agents Chemother., 2017, 61(8), 1-7.
[http://dx.doi.org/10.1128/AAC.00760-17] [PMID: 28533238]
[129]
White, P.C.; Mune, T.; Agarwal, A.K. 11 β-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr. Rev., 1997, 18(1), 135-156.
[http://dx.doi.org/10.1210/er.18.1.135] [PMID: 9034789]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy